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Optimisation of manufacturing processes is typically performed by utilising mathematical process 
models or designed experiments. However, such approaches could not be used in the case when explicit 
quality function is unknown and when actual experimentation would be expensive and time-consuming.  

The paper presents an approach to optimisation of manufacturing processes with multiple 
potentially correlated responses, using historical process data. The integrated approach is consisted from 
two methods: the first relays on Taguchi’s quality loss function and multivariate statistical methods, the 
second method is based on the first one and employs artificial neural networks and a genetic algorithm to 
ensure global optimal settings of a critical parameters found in a continual space of solutions.

The case study of a multi-response process with correlated responses was used to illustrate the 
effective application of the proposed approach, where historical data collected during normal production 
and stored in a control charts were used for process optimisation. 
© 2011 Journal of Mechanical Engineering. All rights reserved. 
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0 INTRODUCTION

Process optimisation is typically performed 
by analysing the process responses obtained from 
designed experiments, carried out on the actual 
manufacturing process. However, conducting 
experiments on the actual process tends to cause 
distruption in the plant and may be uneconomic. 
The possibility to use process historical data (i.e. 
from the control charts) has not been explored 
videly in the literature. There are few studies that 
used historical data for optimisation, but they 
discuss only single-response problems [1] and [2].

A customer usually considers several 
characteristics of product quality. In such cases, 
a single optimum setting of process parameters 
needs to be identified so that the specifications 
of all quality characteristics (responses) are met. 
Complexity of the problem increases when the 
responses are correlated.

Response surface methodology (RSM) 
is the most commonly used method for process 
optimisation by experimentation, proven to be 
effective in many applications. However, there 
are certain concerns regarding RSM application 
for multi-response optimisation: the RSM does 
not enable simultaneous optimisation of both 

mean and variance of the responses; a RSM 
model may not find the overall (global) best 
solution and might be trapped easily in a local 
minimum when a process is influenced by a large 
number of variables and is highly non-linear with 
multiple outputs. Taguchi’s experimental robust 
design has been proven effective in solving many 
optimisations for single-response processes. 
However, it has not proved functional for 
optimising the multi-response problem; the sole 
path was relying on engineers’ judgement. 

There are various methods for multi-
response optimisation for correlated responses 
based on the transformation of Taguchi’s quality 
loss function [3] or SN ratio [4] that employ 
principal component analysis (PCA) to uncorrelate 
responses. However, the mentioned approaches in 
PCA considers only components whose variance 
(eigenvalue) is greater than or equal to one, 
enclosing a larger portion of variance but not the 
total variance of responses. Wang and Tong [5] 
used PCA and grey relational analysis (GRA) to 
transform quality losses into a single measure, 
and Wu [6] proposed an approach based on the 
proportion of quality losses with respect to the 
known starting conditions. The soft-computing 
methods for multi-response process optimisation 
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are based on the application of artificial neural 
networks (ANNs) (i.e. [7]). Hsu [8] combined 
ANNs and PCA to uncorrelate the process model, 
but only components with eigenvalue greater 
or equal to one were considered. The above 
approaches consider only discrete parameter 
values used in the experiment. In addition, they 
could not solve multi-response problems where 
optimisation requires the implementation of 
expert knowledge into the formulae. A detailed 
discussion regarding the above and other related 
approaches for multi-response optimisation could 
be found in [9].

The GA-based approaches to multi-
response problems found in literature are 
designed to solve one particular problem, and 
they could not be applied to some other problem. 
Roy and Mehnen [10] used Pareto front genetic 
optimisation assuming that the analytical model of 
the process is known, which is not always the case 
in the practice. Drain [11] proposed methods that 
combine RSM and GA. Lau [12] used GA for the 
optimisation of moulding operations. Jeong [13] 
employed GA for shadow mask manufacturing. 
Hou’s method [14] based on RSM, ANN and GA 
presents an integrated system for wire bonding 
optimisation. Tong’s approach [15] is based on 
case-based reasoning, ANN and GA, designed to 
optimise transfer moulding in microelectronics.  

The paper presents two methods for 
optimisation of a process with multiple correlated 
responses using historical process data. The first 
method, based on Taguchi’s quality loss function 
and multivariate statistical methods, considers 
only discrete parameter values recorded in a 
control charts. Based on this statistical method, 
the second intelligent method was developed that 
uses ANN and GA to find optimal parameters 
solution in a continual multi-dimensional space, 
using historical data from a control charts. 

1 THE PROPOSED APPROACH

The proposed integrated approach to multi-
response process optimisation for correlated 
responses is based on Taguchi quality loss 
function, multivariate statistical methods and 
artificial intelligence techniques, as follows [16].

1.1 The Factor Effects Method

1.1.1 Taguchi’s Quality Loss Function

Quality loss function directly represents a 
financial measure of the customer dissatisfaction 
with a product’s performance as it deviates 
from a target value. Unlike the conventional 
weighting methods, the quality loss function 
adequately presents relative financial significance 
of responses, thus providing the right metric for 
multi-criteria decision making. In the proposed 
approach, Taguchi’s robust design was not applied 
directly, as not every response may have the same 
measurement unit and may not be of the same 
type in the SN ratio analysis. 

The average quality loss is QL = K·MSD, 
where QL is the existing average loss per unit, K 
is the coefficient, and MSD is the sample mean 
square deviation for n units (measurements) [17]: 
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where y is the measurable response; STB, NTB, 
LTB is smaller-the-better, nominal-the-best, 
larger-the-better type of response, respectively; y   
is the sample mean and s2 is the sample variance. 
The quality loss of the ith quality characteristic in 
the kth point QLik could be transformed into 
normalised value NQLi(k) (NQLi(k) [0;1] ∈ ):
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where i = 1, …, p is the number of quality 
characteristic, and k = 1, …, m is the number of 
control point in a historical data set.

1.1.2 Principal Component Analysis (PCA)

PCA is considered as an effective means 
of transforming correlated responses into 
uncorrelated linear combinations (principal 
components). The sum of variances of the 
principal components (eigenvalues) is equal to the 
sum of variances of the original responses. 
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In the presented approach, PCA is 
performed on NQL data resulting in a set of 
uncorrelated components. In contrast to the usual 
practice [3] and [4] where only components 
with eigenvalue greater than or equal to one are 
considered, here principal component scores 
include all components, thus including the total 
variance of the original data. If the component of 
eigenvector of the first principal component PC1 
is denoted as I1i, (i = 1, …, p), the multi-response 
performance statistics corresponding to PC1 for 
NQL can be expressed as: 

 Y k I NQL ki i
i

p

1 1(   (  ) )= ⋅
=
∑
1

. (3)

The larger the Yi(k) value, the better is the 
performance of the product/process.

1.1.3 Grey Relational Analysis (GRA)

GRA provides an effective means of 
dealing with one event that involves multiple 
decisions and deals with poor, incomplete and 
uncertain data. 

In the presented approach, GRA is 
performed on the absolute value of principal 
component scores Yi(k). Linear preprocessing 
method is employed to transform the principal 
component scores |Yi(k)| into a set of standardised 
multi-response performance statistics Zi(k): 
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The grey relational coefficient ξi(k) is:
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where Z0(i) are ideal sequences with value of 1, 
and ς is the distinguishing coefficient. The Grey 
Relational Grade γk is calculated by a weighted 
mean, where the weights are the percentage of 
variance of the NQLs in PCA: 

 γ ω ξk i i
i

p

k=
=
∑ ( )
1

, (6)

where ωi is the percentage of variance of the ith 
component in the PCA.

In the proposed approach, the Grey 
Relational Grade γk is adopted as the synthetic 
performance measure for multi-response process. 
The application of GRA resulted in a single 
multi-response performance measure that takes 
into account all, possibly correlated, responses. 
The weights used for determining synthetic 
performance measure are based on the total 
variance of the original responses, which results in 
improved objectivity of the analysis.

Knowing the γk values and factor 
(parameter) values for all control points in a 
historical data set (k = 1, …, m), it is possible to 
calculate the effects of factors on the synthetic 
performance measure for all parameter values 
used in the data set. The optimal factor conditions 
can be obtained by selecting the maximum of 
factor effects on multi-response performance 
measure γk. Hereafter, the above procedure is 
referred to as the factor effects approach [9] 
and [16]. The shortcoming of the factor effects 
approach is that it considers only discrete values 
of factors recorded in a historical data set. 

 
1.2 The ANN&GA-Based Method

1.2.1 Artificial Neural Networks (ANNs)

ANN is a powerful technique of generating 
complex multi-response and linear and non-linear 
process models without referring to a particular 
mathematical model, proven as effective in 
various applications [1], [7] and [8].

In the proposed approach, multilayer 
feed forward ANNs were developed to model 
the relationship between critical parameters and 
the synthetic performance measure (γk). For the 
training of ANNs, the input set contains values of 
parameters from a historical data set; output set 
accommodates synthetic performance measure γk. 
The error back-propagation (BP) learning method, 
improved by Levenberg-Marquardt algorithm, 
was adopted. In order to reduce likelihood that 
the network would find weights that are a local 
but not global minimum, the adopted values for 
training parameters are: learning rate = 0.01 and 
momentum factor = 0.9. Transfer functions for 
hidden neurones are tangent sigmoid, while for 
the output neurones they are linear functions. It 
was proven that such a choice of transfer functions 
makes ANN capable of performing successful 
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approximation of various complex functions. BP 
learning employs a gradient descent algorithm to 
minimise the mean square error (MSE) between 
the original data and the actual output of ANN. 
Since process modelling is the most sensitive 
part of the proposed method, various ANNs with 
different topology (number of hidden neurons) 
were developed in Matlab, until MSE of 10-3 is 
achieved. The best ANN was chosen according 
to the minimum MSE criterion. In addition, the 
coefficient of the correlation (R) between original 
data and the actual network output (R) was 
considered [16].

1.2.2 Genetic Algorithm

In the presented approach for multi-
response problems, GA was chosen for 
optimisation because it has been proven to be 
a potent multiple-directional heuristic search 
method for optimising highly nonlinear, 
nonconvex and complex functions and it is less 
likely to get trapped at a local optimum than 
traditional gradient-based search methods [10] to 
15] and [18]. 

The selected neural model presents an 
objective (fitness) function for GA, which, by 
maximising the objective function finds the 
optimal parameters setting among all possible 
solutions in continual multi-dimensional space. 
In order to obtain optimal performance of GA, a 
large number of GA’s parameters must be tuned. 
According to the results of previous analysis 
[18], the choice of the basic GA’s operations 
(selection and crossover functions) depends on 
the application. In order to accept the specifics of 
each particular problem, nine GAs are developed 
in Matlab combining the most commonly used 
types of selection and crossover function. The rest 
of GA’s parameters are: natural presentation of 
chromosomes, population size equals five times 
dimensionality (the number of critical parameters), 
scaling function ‘rank’, crossover fraction = 0.9, 
mutation ‘adaptive feasible’. Since the parameters 
setting obtained by the factor effects method 
presents a potentially good solution, it serves as 
a basis of forming initial population in GAs. This 
feature of the suggested model is of essential 
importance, because it allows GAs to converge 
to the global optimum faster and enhance its 
capability to find the actual global solution in the 

given number of generations. Nine GAs were run 
for 2000 repetitions (generations). The best GA is 
chosen according to the best fitness value (on-line 
performance criteria), presented by the synthetic 
performance measure (γ). The most desirable 
solution with the highest fitness function value (γ) 
presents the final solution. An additional criterion 
is the best off-line performance criteria (the mean 
of the best fitness values through the whole run). 
The solution of the best GA is adopted as the final 
solution of the multi-response problem [16]. 

GA considers all continual parameter 
values between corresponding bounds, in contrast 
to traditional experimentation methods that 
consider only discrete values which were used 
in the experiment. Relaying on this and setting 
GA’s parameters as described above, the proposed 
approach ensures optimal performance of GA to 
converge to the global rather than local optimum.

2 THE CASE STUDY

The goal of the presented study was to 
select the optimal settings of critical-to-quality 
(CTQ) parameters of automatic enamelling 
process in a cookware production. Conducting 
designed experiments in current circumstances 
was found inappropriate, since it would cause 
disruption in the production process. Hence, it 
was decided to optimise the process using the 
historical data from the process control charts.

2.1 Quality Characteristics (Responses) and 
Control Parameters (Factors) 

The quality of the considered automatic 
enamelling process is characterised by the base 
enamel thickness and the cover enamel thickness. 

The first quality characteristic considered 
a response in the study is base enamel thickness.  
The X R−  control chart for base enamel 
thickness has been formed within statistical 
process control (SPC), containing base enamel 
thickness mean (t1) [μm] and standard deviation 
and the values of the following CTQ parameters 
for base enamelling:
• base enamel parameters: deposit weight 

(DW1) [gram/cm3] and specific weight (SW1) 
[gram/cm3]; and
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• base enamelling process parameter: automat 
speed (AS1) [parts/min].

Since it is not possible to measure cover 
enamelling thickness directly, it is presented over 
the total enamel thickness. Hence, the second 
quality characteristic considered a response is the 
total enamel thickness. The corresponding X R−   
control chart for cover enamel thickness has been 
set up that comprehends cover enamel thickness 
mean (t2) [μm] and standard deviation and the 
values of the following parameters found as CTQ 
for the cover enamelling:
• cover enamel parameters: deposit weight 

(DW2) [gram/cm3] and specific weight (SW2) 
[gram/cm3]; and

• cover enamelling process parameter: automat 
speed (AS2) [parts/min].

The part of a two-week sample data 
from both control charts (historical data set) is 
presented in Table 1. The two responses are in 
direct correlation since the total enamel thickness 
presents a sum of base and cover enamel thickness. 
Both characteristics are of a continual numerical 
type. According to SN ratio they belong to NTB 
type because the goal of the study is to achieve 
the nominal value specified by customer for both 
characteristics. Specification limits, defined by 
the customer, for the base enamel thickness are 
80 to 120 μm and nominal value is 100 μm. For 
the total enamel thickness, specification limits are 
180 to 300 μm and nominal required value is 240 

μm. The parameters DW1, SW1, DW2 and SW2 
are continual numerical type of variables, and 
parameters AS1 and AS2 are discrete numerical. 

2.2 Implementation of the Factor Effects 
Method

MSD values were computed according 
to Eq. (1). Normalisation of QL values was 
performed by using  Eq. (2), with respect to the 
maximal QL value in k points of a data set and the 
ideal case where QL = 0. PCA was performed on 
NQL values. The QLs and principal component 
scores Yi(k) are listed in Table 1. Tables 2 list 
the eigenvalues and proportions of NQL of each 
response for the principal components. Both 
principal components were considered in this 
method in contrast to the common approach where 
only PC1 would be taken into account (eigenvalue 
greater than one), enclosing only 51.6% of 
the total variance of responses. According to 
the eigenvectors from Table 2, the principal 
component scores were computed as follows [16]:
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The principal component scores Yi(k) were 
transformed into a set of comparable sequences 
Zi(k) by using (4). Next, the Grey Relational 

Table 1. A part of critical parameters and response values from a historical data, corresponding quality 
losses, principal component scores and data of grey relational analysis

Con-
trol 

point 
no.

Critical parameters Response 
values Quality losses

Yi(k) 
i = 1, 2; 

k = 1, ..., 55

ξi(k) 
i = 1, 2; 

k = 1, ..., 55
γk 

k = 1, ..., 55
DW1 SW1 AS1 DW2 SW2 AS2 t1 t2 QLt1 QLt2 Y1(k) Y2(k) ξ 1 ξ 2

1 1.69 10 8 1.72 11 7 103.5 232.0 33.36 77.17 0.3438 0.5677 0.4618 0.5213 0.4906
2 1.69 10 8 1.73 12 7 104.7 232.2 42.94 76.19 0.4762 0.6972 0.3826 0.4700 0.4249
3 1.69 10 8 1.71 11 7.5 103.1 230.1 26.48 110.52 0.2016 0.5222 0.5941 0.5421 0.5689
4 1.68 10 8 1.71 11 7.5 103.2 231.5 26.44 86.20 0.2362 0.4863 0.5553 0.5597 0.5575
5 1.69 10 6 1.72 11 7 102.9 231.8 25.17 82.47 0.2243 0.4636 0.5681 0.5715 0.5697
6 1.70 10 6 1.71 11 8 102.3 228.4 17.19 148.03 0.0202 0.4496 0.9359 0.5789 0.7631
7 1.70 10 7 1.72 11 7 103.3 231.9 29.61 74.97 0.2958 0.5132 0.4994 0.5464 0.5221
… … … … … … … … … … … … … … … …
53 1.68 9 8 1.73 13 7 105.2 231.6 51.74 80.60 0.5901 0.8239 0.3333 0.4287 0.3795
54 1.70 10 6 1.71 11 8 101.9 228.3 17.23 153.29 0.0130 0.4577 0.9577 0.5746 0.7723
55 1.68 9 8 1.73 12 7 105.0 230.2 47.29 112.65 0.4828 0.8096 0.3793 0.4330 0.4053
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Coefficient ξi(k) was calculated by (5) and the 
Grey Relational Grade γk by using (6), where the 
weights (proportions) ωi are listed in Table 2. The 
results of GRA are listed in Table 1.

Table 2. Results of PCA 

Principal components PC1 PC2
Eigenvalues 1.0319 0.9681
Proportions 0.516 0.484

Eigenvectors NQL t1 0.707 0.707
NQL t2 -0.707 0.707

From γk and the factor values in Table 1, 
the factor effects can be tabulated. The optimal 
setting of each factor is the one that yields the 
highest multi-response performance measure, 
hence the optimal conditions obtained from the 
factor effects method was: DW1 = 1.70; SW1 = 11; 
AS1 = 6; DW2 = 1.71; SW2 = 11; AS2 = 8 [16].

Since the factor effects method discusses 
only discrete parameter values used in a historical 
data set, the above parameters setting was adopted 
as a basis to form the initial population in GA, 
to find the optimal solution in continual multi-
dimensional space.

2.3 Implementation of the ANN&GA-Based 
Method

The set of BP ANNs were trained to model 
the relationship between synthetic performance 
measure γ and critical parameters. Each of the 
developed networks has six neurons in the input 
layer corresponding to six parameters, and one 
neuron in the output layer corresponding to a 
single synthetic multi-response performance 
measure. The number of neurons in the hidden 
layer varies from 1 to 9. The results of training of 
ANNs are presented in Table 3. The network with 
topology 6-5-1 showed the least error (MSE = 
0.000588) and therefore it was selected to present 
the process model (Fig. 1) [16]. 

Fig.1. Topology of the selected ANN model

The selected network present an objective 
functions for GA. Nine GAs were developed; 
the initial population was seeded close to the set 
suggested by the factor effects method; population 
size was 30. The results of a tested GAs are 
given in Table 4. All the tested GAs showed the 
same result in terms of the best fitness value (γ = 
0.88120) and the optimal parameters setting: DW1 
= 1.70; SW1 = 11; AS1 = 5; DW2 = 1.71; SW2 = 
11; AS2 = 9. This set is adopted as a final solution 
of the observed problem [16].

The results of different GAs show 
robustness with respect to GA’s own settings. 
Regarding the additional criteria, it could be seen 
that algorithms GA3, GA6 and GA9 that use 
‘tournament‘ selection showed the lowest off-
line performance. Since it was proven in previous 
studies that the loss of diversity increases with 
the increase of tournament size, and, from the 
other side, favourable selection intensity also 
increases with the increase of tournament size, 
in the observed study, it was decided to use the 
tournament size of 4. Almost identical results were 
obtained with the tournament size 2; however, 
tournament size 8 showed significantly lower 
off-line performance. One of the characteristics 
of a ‘tournament‘ selection is high variance 
in the distribution; ‘stochastic uniform‘ and 
‘roulette‘ selection minimises this mean variance. 
These observations might be related to low off-
line performance of GAs that use ‘tournament‘ 
selection in this study. However, interpretation of 
these results may be difficult as it depends on the 
optimisation problem.

Initial population in GA was formed in the 
proximity of the set suggested by the factor effects 
method. All GAs converged to the optimal solution 
in the first generation, which is a consequence 
of a good-seeded initial population. If the initial 
population was not set properly, the GA would 
need more generations to find the actual optimal 
solution.

2.4 Discussion

The analysis of the implementation 
of the intelligent method was performed by a 
comparison to the factor effects application. Since 
the actual experiment was not conducted in the 
study, it was not possible to compare the results 
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to some experimentation analysis method, such 
as RSM. Table 5 provides a comparison of the 
synthetic multi-response performance measure γ 
and optimal parameters setting obtained from two 
methods of the analysis. 

It could be seen that regarding the synthetic 
performance measure the intelligent method 
resulted in a better solution than the factor effects 
due to search over continual space within the 
specified bounds for parameters. The synthetic 
performance measure achieved by using optimal 
parameters setting obtained by the presented 
intelligent integrated approach (γ = 0.8211) is 
satisfactory, considering the fact that the maximum 
theoretical γ value is 1 ( γ k   ∈ [ ; ]0 1 ) [16].

3 CONCLUSION

The paper presented two methods of the 
multi-response process optimisation for correlated 
responses, which employ historical data. Since 
the factor effects method could consider only 

factor values used in a historical set, based on it 
the intelligent approach was developed to perform 
search in continual space of parameter solutions.

The major advantages of the presented 
factor effects method are [9], [16] and [19]:
• By using Taguchi’s SN ratio [20] and quality 

loss, relative significances of responses are 
adequately represented and the response mean 
and variation are assessed simultaneously. 

• Multivariate statistical methods PCA and 
GRA are employed to uncorrelate and 
synthesise responses, ensuring that the 
weights of responses in synthetic performance 
measure are based on the total variance of 
the original data, which results in improved 
objectivity of the analysis.

In addition, the advantages of the 
ANN&GA-based method are [16] and [19]:
• The GA’s capacity of performing global 

search among all solutions in continual multi-
dimensional space ensures convergence to the 
global optimal parameter settings.

Table 3. Results of training of ANNs (MSE and R values for ANNs with different topology)

Topology  
of ANN 6-2-1 6-3-1 6-4-1 6-5-1 6-6-1 6-7-1 6-8-1 6-9-1

MSE 0.000882 0.0007232 0.000693 0.000588 0.000641 0.000715 0.000722 0.000732
R 0.9004 0.91028 0.93602 0.90797 0.91372 0.89458 0.91889 0.9104

Table 4. GAs settings and results 
GA GA 1 GA 2 GA 3 GA 4 GA 5 GA 6 GA 7 GA 8 GA 9

Selection function Stochastic 
uniform

Roulette 
wheel

Tourna-
ment

Stochastic 
uniform

Roulette 
wheel

Tourna-
ment

Stochastic 
uniform

Roulette 
wheel

Tourna-
ment

Crossover function Single point Two point Arithmetic
Fitness function γ 0.82114 0.82114 0.82114 0.82114 0.82114 0.82114 0.82114 0.82114 0.82114

Off-line performance 0.82114 0.82114 0.55 0.82114 0.82114 0.56 0.82114 0.82114 0.59

Optimal 
param-

eters 
setting

DW1 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
SW1 11 11 11 11 11 11 11 11 11
AS1 5 5 5 5 5 5 5 5 5

DW2 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71
SW2 11 11 11 11 11 11 11 11 11
AS2 9 9 9 9 9 9 9 9 9

Table 5. Comparative analysis of optimal parameter settings obtained by using two different methods

Method The factor effects method The ANN&GA-based method
Optimal parameters setting [1.70; 11; 6; 1.71; 11; 8 ] [1.70; 11; 5; 1.71; 11; 9 ]

Synthetic multi-response  
performance measure γ 0.7647 0.8211
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• The initial population in GA is formed in the 
proximity of the potentially good solution 
(the parameter settings obtained by the 
factor effects method), which advances the 
convergence to the global solution, meaning 
that the probability of finding the actual global 
parameters solution in the given number of 
generation is significantly improved. If the 
initial population was not defined at such way 
(e.g. if the initial population was randomly 
generated), in general, GA might not be able 
to find the actual global solution in a limited 
number of iterations.

• The proposed method does not depend on 
the type of the relations between responses 
and critical parameters, type and number of 
process parameters and responses, existence 
of correlations between responses or process 
parameters, or their interrelations.

The case study illustrated that the 
suggested approach can be effectively used to 
identify the optimal settings of critical parameters 
based on historical data, without any disruption 
caused by experimentation. The potential utility 
of the proposed integrated approach for process 
optimisation using historical data has increased 
because many companies today collect and 
store large quantities of a process data. On the 
other hand, the most significant limitation of 
the proposed approach is related to process data 
availability. In order to use this approach as an 
alterative to actual experimentation, it is necessary 
to monitor all parameters that are potentially 
critical for the observed responses and involve 
these data into corresponding control charts, prior 
to implementation of the proposed integrated 
approach.
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