Original Scientific Paper

Received for review: 2017-12-30 Received revised form: 2018-02-19 Accepted for publication: 2018-04-16

# New Hybrid System of Machine Learning and Statistical Pattern Recognition for a 3D Visibility Network

Matej Babič<sup>1,\*</sup> – Karolj Skala<sup>2</sup> – Dookhitram Kumar<sup>3</sup> – Roman Šturm<sup>4</sup>

<sup>1</sup> Jožef Stefan Institute, Ljubljana, Slovenia
 <sup>2</sup> Ruđer Bošković Institute, Croatia
 <sup>3</sup> University of Technology, Mauritius
 <sup>4</sup> University of Ljubljana, Faculty of Mechanical Engineering, Slovenia

Intelligent systems are an excellent tool to use for solving complex problems in the field of industrial applications. We use the mathematical method of fractal geometry and network theory when laser-hardening techniques are applied. The microstructure of the robot-laser-hardened specimens is very complex; however, we can present it by using a 3D visibility network. We convert the scanning electron microscope (SEM) images of the microstructure to a 3D graph and calculate the density of the visibility network of these 3D networks. We have analyzed the topographical properties of the hardened specimens by using the algorithm for the construction of a visibility network in a 3D space. We develop a new hybrid system of machine learning for predicting carbide content of the hardened specimens by using multiple regression, neural networks, and a genetic algorithm. We find the statistical significance of the relationship between attributes of the hardened specimens, the topological properties of visibility graphs, and carbide content of the hardened specimens.\_

Keywords: fractal geometry, hybrid system, laser hardened specimens, visibility network, statistical pattern recognition

#### Highlights

- We have calculated the statistical properties of the data of the parameters of the hardened specimens.
- We have described the carbide content of the hardened specimens using the topological properties.
- We have presented a new intelligent hybrid system model to predict the carbide content of the hardened specimens.
- Our new method has many applications in pattern recognition, computer graphics, computational geometry, and so on.

### **0** INTRODUCTION

Robot laser hardening [RLH] [1] is a heat treatment similar to inductive or conventional flame hardening. We can analyze the microstructures of RLH specimens using 3D visibility networks (graphs). A visibility network [2] is a graph of visible areas, which presents a set of nodes and obstacles in the Euclidean plane or space. Fractal geometry [3] was developed by Mandelbrot, who built the Mandelbrot set  $y=z^2+c$  with the help of a computer. He provided a new approach in the scientific discipline as he set out and designed a new way of thinking about structures and shapes. The Hurst parameter H [4] is the correlation between random steps  $X_1$  and  $X_2$ , which is followed by the time-to-time difference  $\Delta t$ . Hurst parameter occurs in many areas of applied mathematics, including fractals and chaos theory, and is used in many fields ranging from biophysics to network computers. The parameter was originally developed in hydrology. However, modern techniques to estimate the Hurst parameter H come from fractal mathematics. The fractal dimension has been used to measure the roughness of sea coasts. The relationship between the fractal dimension D and the Hurst parameter H is given by the equation D=2-H for 2D

objects and D=3-H for 3D objects. We developed a new method to estimate the Hurst parameter H of a 3D object. In this paper, we introduce a new hybrid intelligent system to predict the carbide content of RLH specimens from the topological property of the density of the visibility network and fractal dimension.

#### **1** PREPARATION OF MATERIAL SPECIMENS

The study was done on the standard tool steel labeled as DIN 1.7225 [5]. The tool steel was surface hardened by laser at different speeds and different powers. We use a robot laser cell RV60-40 (Reis Robotics Company). The maximum power of the robot-laser cell is 3000 W. We hardened specimens with an output power of 1500 W. Therefore, we modified the speed parameter  $v \in [2, 5]$  mm/s and the temperature parameter  $T \in [800, 2000]$  °C. Each sample was prepared by etching and polishing (IMT, Institute of Metals and Technology Ljubljana, Slovenia) for a microscope evaluation (IJS, Jozef Stefan Institute). Fig. 1 was made by field emission scanning electron microscopy, JMS-7600F, JEOL. We wanted to know whether the microstructure of the RLH fractal patterns found a structure from which the Hurst parameter Hcould be estimated. Fig. 2 presents a 3D graph of the

<sup>\*</sup>Corr. Author's Address: Jožef Stefan Institute, Ljubljana, Slovenia, , babicster@gmail.com

microstructure of the RLH specimen. It is converted from Fig. 1 by using Fig. 1 color depth.



Fig. 1. SEM picture of microstructure of the RLH specimen



Fig. 2. 3D graph of microstructure of the RLH specimen

#### 2 DESCRIPTION OF METHOD

We used fractal geometry and a visibility network to determine the complex microstructure of the RLH specimens.

Fig. 3 presents the random vertices of the 3D graph. For better visual presentation, we use  $5 \times 5$  vertices of the 3D graph. 3D graph presents microstructure of the RLH specimens.

Babič et al. [6] present a solution for constructing a visibility network in a 3D space. Fig. 4 presents the results of the problem of constructing a visibility network in a 3D space. We use the statistical topological property of the density of the visibility



Fig. 3. Vertices in a 3D graph



Fig. 4. Visibility network of vertices in a 3D graph

network for pattern recognition from SEM images of the RLH specimens. The density q was calculated for each visibility network by Eq. (1):

$$q = \frac{2m}{n \times (n-1)},\tag{1}$$

where m is the number of edges, n is the number of vertices in the visibility network.

We present a method of estimating the Hurst exponent H for 3D objects [7]. First, we use the program ImageJ to find all the coordinates (x, y, z) of the SEM picture. Secondly, we estimate the Hurst exponent H by using the *z*-coordinates, which present a long continuous graph (Fig. 5). Also, all points

 $(x_i, y_0, z_i)$  present a space component on a 2D graph for all points  $(x_i, z_i)$ . All points  $(x_i, y_1, z_i)$  present a second space component on a 2D graph for all points  $(x_i, z_i)$ . We made a space component for all  $y_i \forall i$ . Then we combined all these space components into one space component. For this long space component, we can estimate the Hurst exponent *H*. We use the fractal dimension for pattern recognition from SEM images.



We use the method of a visibility network and fractal geometry for statistical pattern recognition. To model the results, we use intelligent system methods, that is, multiple regression, neural network (NN), and genetic programming (GP).

NNs [8] have the ability to solve a variety of problems. The sophistication of NNs is primarily due to their ability to imitate the principle of the functioning of the biological brain, which means that they solve problems similarly to humans. We used the Neuralyst program to create a model with NNs. Neuralyst is a software tool used within Excel. It has the ability to model NNs. We used a multi-tasking neural system with backpropagation and no back

links. We had the option of setting different attributes. Table 1 presents the attributes of the NNS.

Table 1. Attributes of the NN

| Learning speed [-]                | 0.6  |
|-----------------------------------|------|
| Inertial coefficient [-]          | 0.5  |
| Test mass tolerance [-]           | 0.02 |
| Tolerance of the learning set [-] | 0.03 |
| Number of layers [-]              | 4    |

Fig. 6 presents a general multi-layer NN system.

Table 2. Attributes of the GP

| 500<br>100 |
|------------|
| 100        |
|            |
| 0.4        |
| 0.6        |
| 6          |
| 10         |
| 2          |
| 7          |
|            |

Genetic programming [9] is similar to genetic algorithms and differs only in terms of the presentation method. Individual component in genetic algorithms is presented by a sequence of numbers, and the individual component in genetic programming is presented by a computer program. GP automatic writing of programs according to the nature of natural selection (evolution). At the beginning, we have some randomly written programs, which represent the initial



Fig. 6. General multi-layer NN system

population. Then by crossing and selection, we get the next generation. Table 2 presents the attributes of the genetic programming.

We used the genetic operations of reproduction and crossover. Fig. 7 presents an example of an organism in genetic programming.



Multiple regression (MR) [10] is designed to investigate linear causes the relationship between a single dependent variable and one or more independent variables. With it, we determine the statistical feature in the power of connection and we predict the values of the dependent variable. The impact of each of the independent variables is estimated to be independent of the interactions between independent variables.

Hybrid evolutionary computation [11] is a generic, flexible, robust, and versatile method for solving complex global optimization problems and could be used in practical applications. We present a new intelligent hybrid systems model in Fig. 8. Data information is presented in Table 3.

| S   | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $x_4$ | $x_5$ | <i>x</i> <sub>6</sub> | Y  |
|-----|-------|-------|-----------------------|-------|-------|-----------------------|----|
| S1  | 1000  | 2     | 1.91                  | 2.30  | 0.191 | 85                    | 39 |
| S2  | 1000  | 3     | 1.96                  | 2.26  | 0.224 | 85                    | 45 |
| S3  | 1000  | 4     | 1.95                  | 2.26  | 0.210 | 85                    | 43 |
| S4  | 1000  | 5     | 1.94                  | 2.34  | 0.235 | 85                    | 41 |
| S5  | 1400  | 2     | 1.92                  | 2.22  | 0.246 | 85                    | 36 |
| S6  | 1400  | 3     | 1.98                  | 2.39  | 0.228 | 85                    | 49 |
| S7  | 1400  | 4     | 1.95                  | 2.25  | 0.201 | 85                    | 45 |
| S8  | 1400  | 5     | 1.98                  | 2.29  | 0.215 | 85                    | 48 |
| S9  | 1000  | 2     | 1.97                  | 2.18  | 0.247 | 39                    | 46 |
| S10 | 1000  | 3     | 1.86                  | 2.18  | 0.232 | 45                    | 32 |
| S11 | 1000  | 4     | 1.98                  | 2.41  | 0.219 | 43                    | 45 |
| S12 | 1000  | 5     | 1.94                  | 2.21  | 0.241 | 41                    | 42 |
| S13 | 1400  | 2     | 1.98                  | 2.26  | 0.225 | 36                    | 28 |
| S14 | 1400  | 3     | 1.58                  | 2.27  | 0.238 | 49                    | 19 |
| S15 | 1400  | 4     | 1.97                  | 2.43  | 0.208 | 45                    | 41 |
| S16 | 1400  | 5     | 1.81                  | 2.29  | 0.197 | 48                    | 38 |
| S17 | 800   | 0     | 1.97                  | 2.23  | 0.289 | 85                    | 47 |
| S18 | 1400  | 0     | 1.98                  | 2.24  | 0.277 | 85                    | 52 |
| S19 | 2000  | 0     | 1.97                  | 2.26  | 0.245 | 85                    | 50 |
| S20 | 950   | 0     | 1.96                  | 2.28  | 0.217 | 85                    | 66 |
| S21 | 850   | 0     | 1.95                  | 2.32  | 0.212 | 85                    | 80 |
| S22 | 0     | 0     | 1.91                  | 2.30  | 0.195 | 85                    | 39 |
|     |       |       |                       |       |       |                       |    |

#### Table. 3. Attributes of the hardened specimens

#### **3 RESULTS AND DISCUSSION**

The attributes of the hardened specimens influence on the carbide content (Table 3). The specimens are labeled as S1 to S22. Attribute  $x_1$  represents the temperature [°C] and  $x_2$  represents the speed of RLH [mm/s]. Attributes  $x_3$ ,  $x_4$ , and  $x_5$  represent the keys for pattern recognition. Parameter  $x_3$  represents the complexity in 2D,  $x_4$  represents the complexity in 3D,  $x_5$  represents the density of the visibility networks in a 3D space, and  $x_6$  represents the carbides in specimens. The last attribute *Y* is the measured surface carbide



Fig. 8. Intelligent system model and new hybrid intelligent system

content of the RLH specimens. Specimen S22 presents the material before the RLH process. In Table 4, we denote measurement (M) data (D) by MD, prediction data obtained by MR, prediction data obtained by neural network (NN), prediction data obtained by GP, and prediction data obtained by the hybrid system by H. Specimen S14 has a minimal carbide content after hardening, that is, 19 %. Table 4 present the statistical properties of the experimental and predicted patterns. Table 5 present topological properties of 3D visibility network. The measured and predicted carbide content of the RLH specimens is presented in the Fig. 9. The MR model is presented by Eq. (1), GP model is presented by Eq. (2), and hybrid model is presented by Eq. (3). We calculated precision of the GP model, NN and of the MR model by calculating average of absolute difference between measured and predicted data divided by measured data. The GP model has 85.57 % precision, the NN has 90.57 % precision, MR has 80.87 % precision and hybrid system has 62.98 % precision.

Table 5 presents the topological properties of the 3D visibility network. Measured and predicted parts of carbides of the LHR specimens depend on attributes  $x_1, x_2, x_3, x_4, x_5$  and  $x_6$  are presented in Fig. 9. We use the statistical topological property of the visibility networks to describe the carbide content in the microstructures. Image analysis of the SEM images of the RLH specimens is an interesting approach. With MR, GP and NN, we predict the carbide content in the microstructures. Finally, we present a new hybrid system of intelligent systems. For measured and predicted parts of carbides of the LHR specimens data, we calculated Kendall correlation coefficient. The best results for prediction give us NN, because the Kendall correlation coefficient (0.021) is most close to experimental data (0.131). Table 3 presents the topological properties of the 3D visibility network and attributes of RLH specimens. In this way, we can see how the attributes of speed and temperature influence the topological structures of visibility graphs in 3D space. Table 6 presents the statistical properties of the topological properties of the extreme number, number of edges, and triadic census type 16 to 300 of the 3D visibility network for RLH specimens. Firstly, we calculated the basic statistical properties of the mean, standard deviation, standard error, median, geometric mean, and harmonic mean of the topological properties of visibility graphs in 3D space of RLH specimens. We found significant positive relationships between the kurtosis, Fisher's G2, the coefficient of variation, the coefficient of dispersion,

Table. 4. Measured and predicted data

| S   | MD | MR    | NN    | GP   | Н     |
|-----|----|-------|-------|------|-------|
| S1  | 39 | 55.28 | 38.98 | 38.7 | 34.77 |
| S2  | 45 | 50.93 | 44.53 | 45.0 | 37.32 |
| S3  | 43 | 47.84 | 42.25 | 45.0 | 40.61 |
| S4  | 41 | 45.89 | 42.27 | 41.4 | 44.78 |
| S5  | 36 | 42.41 | 36.98 | 40.8 | 44.18 |
| S6  | 49 | 49.69 | 48.32 | 44.3 | 43.32 |
| S7  | 45 | 40.97 | 44.86 | 46.7 | 46.45 |
| S8  | 48 | 40.00 | 48.06 | 44.6 | 48.86 |
| S9  | 46 | 42.74 | 45.97 | 46.2 | 40.85 |
| S10 | 32 | 35.98 | 32.08 | 18.8 | 47.98 |
| S11 | 45 | 48.01 | 44.98 | 40.0 | 44.99 |
| S12 | 42 | 33.04 | 42.26 | 42.0 | 55.08 |
| S13 | 28 | 39.91 | 46.48 | 27.7 | 47.05 |
| S14 | 19 | 19.88 | 18.99 | 22.8 | 67.35 |
| S15 | 41 | 42.15 | 41.54 | 45.2 | 51.32 |
| S16 | 38 | 27.23 | 37.08 | 38.0 | 60.50 |
| S17 | 47 | 59.78 | 47.86 | 47.4 | 30.50 |
| S18 | 52 | 50.58 | 50.11 | 49.7 | 39.58 |
| S19 | 50 | 42.10 | 51.01 | 50.1 | 48.54 |
| S20 | 66 | 62.98 | 66.65 | 47.5 | 28.93 |
| S21 | 80 | 65.82 | 79.25 | 46.4 | 27.35 |
| S22 | 39 | 79.59 | 84.60 | 84.9 | 58.25 |

Table. 5. Topological properties of 3D visibility network

| S   | Extreme number | Number   | Triadic census type |  |
|-----|----------------|----------|---------------------|--|
| 5   |                | of edges | 16 to 300           |  |
| S1  | 120823         | 3500351  | 4865624             |  |
| S2  | 125787         | 3308776  | 4191425             |  |
| S3  | 123943         | 3335861  | 4267175             |  |
| S4  | 124833         | 3355735  | 4353872             |  |
| S5  | 124626         | 3314397  | 4212248             |  |
| S6  | 131540         | 3190001  | 3796016             |  |
| S7  | 126962         | 3311163  | 4196282             |  |
| S8  | 130799         | 3173601  | 3741603             |  |
| S9  | 123393         | 3355056  | 4256560             |  |
| S10 | 126395         | 3386391  | 4483986             |  |
| S11 | 124296         | 3315948  | 4207031             |  |
| S12 | 123829         | 3355735  | 4353872             |  |
| S13 | 128143         | 3451450  | 4862060             |  |
| S14 | 122500         | 3685175  | 5877473             |  |
| S15 | 120818         | 3338595  | 4199754             |  |
| S16 | 116812         | 3733624  | 5848517             |  |
| S17 | 133031         | 3178192  | 3774789             |  |
| S18 | 130974         | 3182544  | 3819193             |  |
| S19 | 131043         | 3170121  | 3746658             |  |
| S20 | 95090          | 4151533  | 7284078             |  |
| S21 | 106916         | 5653616  | 1764141             |  |
| S22 | 86871          | 5735036  | 1466536             |  |
|     |                |          |                     |  |

Model of multiple regression:

$$Y = -99.0509 - 0.0178 \times x_1 - 3.25717 \times x_2 + 46.65489 \times x_3 + 38.06208 \times x_4 - 63.3748 \times x_5 + 0.165097 \times x_6.$$
(2)

Model of genetic programming

$$Y = 0.129654 \times \left(-x_{6} - x_{2}^{2} - \frac{x^{2} + x_{2}^{2} + x_{6}}{-x_{2} + x_{2} \times \left(-x_{2} + x_{2}^{2}\right)} + \frac{x_{6}}{x_{2} \times \left(-x_{3} + \frac{x_{6}}{-x_{3} + x_{2}^{2}}\right)}\right)$$

$$+ \frac{1}{x_{4}} \times \left(\frac{x_{6}^{2}}{x_{2} - x_{1} + x_{2}^{2} \times \left(x_{2} + x_{2} \times x_{3}\right) + x_{6} - \frac{x_{2} \times x_{6} \times \left(x_{6} + \frac{x_{6}}{x_{3}}\right)}{x_{2} - x_{1}} - \frac{\left(x_{3} \times \left(x_{2} + x_{3}\right) + x_{5}\right) \times \left(x_{3} + 2 \times x_{3} \times \left(x_{2} + x_{3}\right) + x_{6}\right)\right)}{x_{2} + x_{1} - x_{2}^{2}}\right)$$

$$+ \frac{1}{x_{4}} \times \left(\frac{x_{6}}{x_{6} + \frac{x_{6}}{x_{2}^{2} - x_{3}} + \frac{\left(x_{2} + x_{3} + x_{6}\right) \times \left(x_{6} + \frac{x_{6}}{x_{3}}\right)}{x_{2} - x_{1}}}\right) + \frac{x_{2} \times x_{3} + x_{6}}{x_{4}}.$$
(3)

Hybrid model

$$Y^{2} + Y(A+B) + AB - C = 0,$$

$$A = 0.129654 \left( -x_{6} - x_{2}^{2} + \frac{x_{2} + x_{2}^{2} + x_{6}}{-x_{2} + x_{2} \times (-x_{2} + x_{2}^{2})} + \frac{x_{6}}{x_{2} \left( -x_{3} + \frac{x_{6}}{-x_{3} + x_{2}^{2}} \right)} \right),$$

 $B = 99.0509 + 0.0178x_1 + 3.25717x_2 - 46.65489x_3 + 63.3748x_5 - 0.165097x_6,$  $C = x_2x_3 + x_6 +$ 

$$\frac{x_{6}^{2}}{x_{2}-x_{1}+x_{2}^{2}(x_{2}+x_{2}x_{3})+x_{6}-\frac{x_{6}}{x_{2}^{2}-x_{3}}+\frac{(x_{3}(x_{2}+x_{3})+x_{6})(x_{3}+2x_{3}\times(x_{2}+x_{3})+x_{6}))}{x_{2}+x_{1}-x_{2}^{2}}-\frac{x_{2}x_{6}\left(x_{6}+\frac{x_{6}}{x_{3}}\right)}{x_{2}-x_{1}}}{+\frac{x_{6}}{7.71283+2x_{2}-x_{6}}+\frac{x_{6}}{x_{2}^{2}-x_{3}}+\frac{(x_{3}x_{2}+x_{6})\left(x_{6}+\frac{x_{6}}{x_{3}}\right)}{x_{2}-x_{1}}}.$$
(4)

398



Fig. 9. Measured and predicted carbide content of the LHR specimens depend on attributes  $x_1, x_2, x_3, x_4, x_5$  and  $x_6$ 

and the topological properties of visibility graphs in 3D space of RLH specimens.

| visibility network |         |           |                |
|--------------------|---------|-----------|----------------|
| SP                 | Extreme | Number of | Triadic census |
|                    | number  | edges     | type 16 to 300 |

Table. 6. Statistical properties of topological properties of 3D

| SP                        | number   | edges     | type 16 to 300 |
|---------------------------|----------|-----------|----------------|
| Mean                      | 121792   | 3599223   | 4253132        |
| Standard deviation        | 11531.35 | 714391.3  | 1201353        |
| Standard error            | 2458.49  | 152308.8  | 256129.4       |
| Median                    | 124461   | 3346826   | 4209640        |
| Geometric mean            | 121194   | 3546497   | 4055020        |
| Harmonic mean             | 120509   | 3505535   | 3790200        |
| Kurtosis                  | 5.90     | 7.454659  | 4.719475       |
| Fisher's G2               | 4.03     | 5.993685  | 2.517122       |
| Coefficient of variation  | 0.094    | 0.1984849 | 0.2824632      |
| Coefficient of dispersion | 0.05     | 0.1024648 | 0.1701942      |

## 4 CONCLUSIONS

The paper presents a new method of constructing visibility networks in a 3D space, a new method of describing the complexity of 3D space, and a new hyper-hybrid system of machine learning for the use in mechanical engineering to predict the topographical properties of materials. The paper presents a method of using visibility graphs in 3D

space and fractal geometry to analyze the complexity of RLH specimens. Analyzing the complexity of RLH surfaces is a very hard problem. This new method has many applications in pattern recognition, computer graphics, computational geometry, and so on. The main findings are:

- 1. We use the method of network theory and fractal geometry to analyse the microstructure.
- For prediction of the carbide content of hardened specimens, we use intelligent system methods, namely a neural network, multiple regression, and a genetic algorithm. The best results for prediction give us neural network.
- 3. We present the new hybrid spiral sequences.
- 4. The paper introduces a new method of machine learning in metallurgy.
- 5. We find the statistical significance of the relationship between attributes of the hardened specimens and the experimental and predicted pattern data.
- 6. The paper compares three methods, namely multiple regression, neural network and genetic programming, with a hybrid system of intelligent systems.

## **5 REFERENCES**

- Petrovič, S., D., Šturm, R. (2014). Fine-structured morphology of a silicon steel sheet after laser surface alloying of Sb powder. Strojniški vestnik – Journal of Mechanical Engineering, vol. 60, no. 1, p. 5-11, DOI:10.5545/sv-jme.2013.1347.
- [2] Ghosh, S.K. (1997). On recognizing and characterizing visibility graphs of simple polygons. *Discrete & Computational Geometry*, vol. 17, no. 2, p. 143-162, DOI:10.1007/ BF02770871. ISSN 0179-5376.
- Mandelbrot, B.B. (1983). The Fractal Geometry of Nature.
   W.H. Freeman & Co., San Francisco, DOI:10.1119/1.13295.
- [4] Stoev, S., Pipiras, V., Taqqu, M.S. (2002). Estimation of the selfsimilarity parameter in linear fractional stable motion. *Signal Processing*, vol. 82, no. 12, p. 1873-1901, D0I:10.1016/ S0165-1684(02)00317-1.
- [5] Alta steel (2017). from http://www.altaspecialsteel.com/DIN-1-7225-AlSI-4140-38.html, accessed on 2017-12-30.
- [6] Babič, M., Hluchy, L., Krammer, P., Matovič, B., Kumar, R., Kovač, P. (2017). New method for constructing a visibility graph-network in 3D space and new hybrid system of

modeling. *Journal of Computing and Informatics*, vol. 36, no. 5, p. 1107-1126, DOI:10.4149/cai.2017.5.1107.

- [7] Babič, M., Kokol, P., Guid, N., Panjan, P. (2014). A new method for estimating the Hurst exponent H for 3D objects. *Materials* and *Technology*, vol. 48, no. 2, p. 203-208.
- [8] Graves, A., Schmidhuber, J. (2009). Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks, in Bengio, Y., Schuurmans, D.,; Lafferty, J., Williams, C.K.I., Culotta, A. (eds.). Advances in Neural Information Processing Systems, vol. 22, p. 545-552.
- [9] Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press.
- [10] Armstrong, J.S. (2012). Illusions in regression analysis. International Journal of Forecasting, vol. 28, no. 3, p. 689-694, D0I:10.1016/j.ijforecast.2012.02.001.
- [11] Ravi, V., Naveen, N., Pandey, M. (2013). Hybrid classification and regression models via particle swarm optimization auto associative neural network based nonlinear PCA. *International Journal of Hybrid Intelligent Systems*, vol. 10, p. 137-149, D0I:10.3233/HIS-130173.