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The paper deals with hydraulic aspects of a wave, emerging as a result of a potential dam break of the upper storage reservoir of the pumped-
storage hydropower plant Kolarjev vrh. A two-dimensional depth-averaged mathematical approach was used. The upper storage reservoir 
and its dam failure were modelled with the mathematical model PCFLOW2D, which is based on the Cartesian coordinate numerical mesh. 
The results of PCFLOW2D were used as the upper boundary condition for the mathematical model PCFLOW2D-ORTHOCURVE, based on the 
orthogonal curvilinear numerical mesh. The model PCFLOW2D-ORTHOCURVE provided a tool for the analysis of flood wave flow in a steep, 
narrow and geometrically diversified stream channel. The classic Manning’s equation fails to give good results for streams with steep bed 
slopes and therefore, a different equation should be used. The application of the Rickenmann’s equation was chosen, presented in a form 
similar to Manning’s equation. For the purpose of the example given here, the equation was somewhat simplified and adapted to the data 
available. The roughness coefficient used at each calculation cell depended on the slope of that cell. The results of numerical calculations 
were compared to measurements carried out on a physical model in the scale of 1 : 200. Regarding the complexity of the  flow phenomenon a 
rather good correlation of maximum depth was established: only at one gauge the difference in water depth was up to 27% while at the other 
four it was 7% of water depth on average.
Keywords: dam-break wave, steep curved channels, two-dimensional mathematical model, orthogonal curvilinear coordinates, 
roughness coefficient, model PCFLOW2D-ORTHOCURVE

0 INTRODUCTION

Mathematical modelling has taken a leading role 
in solving certain practical problems and is used 
more frequently than physical models. Nevertheless, 
physical modelling remains irreplaceable for 
solving many problems. One of these is establishing 
hydrodynamic flow characteristics with complex 
geometry features, where capturing all geometrical 
details is too difficult for mathematical modelling. 
Moreover, many problems can only be solved with a 
simultaneous use of both, physical and mathematical 
models. Such is also the case of a potential dam failure 
at the Kolar’s peak (Kolarjev vrh, NE Slovenia), 
where measurement results of unsteady flow on the 
physical model provided the basis for verifying the 
mathematical model PCFLOW2D-ORTHOCURVE. 
As the upper storage reservoir of pumped hydro 
power plant (HPP) Kolarjev vrh is planned as artificial 
accumulation built by dykes, the reason of dyke 
damaging could also be uncontrolled water hammer 
[1] and [2]. 

The planned installed power of the pumped-
storage HPP Kolarjev vrh is 300 MW, with the height 
difference of up to 714.7 m, depending on the water 
levels in both storage reservoirs. The installed turbine 
flow would be 51 m3/s and the pumps would have a 
discharge of 37 m3/s. The upper storage reservoir 
would be connected to the powerhouse with a pressure 

penstock 2660 m long and 3.0 to 3.5 m in diameter. As 
the lower storage reservoir of the pumped-storage HPP 
Kolarjev vrh, the existing storage reservoir of HPP 
Fala on the Drava River would be used. At the Water 
Management Institute in Ljubljana, a physical model 
of the upper storage reservoir was made, together with 
the valley lying to the south in the scale of 1 : 200 
[3]. The view of the storage reservoir and modelled 
valley (upper narrow part) with measurement gauges 
is shown in Fig.1.

The upper storage reservoir would be located on 
the flattened Kolarjev vrh. The level of the reservoir 
bottom would be at 975.0 m a. s. l., with maximum 
dimensions of 350×750 m. The storage reservoir 
would comprise an area of 160,000 m2. The bank 
slope on the inner side of the storage reservoir would 
be approximately 1 : 2, and on the outer side 1 : 1.5. 
The crest elevation would be 996.5 m a. s. l., 1.5 m 
above the highest water level in the upper reservoir 
(995.0 m a. s. l.) and would have a width of 5 m. The 
water volume in the reservoir would be approximately 
2.8×106 m3. An axonometric view of the upper 
storage reservoir that was built in the physical model 
is presented in Fig. 2, together with the position of 
gauges that recorded water level oscillations. The 
measurement results at these gauges were used for the 
verification of the mathematical model PCFLOW2D, 
which was used for hydrodynamic modelling of flow 
in the upper reservoir.
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Fig. 1. Photo of physical model of south valley with installed 
gauges

A topographic analysis of terrain below the upper 
storage reservoir of HPP Kolarjev vrh has shown that 
during a dam break of the upper storage reservoir, 
the potential discharge spillways are the three valleys 
gravitating to the Drava River. Since the physical 
model was made only to facilitate the verification of 
results of the mathematical model, only the shortest, 
south valley of the Logar’s Creek (Logarjev potok) 
was built. The part of the dam gravitating to the 
valley is approximately 1 km long. The length of the 
waterway spilling from the reservoir to the town of 

Selnica lying approximately 700 m below is 6 km, 
of which 4500 m are represented by a fairly narrow 
valley that passes into the wide valley of the Drava 
River. To verify the results of the mathematical model 
PCFLOW2D-ORTHOCURVE, data relating to the 
narrow part of the valley were used.

Fig. 2. Axonometric view of the upper storage reservoir with 
positions of measuring gauges

In the physical model, the analysis of the dam-
break wave caused by an instantaneous break of part 
of the dam was performed. Several possible widths 
of a dam breach were considered, namely 48, 99, 237 
and 433 m. The length of the flow under study was 
4620 m, and the head difference between the reservoir 
bottom (975 m a. s. l.) and the more flat part of the 
valley was 646 m. The average channel slope was 
14%. In order to monitor the motion of the wave and 
its characteristics on the physical model, six gauges 
were set up in the upper part of the valley and six in 
the lower part of the valley. For the purpose of  this 
study, only the results of the first five gauges are 
of interest, because other gauges were positioned 
outside the area covered by the mathematical model. 
The measurements gave the propagation time of the 
wave front to each gauge and water depth oscillation 

Fig. 3. Longitudinal profile of the narrow part of the south valley with the position of gauges
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at each gauge. The position of the first five gauges is 
shown in the longitudinal profile of the narrow part of 
the valley in Fig. 3. The data on water levels indicate 
a longitudinally non-uniform course of the wave 
and significant changeability of the flow between 
supercritical, critical and subcritical flow. The wave 
reached the lower part of the valley extremely fast, in 
three to four minutes.

1 MATHEMATICAL MODEL OF UPPER STORAGE RESERVOIR

For the analysis of a possible dam break wave arising 
from the upper storage reservoir of the HPP Kolarjev 
vrh, two mathematical models were prepared. The 
first covered the area of the reservoir and the other 
covered the dam break flow through the south valley 
to its widening. Hence, with the model of the storage 
reservoir and its dam-break, we acquired data on the 
dependence of discharge versus time at the dam site, 
which was used as the upper boundary condition for 
the second mathematical model of the downstream 
valley. Because of the shape of the reservoir, with 
no considerable difference between its width and 
length, the mathematical model PCFLOW2D was 
used for flow modelling. PCFLOW2D is based on the 
orthogonal Cartesian numerical mesh. For modelling 

the flow through the valley of the Logarjev potok, with 
a vast disproportion between the flow length and width 
with several considerable bends, the mathematical 
model PCFLOW2D-ORTHOCURVE was used, based 
on the orthogonal curvilinear numerical mesh.

As mentioned above, four different widths of a 
dam breach were considered in the physical model. 
Earlier, authors analysed the flow downstream in 
three consecutive bends with simplified geometry 
during dam breach of a width of 237 m with a two-
dimensional (2D) mathematical model [4]. The 
same width was chosen for the computations of the 
dam break wave with the models PCFLOW2D and 
PCFLOW2D-ORTHOCURVE.

1.1 Basic Equations

The mathematical model PCFLOW2D uses the 
orthogonal Cartesian coordinate system. The 
continuity (Eq. (1)) and momentum equations (Eqs. 
(2) and (3)) describing a two-dimensional unsteady 
depth-averaged flow, are written in the conservative 
form. The last two terms on the right hand side of Eqs. 
(4) and (5) express the influence of turbulent viscosity, 
which is determined by the k - ε  turbulence model. In 
some cases, constant values of υef can also be used.
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where t is time, h is water depth, u and v are velocity 
components in the x and y directions, zb is the 
bottom level, n is the Manning’s friction coefficient, 
g is acceleration due to gravity, υef is the effective 
coefficient of viscosity, k is the turbulent kinetic 
energy per unit of mass, ε is the dissipation rate of the 
turbulent kinetic energy per unit of mass, c1, c2, σk and 
σe are constants of the turbulent model, and Pkv and 
Pεv are production and dissipative terms due to bottom 
roughness.

1.2 Boundary and Initial Conditions with Computational 
Details

Boundary conditions used in the mathematical model 
were as follows: flow velocities through reservoir 
dykes were zero and at the site of the dam-break, 
critical flow was assumed at each cell. The sum of 
discharges through drainage cells represented the 
total outflow in the profile of the destroyed part of the 
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dyke. As the initial condition in the reservoir, water 
level at Z = 995 m a.s.l. was assumed. 

The size of the numerical mesh was Δx = Δy = 
4 m and the time step was Δt = 0.5 s. On the basis of 
measurements conducted on the physical model of the 
downstream valley, it was estimated that it would be 
appropriate to monitor the time of wave propagation 
across the valley up to about 400 s after the demolition 
of the dyke. Therefore, maximum computation time of 
420 s was chosen.

1.3 Calibration and Results of the Mathematical Model of 
the Flow in the Reservoir

During the calibration process of the mathematical 
model of the flow in the upper reservoir, we tried 
to find the appropriate bottom friction coefficient. 
For each measuring gauge presented in Fig. 2, the 
nearest calculation point was found and its water 

surface oscillation was noted. It was then compared 
to measured water levels on gauges of the physical 
model. The period of the first 160 s after the dyke 
was broken was analysed. This was also the duration 
of measurements recorded at gauges on the physical 
model.

On the basis of comparison of the computed and 
measured water depth oscillations on all six gauges 
in the area of the upper reservoir, we determined 
the uniform Manning’s coefficient of the bottom 
and slopes of the dyke to be n = 0.024 s/m1/3. As an 
example, the results of comparison for the gauge S1 
are presented in Fig. 4. In Fig. 5, the resulting outflow 
from the reservoir is shown. This Q – t curve was 
then used as the upper boundary condition for the 
mathematical model of the wave propagation in the 
downstream valley, which is discussed in Chapter 3.

Fig. 4. Measured and calculated oscillation of water depth in the upper reservoir at gauge 1 (S1)

Fig. 5. The computed Q-t curve at the outflow from the reservoir
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where t is time, h is water depth, uξ and νη are the 
velocity components along (ξ) and normal (η) to the 
flow direction, mξ and mη are Lamé’s coefficients, 
zb is the bottom level, n is the Manning’s friction 
coefficient, g is acceleration due to gravity and υef is 
the effective coefficient of viscosity. 

Since the investigated case was one involving a 
highly unsteady flow with rapid velocity and depth 
changes, we estimated that an adequate distribution of 
υef had no significant influence on the results. Thus, a 
constant value of υef = 0.01 m2/s was used, based on 
our previous experience with unsteady flow.

2.2 Numerical Method

Both sets of coupled partial differential equations 
(1) to (5) and (6) to (8) are solved by the finite 
volume numerical scheme proposed by [5]. The main 
characteristics of the method are staggered control 
volumes, the so-called “hybrid” scheme and an 
iterative procedure of depth corrections (SIMPLE). 
A fully implicit scheme is used for time integration 
providing stable and accurate solutions even at 
relatively high Courant numbers (up to about 10). It is 
possible to simulate both subcritical and supercritical 
flows ([5] and [6]).

The “hybrid” scheme is a combination of the 
upwind and central difference scheme (application of 
the scheme depends of the value of the cell Peclet’s 
number). The first order upwind scheme assures 
simplicity and robustness [5] and it remains stable 
even with very complex geometry, relatively coarse 
numerical grid and complicated boundary conditions. 
However, it can sometimes involve a certain amount 
of the so-called »numerical diffusion«. The problem 
is more serious in the case of solving transport 
equations of scalar quantities but can sometimes 
render questionable hydrodynamic results as well (e.g. 
when simulating a high velocity river flow with lateral 
inflow and recirculation zones). The way to avoid 
the problem of numerical diffusion is to use higher 
order numerical schemes [7] or/and denser numerical 
grids. The latter is suggested in this article and can 
be achieved by introducing curvilinear coordinate 
systems which are able to fit the irregular boundaries 
of the computational domain. Orthogonal or non-
orthogonal curvilinear meshes can be applied. Details 
about the equations in curvilinear coordinate systems 
and description of the discretisation method can be 
found in [4] and [8].
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2 MATHEMATICAL MODEL OF THE DOWNSTREAM VALLEY

2.1 Basic Equations

The model PCFLOW2D-ORTHOCURVE uses 
an orthogonal curvilinear coordinate system. The 

continuity Eq. (6) and momentum equations (Eqs. (7) 
and (8)) describing a two-dimensional unsteady depth-
averaged flow are written in the conservative form.
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2.3 Computer Codes

The source computer codes PCFLOW2D for Cartesian 
and PCFLOW2D-ORTHOCURVE for orthogonal 
curvilinear numerical meshes are written in Fortran77 
and run on personal computers, workstations or large 
mainframe systems. For the preparation of input 
topographic data (pre-processing) and graphical 
presentation of the final results of the model (post-
processing) the AutoCAD and Quick Surf graphic 
packages are used [8].

In mathematical models, the following boundary 
conditions can be taken into account at arbitrarily 
chosen cells of the computational domain: a) Solid 
boundaries (with zero normal velocities); b) Inflows 
of rivers (time-dependent discharges or velocities can 
be prescribed); c) Time-dependent water depths or 
surface elevations; d) Critical flow; e) An equation of 
a weir; f) Wind stress can be prescribed at the water 
surface by giving the wind speed and the wind friction 
coefficient.

3 SIMULATIONS OF FLOW IN THE DOWNSTREAM VALLEY

3.1 Numerical Mesh, Initial and Boundary Conditions

Terrain of downstream south valley was defined with 
orthogonal curvilinear numerical mesh with 9625 
cells. The resolution of the grid was variable from 
4×11 m up to 33×33 m.

In the initial stage of calculation, the downstream 
valley is dry. Some suggestions how to treat the 
problem of wetting and drying in  numerical solutions 
are given in [9]. To meet this condition in our proposed 
mathematical model, low water depth was given at the 
beginning of calculations. We chose a minimum level 
of 5 cm and all cells with water depth lower than 5 
cm were considered dry with flow velocity equal to 0. 
During the first ten iterations inside each time step, all 
the cells of the computational domain were included 
into the computation process. If the water depth did 
not exceed 5 cm, the appropriate cell was assumed 
to be inactive with zero velocities and initial water 
depth.  Lower initial depths resulted in instabilities 
in the calculation, probably due to the high terrain 
gradient. Based on the actual conditions, where the 
wave would propagate with a depth of 15 to 20 m, the 
chosen initial depth of 5 cm was considered negligible 
and thus acceptable. The minimum depth was also 
lower than the expected accuracy of calculations. 

The inflow and outflow boundary conditions had 
to be defined separately. The inflow curve Q – t (Fig. 
5) was adopted in the model, which was the result 

of previous calculations of the flow in the reservoir 
during partial dam break. In the initial time, the 
discharge was 46,947 m3/s, which was determined 
theoretically using momentum equation for the 
example of instantaneous dam break in the conditions 
of maximum water level in the reservoir. In the lower 
(outflow) boundary of the model, the critical depth 
was defined as a boundary condition. Due to the high 
channel slope, however, this boundary condition did 
not have any impact on the upstream flow.

3.2 Determination of Friction Coefficients

The friction coefficient of the downstream valley was 
determined by considering the basic laws governing 
flow in steep channels. One of the basic observations 
was that the value of Manning’s coefficient was not a 
constant and that it depended on several parameters. 
These were the hydraulic radius, area of flow cross-
section, flow depth, width of free water surface, 
characteristic grain of a channel bed, channel slope 
and discharge. In determining the friction coefficient, 
all the mentioned parameters were not used, since they 
were mostly not known. By using the Rickenmann’s 
equation ([10] and [11]) and several simplifications, 
the dependence between the Manning’s friction 
coefficient (n) and bed slope (I) was acquired:

 1
n C I= / .α  (9)

Based on the chosen mean value of the friction 
coefficient for the discussed area of the watercourse 
and value of exponent α, the values of the friction 
coefficient (n) were distributed to all cells of the 
computation domain. 

3.3 Analysis of Results Calculated with the Variable 
Friction Coefficient

A comparison between the measured water depth 
versus time curves at different gauges and the 
calculated depths was made during the calibration of 
the mathematical model, where the value of exponent 
α was 0.2 (slightly above the value of Rickenmann) 
for different values of the mean friction coefficient n  
(0.04, 0.045 and 0.05 s/m1/3). The comparison for the 
last, downstream gauge 5 is shown in Fig. 6. For the 
average value of the Manning’s friction coefficient  n  
= 0.05 s/m1/3, a very good correlation of maximum 
depth was established, as well as the propagation time 
of the wave to the measuring site, even if the path of 
the calculated wave did not coincide perfectly with 
the measured one. As it can be seen from Fig. 6, the 
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Fig. 6. Measured and calculated water depth oscillations at gauge 5 with variable friction coefficients for α = 0.2 and different average 
values of the Manning’s friction coefficient

Fig. 7. Axonometric view of the wave 178 s after the dam break (approach of the wave front to gauge 5)

measured arrival time of the wave front to the gauge 
5 is 174 s and the computed one 178 s (2% relative 
error). The same level of accuracy is achived in other 
gauges. Fig. 7 provides an axonometric view of the 
water surface along the channel at the moment of the 
wave approach to gauge 5.

4 CONCLUSIONS

In the study of the propagation of the dam-break 
wave in the Logarjev potok stream and by using 
the Rickenmann approach to determine the friction 
coefficient in several gauges, we acquired very 
good results in relation to water level, which for 
different mean values of friction coefficient n  
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and exponent α coincided well with the measured 
depths. The calculated wave front is somewhat too 
steep, which resulted from an inadequate simulation 
of actual occurrences in the model. Even though an 
instantaneous dam break was planned, this could 
not be carried out due to manual raising of the gate. 
That is why initial flows in the physical model were 
somewhat lower than the result of modelling of an 
instantaneous dam break. Very good results were 
obtained in relation to the wave propagation velocity. 
A rather good correlation of maximum depth was 
established – at one gauge the difference in water 
depth was up to 27% and at the other four it was 7% 
of water depth on average. In all cases, unexpectedly 
low friction coefficients were used. The reason lies in 
the large depth of the flood wave in comparison to the 
roughness of the river bottom. Hence, the studied case 
cannot be considered as a classic case of torrential 
flow with a relatively small depth and a much higher 
friction coefficient. 
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