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0  INTRODUCTION

The swift development in recent decades towards 
more powerful computers has allowed the widespread 
use of complex simulation programs based on 
numerical methods. Thus, finite element analysis 
(FEA) is now an established standard procedure in 
many areas of numerical strength analysis. Despite 
the increasing computing power, the endeavour is 
to develop more efficient algorithms and thus to 
minimize the computation time during the FEA.

The main idea of the FEA is to partition a 
continuum into a finite number of finitely large sub-
continua [1] to [3]. Such discretized elements are 
referred to as finite elements (FE). Their nodes act as 
joints between neighbouring elements and as target 
points for the specification of loads and displacement 
boundary conditions. The solid deforms under 
mechanical load, resulting in a deformation of each 
finite element. The displacement of any point x   
within an element is specified by the vector field u . 
The location and displacement of any point inside a 
finite element are interpolated from the position 



Pi  
and the displacement 



di  of the element nodes. 
These nodal displacements are computed via a 

discretized formulation of the mechanical momentum 
equation. Starting from the geometrical discretization 
of the continuum, one possible approach for the 
derivation of the discretized momentum equation is 
the Galerkin method [1], [2] and [4]. In the case of a 
static equilibrium problem, this ultimately leads to a 

system of linear equations for determining the nodal 
displacements:

 K ⋅ = +


 

d R Rs b.  (1)

Matrix K is the stiffness matrix and the vectors 


RS  and 


Rb  represent the load vectors of surface 
forces and body forces.

Body forces, such as the weight force, affect 
almost all technical components and cannot be 
neglected in stress analysis, e.g. in areas such 
as structural engineering. They affect the whole 
element from a physical point of view, but they are 
proportionately distributed to the element nodes 
within the finite element method. For each element, 
the equivalent nodal forces can be calculated as 
follows [5]: 

 


R gdVb
e

V e
= ∫∫∫NTρ ,  (2)

where N is the matrix of the shape functions and ρ g   
describes the mass density and the gravitational 
constant. If the mass density and the gravitational 
factor are assumed to be constant for each finite 
element, both quantities can be put outside the 
integral, leading to the following expression: 

 


R dV gb
e

V e
= ⋅∫∫∫NT ρ .  (3)

The vector 


Rb  in Eq. (1) can be calculated by 
assembling each elemental force vector into one 
global force vector [2]:
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Highlights
• Efficient method for the calculation of body forces within finite element analysis was implemented.
• Factorization of the volume integral makes the integration independent of the global node coordinates.
• Most of the computational effort, i.e. numerical integration, does not need to be performed during the FE-program runtime.
• Computing effort and computation time can be reduced.
• The introduced method enables exact numerical integration without affecting computation time.
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 

R Rb b
e

e
=∑ .  (4)

In this paper, we present a mathematical approach 
to a time-efficient calculation of the volume integral 
in Eq. (3).

1  ELEMENT DESCRIPTION AND NUMERICAL INTEGRATION

Interpolation polynomials are used to describe the 
displacement field u  within a finite element, which 
are composed of the shape functions Ni and the 
displacement vectors di of each element node. 
Typically, the following formula is used in the FEM 
literature [1], [5] and [6]:

 



u r s t N r s t di i
i

( , , ) ( , , ) .≈ ⋅∑  (5)

The location dependency of the displacement 
field is included in the shape functions. If these 
functions were dependent on the global Cartesian 
coordinates (x, y, z), the shape functions Ni would have 
to be determined individually for each finite element 
of the structure. To avoid this effort, a coordinate 
transformation into a generally curvilinear element 
coordinate system (r, s, t) is typically performed 
within the finite element method. In that way, the 
finite elements are transformed into their undistorted 
geometry, which is why this coordinate system is also 
called the natural coordinate system. 

An interpolation approach similar to Eq. (5) is 
typically used to establish a relation between the 
global coordinates (x, y, z) and the curvilinear, natural 
coordinates (r, s, t):

 � � �
x r s t N r s t Pi i

i
( , , ) ( , , ) ,≈∑  (6)

where Ni
  denotes the shape functions for the 

interpolation of the geometry and 


Pi  the node 
coordinates in the global Cartesian coordinate system.

Generally, the supporting points for the 
interpolation polynomials of u  and do not have to be 
coincidental [6]. Other or fewer nodes can be used for 
the calculation of x . If the supporting points are 
chosen to be identical, the shape functions Ni

  and Ni 
coincide. In this case, the element formulation is 
called isoparametric [2].

According to Eq. (3), a volume integral must be 
solved for the calculation of the gravitational nodal 
forces. If the element formulation is assumed to be 
isoparametric, the integration can be performed in the 
natural coordinate system [3]:

 


R drdsdt gb
e

r s t

= ⋅∫∫∫ N JT
det  

( , , )

.ρ  (7)

The term det J denotes the determinant of the 
Jacobian matrix, also called functional determinant, 
and is defined as:

 det .J =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
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x
r
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r
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s
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t
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r

z
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z
t

 (8)

The evaluation of the volume integral, shown in 
Eq. (7), is usually carried out by numerical integration 
[3]. Typically, Gaussian quadrature is used in this 
context [1], which is based on the idea of evaluating 
the integrand at certain grid points, so-called Gauss 
points, and calculating the weighted sum [3]:

 


R r s t gb
e

a b c
T

a b c
c

m

b

m

a

m

≈ { } ⋅
===
∑∑∑ α α α ρN Jdet ( , , ) .

111

 (9)

The parameters (αa, αb, αc) denote the Gaussian 
weights, and (ra, sb, tc) are the natural coordinates 
of the Gauss points [3]. These parameters might be 
different for various element geometries. For example, 
there are Gaussian weights and Gauss points specially 
developed for triangles and tetrahedrons [1], [7] and 
[8]. 

If the polynomial degree is denoted as p, at least 
m = (p+1) / 2 supporting points are required to obtain 
an exact integration [9]. 

2  FACTORIZATION OF THE JACOBIAN DETERMINANT

During the calculation of the Jacobian determinant, the 
partial derivatives of the Cartesian coordinates (x, y, z) 
with respect to the natural coordinates (r, s, t) must be 
evaluated. If an isoparametric element formulation is 
assumed, the following equation holds [3]:

     det J =

∂
∂
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∂
∂

∂
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.  (10)

This determinant can be expanded to the 
following expression: 
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By bracketing out the node coordinates, this 
equation can be rewritten as:

      det J =

∂
∂

∂
∂

∂
∂

∂

∂

∂
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i j kx y z∑∑
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⋅
1

.  (12)

According to this equation, the Jacobian 
determinant can be “factorized” in such a way that the 
node coordinates (xi, yj, zk) and the partial derivatives 
of the shape functions are separated:

 det ( , , ) .J = ⋅
===
∑∑∑ H r s t Xijk ijk
k

n

j

n

i

n

111

 (13)

Based on the general properties of determinants 
[10], it can be shown that the determinant of the partial 
differential derivatives Hijk possess the following 
properties:
1) Hijk = 0 for i = j and/or j = k and/or k = i,
2) Hijk = –Hjik = Hjki = –Hkji = Hkij = –Hikj.

These properties result from the fact that the rows 
of Hijk are identical and that interchanging rows leads 
to a change of the sign of the determinant.

According to these properties, the following 
statements can be concluded:
1. To determine the value of all Hijk, it suffices to 

calculate solely those Iijk with: i = 1, ..., n – 2, 
j = i + 1, ..., n – 1, k = j + 1, ..., n.

2. The sign of all Hijk can be determined via property 
2).

3. The number of the determinants Hijk to be 
calculated decreases from n3 to 

n
n

!

( )! !−3 3 
.

To proof these statements, Hijk is considered as 
a tensor of third order with n elements per row, i.e. 
it describes a cube of “edge length” n. According to 
property 1), all components of this tensor with i = j 
and/or j = k and/or k = i are equal to zero. All these 
zero-values Hiik, Hijj and Hkjk are arranged in such a 
manner that they form three planes within the cube, 
which intersect along the body diagonal of the cube, 
where i = j = k holds. The cube is thereby divided 
into six tetrahedrons, Fig. 1. These tetrahedrons can 
be described by the intervals of indices a = 1, ..., n – 2, 
b = a + 1, ..., n – 1 and c = b + 1, ..., n, where the 
parameters (a, b, c) are placeholders for each of the 
six possible permutations of (i, j, k). One possible 
tetrahedron is defined as i = 1, ..., n – 2, j = i + 1, ..., n – 1,  
and k = j + 1, ..., n, which is shown in Fig. 1.

i

k

j

k

k

i

j

j
i

plane diagonal body diagonal

relevant area of
the tensor

c

b
a

Fig. 1.  Composition of the tensor Hijk

According to property 2) all other five 
tetrahedrons have the same entries regarding their 
absolute value. They only differ in sign. Therefore, it 
suffices to calculate only one of these six tetrahedrons. 
All the others can be derived from the first tetrahedron 
based on property 2), which is why the second 
statement is valid. 

The third statement is verified with an example. 
If n = 3, i.e. i, j, k = 1, ..., 3, then there are n3 = 27  
different “combinations” for the index triple: (i, j, k) = 
(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1) etc. According to 
property 1), all combinations comprised of at least 
two identical indices, such as (1, 1, 2) or (3, 3, 3), are 
of no interest. Consequently, the number of relevant 
combinations decreases to n! = 6. Furthermore, the 
sequence of the indices within each index triple is 
irrelevant according to property 2), i.e.   
| Hijk | = | Hjik | = | Hkij |, etc. The number of relevant 
index combinations is thereby reduced to only 
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n
n

!

( )! !−3 3 
 = 1. For this reason, (1, 2, 3) is the only 

interesting combination in this example. If the value 
of H123 is calculated, all other 26 determinants Hijk can 
be derived via properties 1) and 2). Therefore, the 
calculation of n3 – 

n
n

!

( )! !−3 3 
 = 26 integrals can be 

omitted, resulting in a reduction of computing effort 
to n

n n
!

( )! !
3

3 3

1

27−
=

 

. 

In this example, the combination )3,2,1(  was 
arbitrarily chosen as the “only” interesting 
combination. Likewise, any other permutation could 
be used. The relevant point is that calculating one of 
them is sufficient. 

This example shows that the computing effort 
for the evaluation of the Jacobian determinant (Eq. 
(13)) can be significantly reduced by exploiting the 
properties of Hijk.

3  FACTORIZATION OF THE VOLUME INTEGRAL

The factorization of the Jacobian determinant 
according to Eq. (13) can be utilized for an efficient 
evaluation of the volume integral, Eq. (7). The basic 
idea is to make the integral independent of the global 
coordinates of the element nodes by exploiting the 
factorization of the Jacobian determinant.

Inserting Eq. (13) into Eq. (7) leads to the 
following expression:

 


R H X drdsdt gb
e

ijk ijk
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r s t
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===
∑∑∑∫∫∫ NT
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.ρ  (14)

This equation can be rewritten as follows:
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 (15)

As a result, the volume integral in Eq. (14) has 
been split up into a sum of two factors. The first factor 
Iijk consists of an integral, which is independent of the 
node coordinates (xi, yi, zi). The node coordinates are 
included in the second factor 



X ijk
* . 

This factorization of the original volume integral 
leads to a significant increase of the total computing 
effort because several integrals need to be calculated 
instead of one. Furthermore, since several integrals 
must be calculated and summed up, a full integration 
order should be used to avoid summing up numerical 
errors, which makes the numerical integration more 
expensive. This effect is particularly noticeable 

for elements with a high number of nodes, such as 
quadratic hexahedrons, for which many integrals must 
be calculated.  

However, the advantage of this approach is 
that these integrals are independent of the node 
coordinates, the mass density, and the gravitational 
factor. They only depend on the shape functions and 
their partial derivatives. Therefore, these integrals 
are specific for an element type just like the shape 
functions. They only need to be calculated and 
tabulated once for a specific element type. Afterwards, 
they can be used to calculate the nodal forces for all 
finite elements of the same element type. 

In practice, the integrals Iijk are calculated only 
once and their numerical values are stored hard coded 
within the finite element program. During the program 
runtime these numerical values of Iijk only need to be 
multiplied with the vectors 



X ijk
*  and summed up for 

each element according to Eq. (15). No Gaussian 
quadrature must be performed. Therefore, both the 
computing effort and the computing time can be 
reduced in practice. 

4  COMPARISON OF METHODS

In this section, the efficiency of the introduced 
factorization-based method is considered. For this 
purpose, the calculation of the weight force of a 
tetrahedron element with quadratic shape functions is 
performed, see Fig. 2. The required shape functions 
and their partial derivatives can be taken from Rieg 
et al. [3].

[6]

x y

z

[1]

[2] [3]

[4]

[5]

[10]

[7]

[8] [9]

[1]   (0.0|0.0|0.0)     [2]   (1.0|0.0|0.0)

[3]   (0.0|1.0|0.0)     [4]   (0.0|0.0|1.0)

[5]   (0.5|0.0|0.0)     [6]   (0.5|0.5|0.0)

[7]   (0.0|0.5|0.0)     [8]   (0.5|0.0|0.5)

[9]   (0.0|0.5|0.5)     [10] (0.0|0.0|0.5) 

Fig. 2.  Quadratic tetrahedron element

In this purely academic example, the mass density 
is assumed to be ρ = 1 and the gravitational factor is 
set to g = ( , , )1 0 0 .

First, the volume integral (Eq. (3)) is solved via 
the standard approach using the Gaussian quadrature 
according to Eq. (9). The total order of the polynomial 
inside the integrand of the volume integral is p = 5 
because quadratic shape functions are used. An 
integration order of at least m = 3 must be chosen to 
ensure an exact numerical integration. In this case, the 
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numerical integration leads to the following value for 
the weight force on the tetrahedron rounded to six 
decimal places: 



Rb
e = 0 166667. .

The efficiency of this standard approach is 
compared to the factorization-based method according 
to Eq. (15). As mentioned in Section 3, the integrals 
Iijk are not calculated during the finite element 
analysis, which is why no numerical integration must 
be performed. These integrals are solved in advance, 
and their numerical values are stored hard coded 
within the program. Only the summation needs to be 
performed during runtime, which finally leads to the 
same result as above: 



Rb
e = 0 166667. .

This result can be easily verified by an analytical 
calculation of the weight force on the tetrahedron:

 F gVg
e= = ≈ρ

1

6
0 166667. .  (16)

The results of all three methods match exactly on 
the full mantissa length.

A test program has been written to compare the 
performance of both integration methods. In Table 1, 
a comparison of the computation times of the standard 
integration approach tGQ using Gaussian quadrature 
and the factorization-based method tF is given. The 
computation time for the calculation of the integrals 
Iijk is not taken in to account, because the numerical 
integration is not performed during runtime.

Different integration orders have been applied 
during Gaussian quadrature. The computing time of 
the factorization-based method is lower in each case 
for the test setting considered here. Especially for 
higher integration orders, the advantage is significant 
according to Table 1. 

Table 1.  Comparison of computation times for different integration 
orders 

Integration order m Ratio of computation times tGQ / tF
2 1.7
3 5.8
4 14.1
5 27.2

This observation can be explained by the fact 
that a higher integration order implies a significantly 
higher number of Gaussian integration points, which 
must be considered during numerical integration. 
This affects the computation time tGQ. In contrast, the 
computation time of the factorization-based method tF 
does not change, because no numerical integration is 
performed during runtime. 

The factorization-based method can be applied to 
every continuum element. Fig. 3 shows a cantilever 
beam under dead load. 

Fig. 3.  Cantilever beam under dead load

The aim of this example is to demonstrate the 
applicability of this method to different finite element 
types. Both linear and quadratic hexahedrons and 
tetrahedrons are considered.

The results of the finite element simulations are 
summarized in Table 2. Each finite element model 
considered the weight force correctly compared to the 
analytical solution: 

 F gLag = =ρ 2
1540 17. . N  (17)

The displacement field of the quadratic 
hexahedron model is shown in Fig. 4. The values of 
the maximum total displacement are summarized in 
Table 2.

Table 2.  Results of the maximum displacement de-pending on the 
element type and number of elements

Element type
Number of 
elements Σi biR



 [N]
Maximum  

displacement [mm]
Linear hexahedron 20000 1540.17 0.891
Quadratic hexahedron 20000 1540.17 0.896
Linear tetrahedron 86011 1540.17 0.871
Quadratic tetrahedron 86011 1540.17 0.896

The quality of the calculated maximum total 
displacements depends on the element type and on the 
number of finite elements. 

An analytical calculation based on the Bernoulli 
beam theory [11] leads to a value of 0.897 mm for the 
displacement of the end of the cantilever beam. The 
comparison illustrates that the factorization-based 
method is applicable to large finite element structures 
of different finite element types.
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Fig. 4.  Total displacement of the cantilever beam

5  DISCUSSION

Using the factorization-based method for the 
calculation of weight forces within the finite element 
analysis can lead to a noticeable reduction of the 
computation time, as shown in Section 3. 

However, this approach is not limited to the 
calculation of weight forces but can be generalized as 
follows:

 f r s t dV I X
V

ijk ijk
k

n

j

n

i

n

( , , ) ,∫∫∫ ∑∑∑= ⋅
=== 111

 (18)

where Iijk is defined as:

 I f r s t H drdsdtijk ijk
r s t

= ∫∫∫ ( , , ) .

( , , )

 (19)

If the integrand f (r, s, t) is solely a function of the 
natural coordinates and independent of the Cartesian 
node coordinates, these integrals Iijk can be calculated 
in advance. This may lead to a noticeable advantage in 
computation time under the following circumstances: 
1) The calculation of the Iijk is not included in the 

computation time, because the calculation can be 
done before the program runtime.

2) There are many volume integrals of the same 
type to be solved so that it is possible to reuse the 
integrals Iijk.
In the context of the finite element analysis, the 

volume integral of the mass matrix [5] or other body 
forces, such as the centrifugal force [12], fulfil both 
criteria.

As shown in Section 3, the application of the 
factorization-based method can lead to a noticeable 
reduction of the computation during the calculation 
of the nodal weight forces of a quadratic tetrahedron 

element. In general, the ratio of computation times of 
the standard approach using Gaussian quadrature and 
of the factorization-based method depends on several 
aspects:
1) The complexity of the function f: The more 

complex the function f, the more CPU-intensive 
its evaluation at the supporting points. For 
instance, a high polynomial degree of the 
integrand requires a high integration order to 
obtain an exact numerical integration of the 
volume integral, which affects the computational 
effort and time of the Gaussian integration 
method. In contrast, the factorization-based 
method is not affected, because the actual 
integration of f is not performed during the 
program runtime. Therefore, a high complexity of 
the function f leads to a high ratio of computation 
times.

2) The element type: In general, a higher polynomial 
degree of the shape functions requires a higher 
integration order to ensure exact numerical 
integration regarding the Jacobian determinant. 
Therefore, the computing effort for the Gaussian 
quadrature increases. At the same time, the 
computation effort of the factorization-based 
method also grows, since a finite element of 
higher order has a larger number of nodes n. 
These competing factors must be considered in 
terms of computational effort and time.

3) The software implementation: The way both 
integration methods are implemented into 
the finite element software can affect the 
ratio of computation times. In this context, 
the factorization-based method provides the 
advantage that no Gaussian quadrature needs to 
be implemented.
The advantage of the factorization-based method 

over the standard approach will therefore differ for 
different cases of application. Each case must be 
considered individually.

6  CONCLUSIONS

The consideration of body forces, such as the weight 
force, is crucial for the stress analysis of many 
technical applications.  

In this paper, we introduced an efficient approach 
for the exact calculation of the resultant weight 
force on the nodes of three-dimensional continuum 
elements. 

The method is based on a factorization of the 
Jacobian determinant so that the partial derivatives 
of the shape functions are separated from the 
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Cartesian node coordinates. The original volume 
integral can thereby be split up into a sum of integrals 
independent of the Cartesian node coordinates. The 
node coordinates are considered by prefactors during 
the summation. Since these integrals are solely 
dependent on the shape functions, they are specific for 
the element type, such as the quadratic tetrahedron. 
Consequently, the integrals need to be calculated 
only once and the resultant numerical values can be 
tabulated hard coded in the finite element program. 

No Gaussian quadrature needs to be performed 
for the calculation of the resultant nodal weight forces 
during the finite element analysis, which reduces the 
computational effort and time.

Furthermore, an exact evaluation of the 
introduced integrals can be performed in advance 
leading to an exact calculation of the nodal forces 
without affecting the computation time of the finite 
element program.

As demonstrated by a comparative calculation in 
Section 4, the factorization-based method can be faster 
than the standard approach using Gaussian quadrature 
with the same accuracy. 

The introduced method is not limited to the 
calculation of weight forces but can also be applied to 
calculate the mass matrix and other body forces within 
the FEA. Furthermore, the method can be generalized 
to be applicable to two-dimensional continuum 
elements.
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