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0  INTRODUCTION

The development of high alloy tool steel is important 
due to the requirement for achieving better mechanical 
and physical properties. High alloy tool steels of 
ledeburitic type produced by powder metallurgy 
(PM) contain a high amount of carbon and alloying 
elements (mainly V, Cr, Mo) that form carbides [1] to 
[3]. Conventional methods preparation of ledeburitic 
type tool steels (mould casting and forming) was 
influenced by the liquation and segregation processes, 
which lead to anisotropy of microstructure and 
properties of high alloy tool steels with high carbon 
content. This fact limits the applications of these 
steels as performance tools [4] to [8]. To improve the 
properties of the ledeburitic tool steels, the technology 
of powder metallurgy can be used [7], [9] and [10].

The main advantages of PM high alloy tool steel 
are the homogeneous distribution and fine size of 
carbides and uniform chemical composition in cross 
section, thereby better properties are achieved [11] 
and [12]. Due to specific properties cold work tool 
steels have found a wide spectrum of applications 
in various industries at blanking, forming, shearing, 
punching and other applications [13] to [15]. 

Solidification of ledeburitic steel in quasi-
equilibrium conditions starts by austenite formation, 
then the formation of morphologically different MC, 
M7C3, M6C and M23C6 carbides follows and the 
solidification is finished by eutectic reactions [16] 
to [19]. Some aspects of solidification of the high 
alloyed tool steels are described in [20]. 

In the case of rapidly solidified powders the 
solidification usually starts by the formation of solid 

solution with the dendritic, equiaxed and mixed types 
of solidification microstructures. However, due to 
recalescence effects also some amount of eutectic is 
usually formed [17] and [21] to [23]. For consolidation 
of powder the hot isostatic pressing (HIP) is often 
used. During HIP processing of rapidly solidified 
powder particles of high alloy tool steel significant 
changes in their microstructure and properties occur. 

The differential thermal analysis technique/
thermomagnetometry is often used to determine the 
phase transitions including melting and solidification, 
liquation and formation of eutectics, recrystallization, 
dissolution and precipitation of new phases, solid-state 
transformation, and ferromagnetic to paramagnetic 
transition in a wide range of materials. Thermal 
analyses together with appropriate thermodynamic 
calculations can be used for analysis of such different 
materials as lead-free solders [24] and [25], carbon 
steels [26] and tool steels [27].

The aim of this work is the investigation of 
microstructure and phase transformations in selected 
high alloy cold work tool steel.

1  EXPERIMENTAL PROCEDURE

The investigated material was equivalent to high 
alloy cold work tool steel K390 Microclean. The 
chemical composition of steel is given in Table 1. 
Higher vanadium content ensures good tool wear 
resistance and high hardness (about 66 HRC) after 
heat treatment.

Analysed high alloy cold work tool steel has an 
extremely high wear resistance, outstanding toughness 
and high compressive strength. [15] 
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Table 1.  Chemical composition of the investigated high alloy tool 
steel [wt. %]

C Cr Mo Si V W Co
2.47 4.15 3.62 0.41 8.94 1.13 2.02

The compacts were prepared by HIP processing 
of the rapidly solidified powders. The parameters 
of processing were: 1100 °C, 100 MPa, during 90 
minutes with protective gas Ar [28]. From compacts 
the samples for differential thermal analysis/
thermomagnetometry (DTA/TM) and dilatometry 
were prepared.

For simultaneous DTA and TM experiment the 
sample with total weight of 105 mg was prepared 
and Netzsch STA 409 CD apparature with heating 
up to 1600 °C in Ar protective gas (60 ml/min.) was 
used. The heating and cooling rates for measurement 
were 10 K/min, during three measurement runs. The 
differences in DTA curves in the 2nd run and in 3rd run 
were negligible. This fact indicates that the sample 
was in quasi-equilibrium state after the 1st run, so only 
the 2nd run was further analyzed.

The microstructure of sample obtained from DTA 
experiment after standard metallographical procedure 
and chemical etching in 3% Nital was observed 
using the Neophot 32 light microscope and Jeol 
JSM-7600F scanning electron microscope (SEM). 
The experimental technique of scanning electron 
microscopy and energy dispersive X-ray spectroscopy 
(EDS) was used to characterize the composition of the 
phases in the steel after DTA.

X-ray diffraction analysis was carried out by 
means of Philips PW 1810 X-ray diffractometer with 
Co anode (λCoKα = 1.72091×10-10 m) and secondary 
monochromator. The measuring step was 0.02°, for 
each step the holding time 10 s was used. For X-ray 
diffraction analysis the sample from DTA experiment 
was used.

To characterize the phase transformations in solid 
state the dilatometry analysis of bulk sample prepared 
from the HIP compact was used.  The initial sample 
length was 9.58 mm. The analysis was performed 
using Netszch 402 C dilatometer in Ar protective 
gas with heating rates of 3 K/min, during two 
measurement runs. Also, in this case only the second 
run was further analysed.

2  RESULTS

2.1  Microscopy

The microstructure of the sample after DTA obtained 
by light microscopy is shown in Fig. 1. It can be seen 

that the microstructure is dendritic, however, each 
dendrite consists from carbide eutectic colonies. At the 
boundaries of eutectic colonies (Fig. 2) a secondary 
skeleton eutectic is present.

Fig. 1.  Microstructure of the tool steel after DTA

For the more detailed interpretation of the 
microstructure SEM and EDS mapping techniques 
were used. On the base of element distribution (Fig. 3) 
it is shown that eutectic colonies contain the vanadium 
carbide and ferrite. The white carbides localized at the 
boundaries between eutectic colonies are on the base 
of molybdenum carbide. The eutectic colonies are rich 
in molybdenum and chromium. Cobalt and tungsten 
are distributed uniformly in all phases in material.

Fig. 2.  Detail of the microstructure

2.2  X-ray Diffraction Analysis

X-ray diffraction pattern of sample after DTA is shown 
in Fig. 4. The following phases were observed: ferrite, 
MC carbide (vanadium type), M2C and M6C carbides 
(molybdenum types). Due to mixing of different 
substitutional atoms in carbide lattices the diffraction 
patterns of carbides are slightly shifted, compared to 
ICDD database [29] and [30].
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 Mapped image (SEM) C Kα1,2

 V Kα1 Cr Kα1

 Fe Kα1 Mo Lα1

 Co Kα1 W Lα1
Fig. 3.  Element mapping of high alloy tool steel, showing distribution of C, V, Cr, Fe, Mo, Co and W
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Fig. 4.  X-ray diffraction pattern

2.3  Differential Thermal Analysis and  
Thermomagnetometry

Figs. 5 and 6 show DTA curves during heating and 
cooling of sample, respectively. The first peak in Fig. 

5 represents the transformation from ferromagnetic 
to the paramagnetic state (781 °C). The second 
endothermic peak (onset 856 °C) can be considered as 
the transformation of ferrite to austenite. Next peaks 
characterize the melting of the present phases. The 
melting begins at 1209 °C, and the end of melting the 
temperature is about 1389 °C. 

2.4  Dilatometry Analysis

The dilatometry curve of analysed tool steel is shown 
in Fig. 7. The onset around temperature 660 °C is 
possibly caused by dissolving the secondary carbides 
in matrix. The steep decrease in length corresponding 
to the transformation of ferrite to austenite is present 
at about a temperature of 832 °C. 

DTA curve during cooling (Fig. 6) shows that 
solidification proceeds in three steps. Solidification 
probably begins by austenite formation from 

Fig. 5.  DTA curve of the investigated high alloy tool steel during heating

Fig. 6.  DTA curve of the investigated high alloy tool steel during cooling
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undercooled melt at a temperature of 1340 °C. The 
solidification continues with two eutectic reactions. 
During the first reaction probably eutectic with 
vanadium carbides is formed (at 1327 °C). During 
the second reaction the eutectic with molybdenum 
carbides is formed (at 1214 °C). The solidification is 
finished at a  temperature of 1208 °C. Fig. 8 shows 
the TM curve during heating and cooling of sample. 
About the temperature 780 °C the transformation 
from paramagnetic to ferromagnetic state is seen. 
During heating the curve slowly decreases from 
1110 °C, probably due to dissolution of paramagnetic 
MC carbides. The cooling curve shows that at 486 °C 
also some secondary carbides form.

3  DISCUSSION

During heating of the high alloy cold work tool steel 
K390 Microclean the first secondary carbides start 
to dissolve in matrix at 660 °C.  The transition from 
ferromagnetic to paramagnetic state takes place at 

781 °C (determined by DTA) or 783 °C (determined by 
TM). Then, the transformation of ferrite to austenite at 
a temperature of 856 °C (determined by DTA) occurs. 
This temperature is higher than the temperature 
of ferrite to austenite transition determined by 
dilatometry (832 °C), probably due to higher heating 
rate at DTA measurements. Melting process of tool 
steel begins at temperature 1209 °C and continues in 
three steps. The first step is probably the melting of 
molybdenum carbide eutectics at 1209 °C. They are 
localised on the boundary of eutectic colonies Melting 
of the material continues by melting of vanadium 
carbide eutectic colonies. Finally, melting finishes 
when the last amount of austenite is dissolved in the 
melt at temperature 1389 °C.

Also, solidification of the material proceeded in 
three steps. In undercooled melt the austenite grains 
grow at the temperature 1340 °C. Next, solidification 
continues by the evolution of eutectic colonies 
based on the vanadium carbide (starts at 1327 °C). 
Molybdenum is diffusing to the melt and in the 

Fig. 7.  Dilatometry curve of analysed tool steel during heating

Fig. 8.  Thermomagnetometry curves
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last step of solidification the molybdenum carbide 
eutectics at the boundaries are formed. The cooling 
in solid state shows only two transitions in TM curve. 
The first change is the transition from paramagnetic 
to ferromagnetic state at 793 °C and the second one is 
the formation of the secondary carbides in the matrix 
at 486 °C. The resulting microstructure is mainly 
dendritic  where most dendrites consist from vanadium 
carbide eutectics. At the boundaries molybdenum 
carbide eutectics are localised. The small amount 
of austenite dendrites was also present. This type of 
microstructure is quite differrent compared to [11], 
[16] to [18], [22], [23], [27], [28], [31] and [32], where 
microstructures containing a large amount of austenite 
dendrites or a large amount of primary carbides in 
dependence from the chemical composition of the 
ledeburitic tool steels are present.

4  CONCLUSIONS

The aim of the article is to describe the phase 
transformations in high alloy cold work tool steel 
K390 Microclean during slow heating and cooling. 
These conditions are different compared to those used 
in production of the alloy steels, but they enable a 
description of the solidification and phase transitions 
in quasi-equilibrium conditions.

The microstructure of high alloy cold work tool 
steel has a dendritic morphology, however, dendrites 
consists from eutectic colonies based on the vanadium 
carbides. On the boundaries there are localised 
molybdenum carbide eutectics. The transformation 
of austenite to ferrite occurs at about 830 °C. The 
transition from ferromagnetic to paramagnetic state is 
about 780 °C. 

The knowledge about the quasi-equilibrium phase 
transformations in high alloy cold work tool steel can 
help to a better understanding of processes occurring 
in the material during the heat treatment. The obtained 
results extend the data obtained by others authors 
related to ledeburitic tool steels [1], [11], [16], [17], 
[23], [27], [31] and [32]. The results may be useful for 
the next thermodynamic analysis of phase transitions 
using the Thermo-Calc and Dictra software. 
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