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0  INTRODUCTION

Robot laser hardening [RLH] [1] is a heat treatment 
similar to inductive or conventional flame hardening. 
We can analyze the microstructures of RLH 
specimens using 3D visibility networks (graphs). A 
visibility network [2] is a graph of visible areas, which 
presents a set of nodes and obstacles in the Euclidean 
plane or space. Fractal geometry [3] was developed 
by Mandelbrot, who built the Mandelbrot set 
y = z2 + c with the help of a computer. He provided 
a new approach in the scientific discipline as he 
set out and designed a new way of thinking about 
structures and shapes. The Hurst parameter H [4] 
is the correlation between random steps  X1 and X2, 
which is followed by the time-to-time difference ∆t. 
Hurst parameter occurs in many areas of applied 
mathematics, including fractals and chaos theory, 
and is used in many fields ranging from biophysics 
to network computers. The parameter was originally 
developed in hydrology. However, modern techniques 
to estimate the Hurst parameter H come from fractal 
mathematics. The fractal dimension has been used to 
measure the roughness of sea coasts. The relationship 
between the fractal dimension D and the Hurst 
parameter H is given by the equation D = 2 – H for 2D 

objects and D = 3 – H for 3D objects. We developed a 
new method to estimate the Hurst parameter H of a 
3D object. In this paper, we introduce a new hybrid 
intelligent system to predict the carbide content of 
RLH specimens from the topological property of the 
density of the visibility network and fractal dimension. 

1  PREPARATION OF MATERIAL SPECIMENS

The study was done on the standard tool steel labeled 
as DIN 1.7225 [5]. The tool steel was surface hardened 
by laser at different speeds and different powers. 
We use a robot laser cell RV60-40 (Reis Robotics 
Company). The maximum power of the robot-laser 
cell is 3000 W. We hardened specimens with an 
output power of 1500 W. Therefore, we modified the 
speed parameter v ∈ [2, 5] mm/s and the temperature 
parameter T ∈ [800, 2000] °C. Each sample was 
prepared by etching and polishing (IMT, Institute of 
Metals and Technology Ljubljana, Slovenia) for a 
microscope evaluation (IJS, Jozef Stefan Institute). 
Fig. 1 was made by field emission scanning electron 
microscopy, JMS-7600F, JEOL. We wanted to know 
whether the microstructure of the RLH fractal patterns 
found a structure from which the Hurst parameter H 
could be estimated. Fig. 2 presents a 3D graph of the 
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microstructure of the RLH specimen. It is converted 
from Fig. 1 by using Fig. 1 color depth.

Fig. 1.  SEM picture of microstructure of the RLH specimen 

Fig. 2.  3D graph of microstructure of the RLH specimen

2  DESCRIPTION OF METHOD

We used fractal geometry and a visibility network to 
determine the complex microstructure of the RLH 
specimens. 

Fig. 3 presents the random vertices of the 
3D graph. For better visual presentation, we use 
5×5 vertices of the 3D graph. 3D graph presents 
microstructure of the RLH specimens. 

Babič et al. [6] present a solution for constructing 
a visibility network in a 3D space. Fig. 4 presents 
the results of the problem of constructing a visibility 
network in a 3D space. We use the statistical 
topological property of the density of the visibility 

Fig. 3.  Vertices in a 3D graph

Fig. 4.  Visibility network of vertices in a 3D graph

network for pattern recognition from SEM images of 
the RLH specimens. The density q was calculated for 
each visibility network by Eq. (1):

 q m
n n

=
× −( )

2

1
, (1)

where m is the number of edges, n is the number of 
vertices in the visibility network. 

We present a method of estimating the Hurst 
exponent H for 3D objects [7]. First, we use the 
program ImageJ to find all the coordinates (x, y, z) 
of the SEM picture. Secondly, we estimate the Hurst 
exponent H by using the z-coordinates, which present 
a long continuous graph (Fig. 5). Also, all points 



Strojniški vestnik - Journal of Mechanical Engineering 64(2018)6, 393-400

395New Hybrid System of Machine Learning and Statistical Pattern Recognition for a 3D Visibility Network 

(xi, y0, zi) present a space component on a 2D graph for 
all points (xi, zi). All points (xi, y1, zi) present a second 
space component on a 2D graph for all points (xi, zi). 
We made a space component for all yi, ∀i. Then we 
combined all these space components into one space 
component. For this long space component, we can 
estimate the Hurst exponent H. We use the fractal 
dimension for pattern recognition from SEM images.

Fig. 5.  Long continuous graph

We use the method of a visibility network and 
fractal geometry for statistical pattern recognition. To 
model the results, we use intelligent system methods, 
that is, multiple regression, neural network (NN), and 
genetic programming (GP). 

NNs [8] have the ability to solve a variety of 
problems. The sophistication of NNs is primarily 
due to their ability to imitate the principle of the 
functioning of the biological brain, which means that 
they solve problems similarly to humans. We used 
the Neuralyst program to create a model with NNs. 
Neuralyst is a software tool used within Excel. It has 
the ability to model NNs. We used a multi-tasking 
neural system with backpropagation and no back 

links. We had the option of setting different attributes. 
Table 1 presents the attributes of the NNS.

Table 1.  Attributes of the NN

Learning speed [-] 0.6
Inertial coefficient [-] 0.5
Test mass tolerance [-] 0.02
Tolerance of the learning set [-] 0.03
Number of layers [-] 4

Fig. 6 presents a general multi-layer NN system.

Table 2.  Attributes of the GP

Size of the population of organisms 500
Maximum number of generations 100
Reproduction probability 0.4
Crossover probability 0.6
Maximum permissible depth in the creation of the 
population

6

Maximum permissible depth after the operation of 
crossover of two organisms

10

Smallest permissible depth of organisms in generating 
new organisms

2

Tournament size used for selection of organisms 7

Genetic programming [9] is similar to 
genetic algorithms and differs only in terms of the 
presentation method. Individual component in genetic 
algorithms is presented by a sequence of numbers, 
and the individual component in genetic programming 
is presented by a computer program. GP automatic 
writing of programs according to the nature of natural 
selection (evolution). At the beginning, we have some 
randomly written programs, which represent the initial 

Fig. 6.  General multi-layer NN system
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population. Then by crossing and selection, we get the 
next generation. Table 2 presents the attributes of the 
genetic programming.

We used the genetic operations of reproduction 
and crossover. Fig. 7 presents an example of an 
organism in genetic programming.

Fig. 7.  Organism in GP

Multiple regression (MR) [10] is designed to 
investigate linear causes the relationship between a 
single dependent variable and one or more independent 
variables. With it, we determine the statistical feature 
in the power of connection and we predict the values 
of the dependent variable. The impact of each of the 
independent variables is estimated to be independent 
of the interactions between independent variables.

Hybrid evolutionary computation [11] is a 
generic, flexible, robust, and versatile method for 
solving complex global optimization problems and 
could be used in practical applications. We present a 
new intelligent hybrid systems model in Fig. 8. Data 
information is presented in Table 3.

Table. 3.  Attributes of the hardened specimens

S x1 x2 x3 x4 x5 x6 Y
S1 1000 2 1.91 2.30 0.191 85 39
S2 1000 3 1.96 2.26 0.224 85 45
S3 1000 4 1.95 2.26 0.210 85 43
S4 1000 5 1.94 2.34 0.235 85 41
S5 1400 2 1.92 2.22 0.246 85 36
S6 1400 3 1.98 2.39 0.228 85 49
S7 1400 4 1.95 2.25 0.201 85 45
S8 1400 5 1.98 2.29 0.215 85 48
S9 1000 2 1.97 2.18 0.247 39 46
S10 1000 3 1.86 2.18 0.232 45 32
S11 1000 4 1.98 2.41 0.219 43 45
S12 1000 5 1.94 2.21 0.241 41 42
S13 1400 2 1.98 2.26 0.225 36 28
S14 1400 3 1.58 2.27 0.238 49 19
S15 1400 4 1.97 2.43 0.208 45 41
S16 1400 5 1.81 2.29 0.197 48 38
S17 800 0 1.97 2.23 0.289 85 47
S18 1400 0 1.98 2.24 0.277 85 52
S19 2000 0 1.97 2.26 0.245 85 50
S20 950 0 1.96 2.28 0.217 85 66
S21 850 0 1.95 2.32 0.212 85 80
S22 0 0 1.91 2.30 0.195 85 39

3  RESULTS AND DISCUSSION

The attributes of the hardened specimens influence 
on the carbide content (Table 3). The specimens 
are labeled as S1 to S22. Attribute x1 represents the 
temperature [°C] and x2 represents the speed of RLH 
[mm/s].  Attributes x3, x4, and x5 represent the keys 
for pattern recognition. Parameter x3 represents the 
complexity in 2D, x4 represents the complexity in 3D, 
x5 represents the density of the visibility networks in a 
3D space, and x6 represents the carbides in specimens. 
The last attribute Y is the measured surface carbide 

Fig. 8.  Intelligent system model and new hybrid intelligent system
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content of the RLH specimens. Specimen S22 presents 
the material before the RLH process. In Table 4, we 
denote measurement (M) data (D) by MD, prediction 
data obtained by MR, prediction data obtained by 
neural network (NN), prediction data obtained by GP, 
and prediction data obtained by the hybrid system by 
H. Specimen S14 has a minimal carbide content after 
hardening, that is, 19 %. Table 4 present the statistical 
properties of the experimental and predicted patterns. 
Table 5 present topological properties of 3D visibility 
network. The measured and predicted carbide content 
of the RLH specimens is presented in the Fig. 9. 
The MR model is presented by Eq. (1), GP model is 
presented by Eq. (2), and hybrid model is presented 
by Eq. (3). We calculated precision of the GP model, 
NN and of the MR model by calculating average of 
absolute difference between measured and predicted 
data divided by measured data. The GP model has 
85.57 % precision, the NN has 90.57 % precision, MR 
has 80.87 % precision and hybrid system has 62.98 % 
precision. 

Table 5 presents the topological properties of the 
3D visibility network. Measured and predicted parts of 
carbides of the LHR specimens depend on attributes 
x1, x2, x3, x4, x5 and x6 are presented in Fig. 9. We use 
the statistical topological property of the visibility 
networks to describe the carbide content in the 
microstructures. Image analysis of the SEM images 
of the RLH specimens is an interesting approach. 
With MR, GP and NN, we predict the carbide content 
in the microstructures. Finally, we present a new 
hybrid system of intelligent systems. For measured 
and predicted parts of carbides of the LHR specimens 
data, we calculated Kendall correlation coefficient. 
The best results for prediction give us NN, because 
the Kendall correlation coefficient (0.021) is most 
close to experimental data (0.131). Table 3 presents 
the topological properties of the 3D visibility network 
and attributes of RLH specimens. In this way, we 
can see how the attributes of speed and temperature 
influence the topological structures of visibility graphs 
in 3D space. Table 6 presents the statistical properties 
of the topological properties of the extreme number, 
number of edges, and triadic census type 16 to 300 
of the 3D visibility network for RLH specimens. 
Firstly, we calculated the basic statistical properties 
of the mean, standard deviation, standard error, 
median, geometric mean, and harmonic mean of the 
topological properties of visibility graphs in 3D space 
of RLH specimens. We found significant positive 
relationships between the kurtosis, Fisher’s G2, the 
coefficient of variation, the coefficient of dispersion, 

Table. 4.  Measured and predicted data

S MD MR NN GP H
S1 39 55.28 38.98 38.7 34.77
S2 45 50.93 44.53 45.0 37.32
S3 43 47.84 42.25 45.0 40.61
S4 41 45.89 42.27 41.4 44.78
S5 36 42.41 36.98 40.8 44.18
S6 49 49.69 48.32 44.3 43.32
S7 45 40.97 44.86 46.7 46.45
S8 48 40.00 48.06 44.6 48.86
S9 46 42.74 45.97 46.2 40.85
S10 32 35.98 32.08 18.8 47.98
S11 45 48.01 44.98 40.0 44.99
S12 42 33.04 42.26 42.0 55.08
S13 28 39.91 46.48 27.7 47.05
S14 19 19.88 18.99 22.8 67.35
S15 41 42.15 41.54 45.2 51.32
S16 38 27.23 37.08 38.0 60.50
S17 47 59.78 47.86 47.4 30.50
S18 52 50.58 50.11 49.7 39.58
S19 50 42.10 51.01 50.1 48.54
S20 66 62.98 66.65 47.5 28.93
S21 80 65.82 79.25 46.4 27.35
S22 39 79.59 84.60 84.9 58.25

Table. 5.  Topological properties of 3D visibility network

S Extreme number
Number  
of edges

Triadic census type  
16 to 300

S1 120823 3500351 4865624
S2 125787 3308776 4191425
S3 123943 3335861 4267175
S4 124833 3355735 4353872
S5 124626 3314397 4212248
S6 131540 3190001 3796016
S7 126962 3311163 4196282
S8 130799 3173601 3741603
S9 123393 3355056 4256560
S10 126395 3386391 4483986
S11 124296 3315948 4207031
S12 123829 3355735 4353872
S13 128143 3451450 4862060
S14 122500 3685175 5877473
S15 120818 3338595 4199754
S16 116812 3733624 5848517
S17 133031 3178192 3774789
S18 130974 3182544 3819193
S19 131043 3170121 3746658
S20 95090 4151533 7284078
S21 106916 5653616 1764141
S22 86871 5735036 1466536



Strojniški vestnik - Journal of Mechanical Engineering 64(2018)6, 393-400

398 Babič, M. – Skala, K. – Kumar, D. – Šturm, R.

Model of multiple regression:

    Y = –99.0509 – 0.0178 × x1 – 3.25717 × x2 + 46.65489 × x3 + 38.06208 × x4 – 63.3748 × x5 + 0.165097 × x6.      (2)

Model of genetic programming
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and the topological properties of visibility graphs in 
3D space of RLH specimens. 

Table. 6. Statistical properties of topological properties of 3D 
visibility network

SP
Extreme 
number

Number of 
edges

Triadic census 
type 16 to 300

Mean 121792 3599223 4253132
Standard deviation 11531.35 714391.3 1201353
Standard error 2458.49 152308.8 256129.4
Median 124461 3346826 4209640
Geometric mean 121194 3546497 4055020
Harmonic mean 120509 3505535 3790200
Kurtosis 5.90 7.454659 4.719475
Fisher‘s G2 4.03 5.993685 2.517122
Coefficient of variation 0.094 0.1984849 0.2824632
Coefficient of dispersion 0.05 0.1024648 0.1701942

4  CONCLUSIONS

The paper presents a new method of constructing 
visibility networks in a 3D space, a new method 
of describing the complexity of 3D space, and a 
new hyper-hybrid system of machine learning for 
the use in mechanical engineering to predict the 
topographical properties of materials. The paper 
presents a method of using visibility graphs in 3D 

space and fractal geometry to analyze the complexity 
of RLH specimens. Analyzing the complexity of RLH 
surfaces is a very hard problem. This new method has 
many applications in pattern recognition, computer 
graphics, computational geometry, and so on. The 
main findings are:
1.  We use the method of network theory and fractal 

geometry to analyse the microstructure. 
2.  For prediction of the carbide content of hardened 

specimens, we use intelligent system methods, 
namely a neural network, multiple regression, 
and a genetic algorithm. The best results for 
prediction give us neural network. 

3.  We present the new hybrid spiral sequences. 
4.  The paper introduces a new method of machine 

learning in metallurgy.
5.  We find the statistical significance of the 

relationship between attributes of the hardened 
specimens and the experimental and predicted 
pattern data.

6.  The paper compares three methods, namely 
multiple regression, neural network and genetic 
programming, with a hybrid system of intelligent 
systems.
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