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0  INTRODUCTION

The bearing is the most important component in 
rotating machinery; its main function is to support 
the mechanical rotating body and reduce the friction 
coefficient during movement. However, continuous 
abrasion resulting from the relative motion between 
mating surfaces would cause the components’ damage, 
and several studies have shown that the bearing fault 
is the major source in rotating machinery faults [1]. 
An effective fault diagnosis method could obtain 
the healthy condition of bearings and probe the fault 
patterns, which are also the most challenging tasks in 
fault diagnosis.

The traditional methods for bearing fault 
diagnosis using vibration signals mainly includes three 
steps: data pre-processing, feature extraction, and 
pattern classification. The features that are commonly 
extracted have been generated from the time domain 
[2], the frequency domain [3], or the time-frequency 
domain [4]. Next, the extracted features are fed into 
classifiers such as a support vector machine (SVM) 
[5] and [6], a decision tree [7], a BP neural network 
[8], etc.

The difficulty of traditional fault diagnosis 
methods lies in the selection of features. Any feature 
has its own limitations [9], e.g., the time domain 
feature could not detect the faulty component, the 
frequency domain feature is unable to identify the 
location of damage, the envelop analysis requires 
prior knowledge and professional experience and 
the wavelet tree feature requires pre-selection of 
the suitable mother wavelet and appropriate level of 
decomposition.

In recent years, deep learning algorithms have 
aroused the widespread attention of researchers 
as it could discover intricate structures in big data 
[10]. Compared with traditional machine learning 
algorithms, deep learning has made great progress 
in image recognition [11] and speech recognition 
[12]. Furthermore, a large number of academic 
achievements emerged in the field of bearing fault 
diagnosis using deep learning algorithms. Sun at 
al. [13] extracted the wavelet features and selected 
convolutional neural network (CNN) as the classifier, 
whose accuracy rate reaches 99.79 %; He et al. [14] 
proposed an unsupervised fault diagnosis based on a 
deep belief network (DBN), and it has been proven 
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Highlights
• An improved bearing fault diagnosis method based on deep learning algorithms is proposed in this paper.
• To take advantages of CNN and LSTM, this proposed model combined them into one structure by taking CNN’s output as 

LSTM’s input.
• This proposed model requires no traditional feature extraction, which is the most difficult step in traditional fault diagnosis 

methods.
• A comparison experiment with other deep learning-based models and traditional methods proved the effectiveness of this 

proposed method.
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to outperform the back propagation neural network 
(BPNN) and support vector machine (SVM); Yin at 
al. [15] proposed an effective health assessment model 
by integrating Isomap into DBN with extracting time-
domain, frequency-domain, wavelet packet features.

As illustrated in the literature [16], CNN is good 
at reducing frequency variations, and a long-short 
term memory (LSTM) recurrent neural network is 
appropriate for temporal modeling. This paper takes 
advantage of both CNN and LSTM and proposed 
an improved fault diagnosis method by combining a 
one-dimensional CNN and LSTM into one structure. 
By using this method, the limitations of traditional 
feature extraction can be avoided since the input of the 
model is the raw signal data and no traditional feature 
extraction is needed.

The rest of this paper is illustrated as follows: 
Section 1 introduces one-dimensional CNN and 
LSTM briefly and describes the method to combine 
them into one structure. Section 2 presents the bearing 
fault diagnosis and the results by using the proposed 
model. Section 3 shows the comparison results with 
other models. Section 4 draws the conclusion.

1  METHODS

The structure of the proposed method is shown in Fig. 
1, which consists of five layers including the input 
layer, the convolutional layer, the pooling layer, the 
LSTM layer and the output layer.

Among above layers, the convolutional layer and 
pooling layer are applied in the CNN model, which 
has been proven effective in image recognition [11]. 
The convolution operation changes the input data into 
smaller feature maps through convolutional kernels. 
The convolutional kernels and feature maps are 
usually two-dimensional as the input of CNN are two-
dimensional figures. To meet the one-dimensional 
-characteristic of mechanical signals, this paper 
constructs a one-dimensional convolutional neural 
network, whose convolutional kernels and feature 
maps are all one-dimensional.

Suppose the input of a one-dimensional 
convolutional neural network is x, which belongs to  
Rn×1, where n is the length of the input data.

Then the output of the convolutional layer can be 
calculated as follows [17]:

 y f x w bi j k i k j i i
i

s

, , , ,
,= ∗ +









=
∑
1

 (1)

where the yi, j,k is the output of the convolutional layer, 
1 ≤ i ≤ m, m is the number of samples, 1 ≤ j ≤ p, p is 
the length of the convolutional kernels, 1 ≤ k ≤ n,  f is 
the activation function, typically a hyperbolic tangent, 
relu, or sigmoid function;  is the input data; * is the 
convolution operation; xi,k is the weight and bi is the 
bias.

The pooling layer is the sub-sampling layer 
to reduce the size of feature maps and prevent the 
overfitting. The Max pooling method is frequently 
used in the pooling layer whose output is the 

Fig. 1.  Combined structure of one-dimensional CNN and LSTM
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maximum of the previous feature maps, which can be 
expressed as follows [17]:

 z x xl j k i j k i j k, , , , , ,
max , ,= ( )−2 1 2

 (2)

where zl, j,k is the output of the pooling layer, and  
1 ≤ l ≤ m/2.

The output of the one-dimensional CNN is taken 
as the input of the LSTM to reduce variance in time 
series. In order to solve the problem of gradient 
disappearance and gradient explosion in standard 
recurrent neural networks (RNN), Hochreiter and 
Schmidhuber [18] proposed the LSTM. The main 
difference between the LSTM and standard RNN is 
that the hidden units’ structure of the standard RNN 
was replaced by LSTM cells. As shown in Fig. 2, an 
LSTM’s cell consists of three gate structures, i.e., 
the forget gate, input gate and output gate and a cell 
structure.

Fig. 2.  Structure of a cell of LSTM

The output of the CNN layer is divided into m/2 
segments, which means the input of the LSTM layer 
has m/2 time series.

The forget gate determines how much previous 
information could pass, whose output could be 
calculated as follows:

 f w z w h bt fz t hf t f= + +( )−σ
1

,  (3)

where the σ is a sigmoid function; w is weight; zt is 
the current input, 1 ≤ t ≤ m/2; ht−1 is the output of the 
previous cell; bf is the bias.

The input gate determines the new information 
that could be saved in the cell, which could be 
calculated as:

 i w z w h bt zi t hi t i= + +( )−σ
1

,  (4)

 C w z w h bt xc t hc t i= + +( )−tanh .
1  (5)

The output gate determines what information 
to output from the cell state, whose output can be 
expressed as follows:

 c c f i Ct t t t t= +−1
 ,  (6)

 o w z w h bt zo t ho t o= + +( )−σ
1

,  (7)

 h o ct t t= × ( )tanh .  (8)

Behind the LSTM layer is the softmax layer for 
classification, which could be calculated as follows:

 softmax y e
ei

u

u

i

i
( ) =

∑
,  (9)

where ui is the ith output of the former layer.
The output class label can be obtained after the 

softmax layer, which was compared with the true 
label of the experimental data. The backpropagation 
(BP) algorithm [19] was introduced to train the 
model, which could adjust the weights and biases by 
comparing the output class label with the true label 
and propagating the output layer’s error back through 
the network to minimize the loss function L, which is 
calculated as follows:

 L
m

u u u u= − + −( ) −( ) ∑1 1 1ln ln ,' '  (10)

where m is the number of  samples; u is the true label, 
and u′ is the output class.

In the process of back propagation, the value of 
weight and bias are adjusted continuously until the 
number of iterations reaches the specific value. The 
parameters adjustment could be expressed as follows:

 w w L
wt t= −
∂
∂−1 ε ,  (11)

 b b L
bt t= −
∂
∂−1 ε ,  (12)

where ε is the learning rate, which determines the 
updating speed of parameters; wt, bt represent the 
value of weight and bias in tth iteration; wt−1, bt−1 
represent the value of weight and bias in (t−1)th 
iteration.

The training processing was presented in Fig. 3, 
the output class was compared with the true label of 
the sample, and parameters were adjusted based on 
the above BP algorithm. After several iterations, the 
value of loss function became tiny, which means the 
parameters have met the samples’ characteristics.

To accelerate the training process and prevent 
the local optima, the mini-batch gradient descent 
algorithm [12] is applied, in which the batch size of 
training samples is selected for iteration.
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After training processing finished, testing datasets 
is about to be input into the trained model, which was 
presented in Fig. 4. Parameters for testing datasets 
use what was updated in the last iteration of training 
processing.

To validate the algorithm’s efficiency, the 
accuracy rate Ar was introduced, which could be 
calculated with the following formula:

 A N
Nr
r

t

= × [ ]100 % ,  (13)

where Nr is the number of correctly predicted samples, 
and Nt is the number of total samples.

The flow chart of this whole proposed model is 
shown in Fig. 5, where N is the max iteration epoch. 
Firstly, vibration signal was collected in test stand 
and then divided into a training dataset and a testing 
dataset; Secondly, the training dataset was used to train 
the model, and optimal parameters would be acquired 
after several iterations; Thirdly, the testing dataset was 
input to the trained model to obtain its predicted class, 
so the accuracy rate could be calculated based on Eq. 
(13).

2  BEARING FAULT DIAGNOSIS

2.1  Experimental Setup and Data Acquisition

In order to validate the proposed method, the bearing 
vibration data from the Case Western Reserve 
University (CWRU) Bearing Data Centre is applied 
[20]. As shown in Fig. 6, the test stand consists of a 
motor, a torque transducer, a dynamometer and the 
control electronics (not shown). The SKF bearings 
were used in this experiment, whose fault was 
introduced by electro-discharge machining. The 
vibration data was collected for four health conditions, 
i.e., the normal condition, the ball fault, the inner race 
fault and the outer race fault, and the fault diameters 
are 0.18 mm, 0.36 mm, and 0.53 mm, respectively.

The data used in this paper were collected from 
the drive end of the test bench. The motor provides 
an output power of 2.2 kW, the sampling frequency 
is 48 kHz and the sampling time for each dataset is 
approximately 10 s. The rotating speed of the shaft 
is 1725 r/min, which means about 1670 data points 
will be collected for one revolution. The first 48,430 
points of each dataset are chosen and divided into 
290 samples, and therefore each sample includes 

Fig. 3.  The training processing

Fig. 4.  The testing processing
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1670 points collected in one revolution. To reduce the 
impact of equipment fluctuations and to ensure the 
points in each sample are collected within the same 
revolution, the first 35 points and the last 35 points 
in each sample are discarded; therefore, every sample 
includes only 1600 points.

Each dataset represents a state of bearing health 
conditions and contains 290 samples, in which 240 
samples are selected randomly as the training dataset, 
and the rest are used as the test set. As shown in Table 
1, the proposed model processed a total of ten datasets, 
including one normal state and three fault types, i.e. 
the ball fault, the inner race fault and the outer race 
fault while each fault type has three variations by 
size. Fig. 7 shows the vibration signals of ten health 
conditions as referred in the Table 1, and it is hard to 
classify them just by intuition.

Table 1.  Description of dataset

Health  
condition

Fault size
[mm]

Training 
dataset

Testing 
dataset

Class  
label

a) normal – 240 50 0
b) ball fault 0.18 240 50 1
c) ball fault 0.36 240 50 2
d) ball fault 0.53 240 50 3
e) inner race fault 0.18 240 50 4
f) inner race fault 0.36 240 50 5
g) inner race fault 0.53 240 50 6
h) outer race fault 0.18 240 50 7
i) outer race fault 0.36 240 50 8
j) outer race fault 0.53 240 50 9

2.2  Training Results

The model was illustrated in Section 2 in detail. The 
input data has three dimensions; the first dimension 
is the number of samples; the second dimension 
represents time steps, and the third dimension is 
a default value. The original training dataset with 
the dimension of 2400 × 1600 is changed into 
2400 × 80 × 20, while for the testing dataset the 
dimension is changed to 500 × 80 × 20.

The structure of this proposed model was shown 
in Fig. 1. A convolutional layer is set behind the 
input layer, whose kernel length is  chosen to be 32 
and kernel channel to be 64, then the dimension of 
this layer’s output is 2400 × 80 × 32 or 500 × 80 × 32. 
Behind the convolutional layer is the pooling layer, 
the pooling length and stride are both chosen to be 2, 
which means the dimension of this layer’s output is 
2400 × 40 × 32 or 500 × 40 × 32. Following the pooling 
layer, a ‘relu’ activation function is introduced to 
increase the nonlinear properties, and 0.2 dropout is 
introduced to prevent overfitting. The fourth layer 
is the LSTM layer with 128 cells, whose output 
dimension is 2400 × 128 or 500 × 128. The last layer is 
the output layer with a softmax classifier, and the data 
turns into 2400 × 10 or 500 × 10.

Settings of the model were shown in Table 2., and 
the Adam optimizer [21] is chosen to minimize the loss 
function. This proposed model is developed based on 
Python and implemented in an open resource library 
(keras). All experiments are performed on a computer 
with 4 GB GPU whose type is GTX 1050 Ti.

One important task for deep learning models is the 
adjustment of hyperparameters, and this paper takes 
the batch size and learning rate as hyperparameters. 
As mentioned in Section 1, the mini-batch gradient 
descent algorithm was used to minimize the loss 
function, and then the batch size defines the number 

Fig. 5.  Flowchart of the proposed model
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Fig. 6.  Test stand; a) a photo, and b) a scheme

Fig. 7.  Vibration signal for different health conditions (as referred in Table 1)  
the y-axis represents the amplitude of signal and x-axis is the number of sampling points

Table 2.  Parameters for the proposed method

Layer Type Parameter for layer Other parameters
1 Input layer Shape = [2400,80,20] Epoch = 50

Dropout = 0.2
Activation = ’relu’

Classifier = 
’softmax’

Optimizer = 
’AdamOptimizer’

2
Convolutional 
layer

KC = 32, KL = 64

3 Pooling layer PL = 2, Stride = 2
4 LSTM layer NU = 128

5 Output layer OC = 10

KC = kernal channel; KL = kernal length; PL = pooling length;  
NU = number of units; OC = output channel

Table 3.  Accuracy rate in testing dataset for different 
configurations

Batch size
20 40 60 80 100

Accuracy rate [%]

Le
ar

ni
ng

ra
te

0.0005 99.8 99.6 99.2 99.8 99.6
0.001 99.4 99.8 99.8 99.4 99
0.002 99.8 99.8 99.4 99 99.6
0.004 99.6 99.6 98.6 100 99.6
0.006 98.8 98.4 97.6 98.8 99.6
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of samples to be processed in one batch. The learning 
rate defines the updating speed of some parameters 
such as weight and bias.

The accuracy rate in the testing dataset reflects 
the effectiveness of the model, which equals the 
number of correctly predicted samples divided by the 
total number of testing dataset samples. The results for 
different configurations are shown in Table 3; as can 
be seen, the best configuration with the batch size of 
80 and the learning rate of 0.004 presents a completely 
correct prediction. Otherwise, the average accuracy 
rate is over 99 %, which proves the effectiveness of 
the proposed model.

Fig. 8.  Running time for different configurations

As shown in Table 3, the value of batch size has 
little effect on the prediction accuracy, while a large 
learning rate may lead to a decline in prediction 
accuracy because the parameters tend to oscillate 
instead of converge. Considering the similar accuracy 
rate for different configurations, the computing time 
is introduced for evaluation. As shown in Fig. 8, the 
main influencing factor of computing time is the 
batch size. The computing time for the batch size of 
20 is four times more than that for the batch size of 
100. Taking accuracy rate and computing time into 
consideration, the configuration with the batch size of 
80 and the learning rate of 0.004 is recommended.

3  COMPARISONS

3.1  Comparison with Other Deep Learning Models

The comparisons between the proposed method and a 
DNN model, a CNN model and a LSTM model are 
presented in this section. The DNN model includes 
three layers with 256 neurons, 256 neurons, 10 neurons 
respectively and 0.2 dropout to prevent overfitting; 
otherwise, the ‘relu’ activation function is used to 
introduce non-linear properties. The configuration and 
parameters for the CNN model and the LSTM in this 
section use the same values in Table 2. 

Fig. 9.  Accuracy rate in training dataset of models  
using deep learning algorithms

The accuracy rate in the training dataset is 
used to evaluate the models; as shown in Fig. 9, the 
iteration speed of the LSTM model is the slowest, 
which requires nearly 50 iterations to achieve a 90 % 
accuracy rate. The CNN model performs as good as 
the proposed method in training dataset and better 
than the DNN. 

Table 4 presents the accuracy rate in the testing 
dataset for different models, the three models for 
comparison achieve the accuracy rate of 98.8 %, 
93.8 % and 80.8 %, respectively. Combined with Fig. 
8 and Table 4, the accuracy rate of the DNN model in 
the testing dataset is much lower than that in training 
dataset due to the overfitting.

Table 4.  Accuracy rate in testing dataset of different models

Methods Proposed method CNN LSTM DNN
Accuracy rate [%] 100 98.8 93.8 80.8

The conclusion can be drawn that the proposed 
model has a higher accuracy rate in the testing dataset 
than the CNN model, it iterates faster than LSTM 
model, and it is more effective in reducing overfitting 
than DNN model.

3.2  Comparison with Traditional Fault Diagnosis Methods

The traditional fault diagnosis methods require feature 
extraction before feeding data to the classifier. This 
paper extracted the time domain features, wavelet 
packet features and empirical mode decomposition 
(EMD) features to feed into a commonly used 
classifier decision tree. Table 5 presents the extracted 
time domain features, while wavelet packet features 
and EMD features are given in [22] and [23] 
respectively. The training and testing datasets use 
what mentioned in 2.1 (240 datasets for training, 50 
datasets for testing).
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Table 5.  Time domain features

Features Formula
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The performance of models using different 
features is given in Table 6; the accuracy rate is in the 
range between 75 % and 90 % by using traditional 
methods. It can be concluded that the training results 
by using different features vary greatly and the 
accuracy rate of the previous experiment is nearly 
10 % higher than the latter one, which proves the 
choice of the feature is a difficult step in traditional 
methods. The same feature extracted in different 
ways may cause different results as well. The wavelet 
packet feature of db4 mother wavelet outperforms 
than that of db3 mother wavelet and haar mother 
wavelet. Therefore, the overall performance of the 
traditional methods is worse than the deep learning-
based models.

Compared with traditional or previously-used 
techniques of bearing fault diagnosis, the advantages 
of using the deep learning networks mentioned in 
the paper lie in the following aspects: 1) Comparably 
fewer iterations are required, and the computing time 
is acceptable. Based on Fig. 8, with the batch size 
of 80, the simulation time takes only 100 seconds. 

2) Even though the rate of accuracy is not exactly 
100 %, the result is remarkably high and quite close 
to 100 % (with the batch size of 80, different learning 
rates result in the accuracy rate all above 99.4 %). 
3) No feature extraction based on prior knowledge, 
diagnostic experiences or professional expertise is 
required, and the constructed deep learning networks 
can extract features automatically. Traditional 
feature extraction methods can be quite complicated, 
e.g., different features suit for different signals, for 
instance, Fourier transform suits stationary signals 
while wavelet transform suits non-stationary signals. 
Or those methods might be hard to fully reflect the 
fault characteristics. Automatic feature extraction can 
avoid these complexities and uncertainties.

4  CONCLUSIONS

In traditional methods for bearing fault diagnosis 
and detection, it’s necessary to extract some features 
to describe the signal. However, different features suit 
different conditions, which requires much expertise 
and a priori knowledge. The application of deep 
learning algorithms helps solve the problem as the 
deep learning algorithms such as the DNN, CNN, 
and LSTM have been proved capable of discovering 
intricate structures in big data.

Table 6.  Performance of different methods

Methods
Accuracy rate in 

testing dataset [%]
Time domain + decision tree 80.6
EMD + decision tree 77
Wavelet packet(mother wavelet: haar)  
+ decision tree

79.8

Wavelet packet(mother wavelet: db3)  
+ decision tree

86.6

Wavelet packet(mother wavelet: db4)  
+ decision tree

87.8

This paper proposed an improved bearing fault 
diagnosis method by combining one-dimensional 
CNN and LSTM into one structure. Considering 
CNN’s advantage in reducing frequency variance 
and LSTM’s advantage in the temporal model, the 
output of CNN was taken as the input of LSTM. The 
raw signal data collected by sensors is divided into 
a training dataset and testing dataset. The training 
dataset was used to determine the inner parameters 
in the model. After that, the testing dataset was fed 
into the trained model to verify its effectiveness. The 
results show that the average accuracy rate in the 
testing dataset is over 99 %; moreover, the model in 
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its best configuration presents a completely correct 
prediction.

Compared with other deep learning-based 
models, the proposed model has advantages: firstly, it 
achieves the highest prediction accuracy in the testing 
dataset; secondly, it iterates faster than the LSTM 
model; thirdly, the proposed model is more efficient 
to prevent overfitting than the DNN model. Compared 
with the traditional fault diagnosis methods, this 
proposed method has the following advantages: firstly, 
the traditional feature extraction is not required, which 
eliminates the interference of inappropriate features; 
secondly, the prediction accuracy of this proposed 
method is much higher than that of the traditional 
methods.

However, this proposed model has its own 
limitation: its main disadvantage is the large amount 
of computation required. As the improvement of 
computer’s computation power, this proposed method 
can be extended to more complicated mechanical 
systems, such as gearboxes. Future research will focus 
on the further improvement of the algorithm and its 
applications in other field.
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