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Impact Forces Occurring in a Forced Damped Multi-Body System

with Clearances

Guillaume Ricciardi

CEA, Alternative Energies and Atomic Energy Commission, France

The purpose of this paper is to study the effect of clearance and other parameters on the maximal impact forces likely to occur in a forced multi-body system.

Numerical simulations are performed for a large range of parameters. The numerical results showed three regions. In the first one, there is no contact

between the bodies. The second one, defined as the smooth region, is characterized by regular evolution with a concentration of the impact forces at the

boundaries. In the last one, where the most important impact forces are met, the system shows chaotic behaviours and coincides with the lower values of

clearance. Theoretical upper bounds for the maximal forces are proposed and compared to numerical results. In the smooth region, the criterion is respected,

but in the chaotic region, some discrepancies are observed. Nevertheless, the criterion gives a good estimation. The dimensionless analysis showed that the

maximal impact force is proportional to the mass, the acceleration, the stiffness ratio and the inverse of the damping ratio.
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Highlights

• A forced multibody system with high damping is investigated.

• Numerical simulations are performed for a large range of parameters.

• This study focuses on the maximal impact force encoutered.

• Analytical upper bounds for the maximal force encoutered are proposed.

0 INTRODUCTION

Mechanical systems involving several components

separated by clearances can be encountered in many

engineering fields as energy [1], automobile [2] or

space industry [3]. When subjected to an external

excitation, impacts occur between the components

and the force resulting from these impacts may cause

damages. The impact forces strongly depend on the

clearance [4] and increase with contact stiffness [5] and

the number of clearances [6]. The nonlinear system

gives rise to chaotic behaviours with a large variety

of transitions between chaotic and periodic behaviours

using clearance as a parameter [7]. This complexity

is illustrated by [8] and [9]: they propose maps

using clearance and excitation frequency as parameters

showing the number of impacts within a period: it

appears that the more complex behaviours are obtained

for lower values of clearance. Some have proposed

an analytical analysis of bifurcations [10, 11] and

showed discontinuity in bifurcation maps. Transitions

between chaotic and periodic solutions have been

widely studied on many nonlinear mechanical systems,

such as pendulum [12], tank filled with water [13], disk

brake [14], or cracked rotor [15].

This study is applied to a liquid metal fast breeder

nuclear reactor core. This core is made of clamped-free

slender structures immersed in a liquid as described

in [16]. In case of a seismic event the impact

force generated by the contact between bodies can

be damaging; therefore, knowing the maximal force

occurring in case of an earthquake is fundamental

to making a proper design. The purpose of this

paper is to study the effect of clearance and other

parameters on the maximal impact forces likely to

occur in a forced multi-body system. A dimensionless

expression of the dynamic equation is proposed, and

numerical simulations are performed for a large range

of parameters, assuming that the slender structures

only vibrate on their first natural bending mode.

1 METHODOLOGY

Let us consider the simple system composed of Nm

bodies of mass M attached to the ground by a spring

K and a viscous damping C, the displacement of the

ground ue is imposed as in a seismic event, and the

displacement of each body i is noted ui (Fig. 1).

The bodies are separated by a clearance e, and when

a contact is detected impact forces, Fli and Fri are

imposed either on the left or the right of the body. The

equation of motion of each body i is given by:

M
∂ 2udi

∂ t2
+C

∂udi

∂ t
+Kudi =−M

∂ 2ue

∂ t2
+Fli +Fri, (1)
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where udi is the relative displacement:

udi = ui − ue. (2)

The impact forces are modelled by linear springs

Kc when the contact is detected to account for the

stiffness contact that can be different from the stiffness

of the system. Different models can be found

to account for the contact between bodies, by the

continuity of the displacements or the velocities when

the contact is detected or with nonlinear stiffness given

by the Hertz theory. In the present study, a linear

spring is chosen to account for the local deformation

of the slender body at the contact location which is

much higher than the bending stiffness K. This is a

very critical parameter that can completely change the

behaviour of the structure.

∀i ∈ [2 : Nm],Fli =























Kc
2
(udi−1 − udi − e)

if (udi−1 − udi− e)> 0,

0

if (udi−1 − udi− e)< 0,

(3)

∀i ∈ [1 : Nm− 1],

Fri =























−Kc
2
(udi − udi+1 − e)

if (udi − udi+1 − e)> 0,

0

if (udi − udi+1 − e)< 0,

. (4)

M

K
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Fig. 1. Multi-body system with clearances

The acceleration of the ground is assumed

harmonic at the frequency f and for an amplitude of

a0:

∂ 2ue

∂ t2
= a0cos(2π f t). (5)

In the following, the dimensionless equations

are established based on the following dimensionless

quantities:

f0 =
1

2π

�

K

M
, (6)

fr =
f

f0

, (7)

fc =
Kc

K
, (8)

ε =
C

2
√

KM
, (9)

tr = f0t, (10)

er =
4π2 f 2

0 e

a0

, (11)

uri =
4π2 f 2

0 udi

a0

, (12)

vri =
∂uri

∂ tr
, (13)

Flri =
Fli

Ma0

√
fc

, (14)

Frri =
Fri

Ma0

√
fc

. (15)

Thus the equations of the system become:

1

4π2

∂ 2uri

∂ t2
r

+
ε

π

∂uri

∂ tr
+uri =−cos(2π frtr)

+
�

fcFlri +
�

fcFrri, (16)

∀i ∈ [2 : Nm],

Flri =























√
fc

2
(uri−1 −uri − er)

if (uri−1 −uri − er)>
0,

0

if (uri−1 −uri − er)< 0,

(17)

∀i ∈ [1 : Nm−1],

Frri =























−
√

fc
2

(uri −uri+1 − er)
if (uri −uri+1 − er)> 0,

0

if (uri −uri+1 − er)< 0,

(18)

The response of the system is totally defined by

the stiffness ratio fc, the number of bodies Nm, the

damping ratio ε , the reduced clearance er and the

reduced frequency imposed to the system fr.

To observe the dependency of impact forces

on dimensionless parameters, a parametric study

is performed numerically (Table 1). The range

studied corresponds to the different situations and

configurations encountered in the seismic response of

reactor cores. For each set of parameters ( fc, Nm, ε , er,

2 Guillaume Ricciardi
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and fr), a temporal numerical simulation is performed

with an explicit time scheme for 1000 periods. For

the present study over 430,000 simulations have been

performed. For each simulation we note Fm the

maximal impact force in time and space:

Fm = max(Frri(tr j),Flri(tr j))∀(i, j) . (19)

In the following, most of the results shown are

accounting for a damping ratio of 50 % which will

be the default value without indication. In this paper,

only high values of damping are considered because

while it makes the simulations simpler because the

harmonic regime is reached faster, these high values

are commonly encountered in the industry especially

with structures surrounded by fluid [17].

Table 1. Parameters range used for numerical simulations

fc Nm ε er fr

1 to 2000 1 to 20 10 to 50 1 to 6 1 to 5

2 GENERAL BEHAVIOUR

For each couple of Nm and fc, Fig. 2 shows the

maximal reduced impact force Fm as a function of fr

and er. Different behaviours can be observed, but three

zones can be identified. The first one corresponds to Fm

= 0, which means that there is no impact either because

the reduced gap is too high or because the frequency is

too far from resonance. The second zone corresponds

to er > 0.3 and will be referred to as the smooth zone.

In that zone the force Fm shows a regular evolution

with a maximum around fr = 1 close to the natural

frequency of the system; this zone seems to show an

identical trend for every (Nm, fc) couple. The third

zone, referred to as a chaotic zone for er < 0.3, shows

irregular evolution and can be very different depending

on the (Nm, fc) couple. This zone shows the highest

values of Fm.

The limits of the noimpact zone can be easily

estimated considering the response of a single body

with no interaction, of which the modulus is given by:

|u0|=
1

√

(1− f 2
r )

2 + 4ε2 f 2
r

. (20)

It can be seen that the previous equation (red curve) fits

the smallest values of Fm in Fig. 3.
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Fig. 2. Maximal reduced impact force as function of er and fr , for Nm =

3 and fc = 3 (a), for Nm = 3 and fc = 100 (b)

Figs. 4 to 7 show the evolution of Fm as a function

of the reduced clearance for two reduced frequencies

and various (Nm, fc) couples. In the smooth region,

close to the natural frequency at fr = 1, Fm shows an

asymptotic behaviour as Nm and fc increase. At lower

frequencies the behaviour is different, Fm does not

depend on the number of bodies Nm, but it decreases

as the stiffness ratio fc increases. For lower er, the only

clear trend is for lower frequencies where Fm increases

with Nm whereas it decreases when fc increases. For

other frequencies, one can see strong fluctuations.

Impact Forces Occurring in a Forced Damped Multi-Body System with Clearances 3
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The chaotic behaviour is more important for

higher values of fc.

0 2 41 3 5
0

1
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0.4

0.6

0.8

1.2
single�mass

�

Fig. 3. Iso Fm curves for Nm = 5 and fc = 60, with the theoretical

response of a single mass (thick dotted curve)
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Fig. 4. Maximal reduced impact force as a function of er for Nm = 5 and

various fc for fr = 0.1

Fig. 8 shows the evolution of the spatial

distribution of Fm close to the natural frequency as a

function of er. It can be seen that in the smooth region

(er > 0.3) only a few masses at the extremities are in

contact. As er decreases, the system goes in the chaotic

region, and the number of bodies in contact increases
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Fig. 5. Maximal reduced impact force as a function of er for Nm = 5 and

various fc for fr = 1
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Fig. 6. Maximal reduced impact force as a function of er for fc = 100 and

various Nm for fr = 0.1

to reach a state in which all bodies are in contact, and

comparable values of impact forces are seen.

The evolution of Fm as a function of frequency

(Fig. 9) shows the difference between a non-chaotic ( fc

= 10) and chaotic behaviour ( fc = 100). In the first one,

the impact forces are always located at the extremities

with a regular spatial evolution, whereas in the second

one the maximal values can be located anywhere, and

disturbed spatial evolution is shown.
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Fig. 7. Maximal reduced impact force as a function of er for fc = 100 and

various Nm for fr = 1
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Fig. 8. Maximal reduced impact force spatial distribution as function of er

for Nm = 20, fr = 1 and fc = 200

3 SMOOTH REGION

In the smooth region, the maximal impact force is

obtained at the natural frequency ( fr = 1) with a small

shift toward higher frequencies when fc increases for

lower values of er (Fig. 10). At a given fc, Fm quickly

converges as Nm increases, for er = 0.24 the results do

not change after Nm = 5, and for higher values of er,

the asymptotic value is reached for Nm = 2 (Fig. 11).
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Fig. 9. Maximal reduced impact force spatial distribution as function of fr

for Nm = 20, er = 0 and fc = 1 (a), fc = 100 (b)

When only a few bodies show contact the number

of bodies in contact does not depend on the total

number of contact and explain why the asymptotic

value is quickly reached.

Fig. 12 shows the influence of damping ratio

on the maximal impact force; it can be seen that as

this ratio decreases, the force increases and that the

transitions between chaotic and smooth regions are

Impact Forces Occurring in a Forced Damped Multi-Body System with Clearances 5
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Fig. 10. Maximal reduced impact force as function of fr for Nm = 5 and

various fc for er = 0.71
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Fig. 11. Maximal reduced impact force as function of fr for fc =1 00 and

various Nm for er = 0.24

shifted toward higher values of er. This is an expected

results, since the damping dissipates energy.

Based on the latter observations, one could

assume that the maximal impact force in the smooth

region is given by the oscillation of a mass at the

extremities in contact with the wall.

This system has a natural frequency f1:

f1 =
√

1+ fc. (21)
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Fig. 12. Maximal reduced impact force as a function of er at fr = 1 for

various ε , and for Nm = 5 and various fc

The maximum amplitude um is given by:

um =
1

2ε
√

1+ fc− ε2
. (22)

The force is given by the compression of the

spring Kc, in the dimensionless form it gives for the

maximal force:

Fm =
√

fcum, (23)

=
1

2ε

√

fc

1+ fc− ε2
. (24)

Thus, the maximal force Fm depends on the

stiffness ratio fc and the damping ratio ε . One can

extract from the previous equation an upper bound

depending only on ε:

Fm <
1

2ε
. (25)

The observation of the numerical results shows

that the criterion (25) is always verified on the range

studied in this paper (Table 2). This result illustrates

the importance of damping ratio on the impact forces.

6 Guillaume Ricciardi
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Table 2. Maximum Fm in the smooth region for various damping

ε 0.1 0.2 0.3 0.5

Fm 3.75 2.46 1.45 0.93

1
2ε

5 2.5 1.66 1

4 CHAOTIC REGION

The bifurcation diagram of the first body in Fig.

13 illustrates the diversity of behaviour met by the

nonlinear system. It switches from periodic solution to

period-doubling bifurcation between 2.2 < fr < 2.55

and chaos between 2.55< fr < 2.7. Then it returns to a

periodic solution between 2.7 < fr < 3.2 and chaos 3.2

< fr < 3.55 and again a period-doubling bifurcation

between 3.55 < fr < 4.15. Each change of regime is

characterized by a significant modification of Fm.
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Fig. 13. Bifurcation diagram using fr as control parameter for Nm = 5 and

fc = 60 and for er = 0.06

Fig. 14 shows the maximal reduced impact forces

for a small value of er in the chaotic region. It can be

observed that, unlike in the smooth region Fm reaches

its maximum values for various frequencies depending

on Nm and fc; this frequency increases with fc but

decreases as Nm increases. Moreover, a very irregular

evolution of Fm as a function of the reduced frequency

with abrupt decreases can be seen. The maximal

impact forces obtain in the chaotic region are much

more important than in the smooth region.
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Fig. 14. Maximal reduced impact force as function of fr for Nm = 5 and

various fc, for er = 0.06

The example of Fm distribution in Fig. 15

shows that the forces may not be concentrated at the

extremities and, in some cases, the maximum can be

reached elsewhere.
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Fig. 15. Maximal reduced impact force spatial distribution as a function of

fr for Nm = 5, fc = 60 and er = 0.06

Impact Forces Occurring in a Forced Damped Multi-Body System with Clearances 7
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5 LINEAR SYSTEM

Let us consider the linear system without any gap.

Since a simple analytical expression of the natural

frequencies seems out of reach an approximation is

proposed:

fka
=

√

1+ fc

(

k

Nm

)2(

a− b

(

k

Nm

)c)

,(26)

a = 4.935, (27)

b = 2.935, (28)

c = 1.81. (29)

This approximation gives a good estimation of the

calculated natural frequency with an error of less than 1

% for f1 and less than 3 % for other natural frequencies

on alarge range of values of fc and Nm.

The approximated f1 tend to 1 as Nm tends to

infinity, and approximation gives the higher natural

reduced frequency:

fNm =
√

1+ 2 fc, (30)

which is exact in the case of Nm = 1.

Let us define the reduced frequency:

fr1 =
fr

f1a

. (31)

Plotting Fm as a function of fr1 (Fig. 16) shows

that all the curves reach their maximum values at

the same reduced frequency. Thus, we can conclude

from this observation that the maximum impact forces

are obtained when the system behaves like a linear

system oscillating at its first natural frequency. As

observed previously, the impact forces increases when

the damping ratio decreases (Fig. 17); moreover, for

lower values of ε the peaks due to second and third

linear natural modes can be observed.

The maximal displacement of the first body on the

first natural mode of the linear system is given by:

u1m =
1

2ε

√

f 2
1 − ε2

Φ1(1), (32)

where Φ1 is the shape of the first natural mode and

given by the eigenvectors of Kl.

Let us assume that the first natural mode is close

to a sinus distribution:

Φ1(i)≈ sin

(

π i

Nm

)

(33)
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Fig. 16. Maximal reduced impact force as function of fr1 for er = 0 and

various fc for Nm = 5.

Assuming that Nm is high enough one can make

the approximation:

Φ1(1)≈
π

Nm
. (34)

Thus we can finally obtain an approximation of

the maximal impact force:

Fm =
√

fcu1m, (35)

Fm =
π

2εNm

√

√

√

√

fc

1+ f c

Nm2

(

4.935− 2.935
Nm1.81

)

− ε2
, (36)

with an upper bound:

Fm <
π

2ε
√

4.935
. (37)

Table 3 shows that the upper bound gives a good

estimation of the maximal impact force but failes to

give a conservative value.

Table 3. Maximum Fm in the chaotic region for various damping

ε 0.1 0.2 0.3 0.5

Fm 7.02 3.88 2.65 1.86

π

2ε
√

4.935
7.07 3.54 2.35 1.41

8 Guillaume Ricciardi



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)1, 21-30

29Impact Forces Occurring in a Forced Damped Multi-Body System with Clearances

“paper_jome_final_6” — 2019/1/10 — 14:09 — page 9 — #9

Strojniški vestnik - Journal of Mechanical Engineering xx(20xx)x, XXX-XXX

0 21 30.5 1.5 2.5 3.5
0

2

4

6

1

3

5

7
�

Fig. 17. Maximal reduced impact force as function of fr1 at er = 0 for

various ε , and for Nm = 5 and various fc

6 COMPARISON WITH EXPERIMENT

The experiment described in [16] presents a row of

46 slender structures called fuel assemblies positioned

vertically and clamped at their foot on a shaking

table. The structures are likely to vibrate on their

first natural bending mode, the clearance between

structures is 3.5 mm, and a seismic spectrum of

about 10 m/s2 is applied. The impact forces are

measured; it has been shown that the maximal forces

are located at the extremities as in the present study.

Table 4 shows the dimensionless parameters of the

experiment. It can be observed that the maximal

reduced impact force encountered Fm = 0.52 is much

lower than the one estimated in the theoretical analysis

Fm = 7.02; thus, the simplified analysis seems to

give a conservative upper bound. Nevertheless, this

difference can be explained by the fact that each

body is not a one-degree-of-freedom system, and some

energy can be dissipated in higher modes, and the

excitation in the experiment is not harmonic; thus,

some transient effects are likely to occur.

Table 4. Experimental parameters

ε Nm fc er Fm

0.1 46 559 0.22 0.52

7 CONCLUSION

The numerical results showed three regions. In the

first one, there is no contact between the bodies.

The second one defined as the smooth region is

characterized by regular evolution with a concentration

of the impact forces at the boundaries. In the last one,

where the most important impact forces are met, the

system shows chaotic behaviours, and coincide with

the lower values of clearance. In the smooth region the

criterion is respected, but in the chaotic region, some

discrepancies are observed. Nevertheless, the criterion

gives a good estimation. The dimensionless analysis

showed that the maximal impact force is proportional

to the mass, the acceleration, the stiffness ratio and the

inverse of the damping ratio. Theoretical upper bounds

for the maximal forces are proposed and compared to

numerical and experimental results.

It would be interesting in further study to

evaluate the effect of non homogeneous clearances and

stiffness and nonlinear contact stiffness to be more

representative of real life systems. In further studies

a multi beam system will be studied and compared to

the present results.

8 NOMENCLATURE

ui displacement, [m]

ue ground displacement, [m]

udi relative displacement, [m]

M mass, [kg]

C damping, [kg.s−1]

K stiffness, [N.m−1]

Kc contact stiffness, [N.m−1]

t time, [s]

e clearance, [m]

Fri right contact force, [N]

Fli left contact force, [N]

Frri reduced right contact force,

Flri reduced left contact force,

uri reduced relative displacement,

f ground frequency, [Hz]

f0 natural frequency, [Hz]

a0 ground acceleration amplitude, [m.s−2]

fr reduced frequency,

fc stiffness ratio,

ε damping ratio,

tr reduced time,

er reduced clearance,

Nm number of bodies,

Fm maximal reduced impact force.

Impact Forces Occurring in a Forced Damped Multi-Body System with Clearances 9
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