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0  INTRODUCTION

Image analysis plays a vital role in modern computer-
aided systems. Images can be obtained from 
different modalities, such as cone beam computed 
tomography (CBCT), magnetic resonance imaging 
(MRI), positron emission tomography (PET), single-
photon emission computed tomography (SPECT), 
ultrasound, etc. These can provide three-dimensional 
(3D) image datasets that contain accurate information 
for the generation of surface 3D models, even when 
compared to optical 3D digitizing methods [1]. 
Surface 3D models are a very useful resource for 
accurate diagnosis, but also for further action such as 
preparation of surgeries, designing different types of 
implants, etc. The most critical step for the generation 
of a surface 3D model is the accurate segmentation for 
extracting objects of interest from the surroundings, 
thus enabling 3D surface reconstruction [2] and [3].

Information acquired from medical images has a 
significant impact on proper diagnosis and treatment. 
For this purpose, the segmentation of medical images 
is performed, which can be either manual or automatic 
[4]. Nowadays, due to the large amount of data obtained 

using medical imaging systems, methods used for 
semi-automatic or fully automatic segmentation are 
more favourable but still refer to manual results for 
verification and training purposes [5]. When a 2D 
image is acquired, some information may be lost, and 
this information loss degrades the image quality, and 
more importantly affects the accuracy of segmentation 
and geometry reconstruction, eventually endangering 
proper diagnosis. Therefore, accurate reconstruction of 
geometry is required and depends on several factors, 
including spatial resolution, which is determined by 
the layer thickness [6], and slice thickness, which 
affects loss of resolution quality on the reconstructed 
data [7]. Without some form of image enhancement, 
segmentation of medical images becomes very 
difficult and sometimes does not provide accurate 
results. This occurs as a result of the vague structures 
in poorly displayed medical images, or with the 
presence of homogenous surrounding structures. Thus, 
to improve the segmentation accuracy, it is necessary 
to preprocess image and to enhance its quality. With 
the breakthrough of additive manufacturing (AM) 
technologies in the medical field, it enabled physical 
fabrication of anatomical structures, which strongly 
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Highlights
• A hybrid method is proposed for accurate segmentation of CT/MRI data.
• A new seed selection approach for the region growing method is developed.
• Experimental results show good accuracy and robustness.
• The segmentation accuracy has increased, which was confirmed with various performance measures.



Strojniški vestnik - Journal of Mechanical Engineering 65(2019)9, 482-494

483Fuzzy Hybrid Method for the Reconstruction of 3D Models Based on CT/MRI Data 

depends on the input data. The development of 
medical imaging and especially imaging software 
has made it possible to create various kinds of 3D 
models from medical images [8]. The entire process 
can, into three steps, which are data acquisition, 
image processing, and model manufacturing [9]. This 
integration propelled the barriers and possibilities for 
applications of medical implants used for different 
types of trauma, disease, bone damage and defects 
which need to be reconstructed [10]. Therefore, 
adequate image segmentation and reconstruction of 
3D models is vital for their applications in this field. 

There are several methods used for image 
enhancement, and one of the most commonly 
used for contrast enhancement of medical images 
is histogram equalization [11]. Besides this, other 
improved methods for histogram equalization such 
as Type II fuzzy set theory [12] or bi-histogram 
equalization with a plateau level [13] are presented, 
thus improving quality and reducing the time required 
for image enhancement. However, with the further 
development of computer technologies, intelligent 
systems employing genetic algorithms, fuzzy logic, 
machine learning, neural networks, and swarm 
intelligence are finding their place and are applied in 
different scenarios and in different fields [14] to [17]. 
Many researchers have combined different methods 
to maximize their advantages and to solve current 
drawbacks regarding segmentation of CT images, 
even going as far as implementing 4D architecture for 
motion estimation [18], thus improving performance. 
A combination of different methods can improve 
data extraction from CT images, as seen in [19] by 
implementing a deep learning model or by combining 
spatial fuzzy clustering and level-set methods [20]. For 
the segmentation of MRI images, the authors in [21] 
proposed a new method for joint bias field estimation 
and segmentation of MRI images.

Regarding common drawbacks of thresholding 
methods where images are corrupted with artefacts 
and noise, the authors in [22] proposed a new multi-
region thresholding methodology by using fuzzy sets. 
Concerning the various implementations of the fuzzy 
C-means clustering (FCM) method, many researchers 
have combined this method with other methods 
such as region-based active contour [23], the level 
set method [24], self-organizing maps [25], region 
growing and particle swarm optimization method [26]. 
The main goal of their implementation was to improve 
segmentation accuracy in each of these fields. 

In contrast to previous investigations, the present 
paper proposes a hybrid method that combines fuzzy 
C-means clustering and automated region growing 

methods to enhance and segment medical 3D image 
datasets with higher accuracy. The novelty in this 
paper is in the newly developed method for automatic 
initial seed selection for region growing, which 
incorporates the value of standard deviation (STD) 
as a measure for seed selection. This, in combination 
with image enhancement based on FCM, completes 
the entire process for the segmentation of 3D image 
datasets. The presented method focuses on the 
enhancement of poorly visible structures present 
on CBCT and MRI datasets, which will improve 
segmentation and surface extraction. Two CBCT 3D 
image datasets and two MRI 3D image datasets were 
used for testing purposes and analysis of the proposed 
method.

1  METHODS

The approach is based on incorporating two methods 
that are used in image processing: FCM and the region-
growing (RG) method. Their integration leads to the 
segmentation that consists of two stages. In the first 
stage, FCM is used as a tool for the enhancement of 
input 3D image datasets by making the borders of the 
vague areas more pronounced. This stage is especially 
crucial for corrupted CBCT images in which the vague 
areas are common. In the second stage, we introduce 
the automatic RG method based on a new principle 
of finding initial seed using calculated STD of pixel 
intensity inside regions that are present on images. 
The flowchart is illustrated in Fig. 1.

Besides the previously mentioned two stages, 
the flowchart contains an optional step that refers to 
the definition of region of interest (ROI). Namely, to 
accelerate the segmentation process, in some cases it 
is convenient to localize the area of interest for image 
segmentation on large 3D image datasets. For these 
purposes, a user can opt to utilize a specially designed 
tool for manually defining ROI and for localizing the 
area on image for segmentation.

1.1  Image Enhancement Based on Fuzzy Clustering

Fuzzy C-means is one of the most popular fuzzy 
clustering techniques because it is easy to implement, 
as well as being efficient and straightforward. FCM 
clustering generates fuzzy partitions for any set of 
numerical data, allowing one piece of data to belong 
to two or more clusters simultaneously [27].

FCM is used as a tool for image enhancement. To 
achieve computational efficiency, and to reduce time 
required for segmentation of large 3D image datasets, 
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we use the histogram of pixel intensities during the 
clustering process instead of the raw image data. 

The working principle of the proposed FCM 
method for image enhancement consists of the 
following steps:

Step 1: Read the input set of images named im 
and define input parameters: c (no. of clusters) and q 
(fuzzification index).

Step 2: Calculate the maximum (Imax) and 
minimum intensity (Imin) of each image in image set 
im and arrange the overall intensity in ascending order 
as shown in Eq. (1):

 I I I= →( )min max
.  (1)

Step 3: Find the size of I and assign it to a 
variable named si. Calculate the histogram (H) of the 
image set im.

Step 4: Generate the initial cluster segmentation 
size or class gap (dl) using Eq. (2):

 dl
I I

c
=

−( )max min
.  (2)

Step 5: Generate the initial cluster’s centroids  
C(i) using Eq. (3). These centroids are equidistantly 
distributed along intensities present in the image:

 C i I dl dl
j

i
( )

min
,= + +

=
∑

2
1

 (3)

where Eq. (3) provides centroid points with: 
Start>>>>Class_gap>>>>End.

Step 6: Set the initial error dC = infinity.
Step 7: Repeat the Steps (8) to Step (14) until dC 

< 0.000001.
Step 8: Set initial centroid matrix C0=[C(i)].
Step 9: Calculate the distance D between each 

centroid and each pixel’s intensity of image using Eqs. 
(4) and (5):

 D j i I j C i( , ) ( ) ( ) ,= −  (4)

 D j i D j i q
( , ) ( , )

/( )
,= −2 1  (5)

here i = 1, 2,…, c, and j = 1, 2, …, si.
Step 10: Calculate the fuzzy membership of each 

pixel’s intensity to each cluster using Eq. (6):
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Step 11: Calculate the membership-histogram 
matrix UH using Eq. (7):

 UH j i U j i H jq
( , ) ( , ) ( ).= ⋅  (7)

Step 12: Calculate new centroid location C of 
each cluster using Eq. (8):
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Fig. 1  Flowchart of the proposed methodology
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here i = 1, 2, …, c.
Step 13: Calculate the maximum difference error 

(dC) between new and old clusters using Eq. (9). 

 dC C C= −( )max ,0  (9)

here i = 1, 2,…, c.
Step 14: Go to Step (7).

Several stopping rules can be used. One is to 
terminate the algorithm when the relative change 
in the centroid values becomes small, or when the 
objective function can no longer be minimized. After 
that, defuzzification is performed by assigning the 
pixels to the clusters, for which those pixels have the 
maximum membership. A membership intensity map 
for each cluster is generated, and the most suitable 
cluster is selected for the next stage of the process: 
RG method implementation. The selection is carried 
out manually by a user who has to consider that the 
selected class membership should have the best 
contrast separation between the borders of the object 
and the background on the image. This will contribute 
to better segmentation using the RG method later.

Fig. 2 shows an example of the result of image 
enhancement. The input parameters for this example 
were number of clusters c = 3 and fuzzification index 
q = 6. From this example, cluster no. 3 was selected, as 
it represents the best contrast separation between the 
borders of the object and the background on the image 
(decision of operator based on visual impression).

Fig. 2.  Manual selection of membership intensity map  
for three clusters (c = 3); in this case the best contrast  

separation is shown in cluster no. 3

After images have been enhanced using FCM, 
their pixels’ intensities vary between 0 and 1, and 
need to be normalized in the range [0, 255]. The 
median filtering was also performed on the enhanced 
images using the default 3-by-3 neighbourhood, i.e., 
each output pixel obtains the median value of its 3-by-
3 neighbourhood. This nonlinear filtering technique 
was used to reduce any noise present on images; it 
is a widely used technique that is very effective in 
removing noise while preserving edges [28].

To verify the performances of the proposed 
enhancement of images using the FCM method, we 
have selected pixels along a 2D profile line that is 
arbitrarily drawn at the same location over an image 
before (Fig. 3a) and after enhancement (Fig. 3b). 
Intensities of pixels along these lines are compared to 
determine the differences between two images. The 
comparison from Fig. 3c shows that the enhancement 
procedure leads to the: 1) normalization of pixel 
intensities, 2) higher values of pixel intensities in the 
transition between low and high-intensity areas. The 
latter is a critical property since it will contribute to 
easier and better segmentation using the RG method 
that will follow.

Fig. 3.  2D profile line measurement on a) original image, b) 
enhanced image, c) graph showing the intensity of pixels on 

original image (green line) and after the improvement using FCM 
(blue line)

1.2  Region Growing

Region growing (RG) is a method that has been 
widely used for image segmentation [29]. RG is a 
segmentation method where each region starts as a 
single seed element. At each iteration, the surrounding 
pixels are taken into account in order to determine 
whether the region should be expanded to include 
them or not, and this is controlled by a tolerance 
parameter t [29]. Various metrics can be used as a basis 
for region growing, and we have opted to employ 
pixel’s intensity. The value of tolerance parameter t 
depends on the total range of pixels’ intensity on an 
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image, it varies with each input image or 3D image 
dataset, and it is left for the user to define. However, 
the selection of initial seed for the segmentation also 
has a deep influence on the end results. How to assign 
initial seeds represents a major issue when it comes 
to application of the RG method [30]. To improve the 
accuracy of the RG method, we propose a method 
for seed selection that is based on the STD of pixels’ 
intensities in the regions. Specifically, the seed is 
selected from the region with the highest standard 
deviation of pixels’ intensities.

1.2.1  Initial Segmentation and Standard Deviation of 
Pixels’ Intensities

Seed selection procedure starts from initial, coarse, 
segmentation of the enhanced image. Initially 
segmented regions in the enhanced image are 
acquired via global image thresholding, which was 
performed using Otsu’s method [31] in which a global 
threshold T was computed from image and in which 
Otsu’s method chooses a threshold that minimizes 
the intraclass variance of the thresholded black and 

white pixels. As a result, an initially binarized image 
is obtained which contains segmented regions. These 
regions are then applied as a mask to the enhanced 
image, and the STD of pixels’ intensities is calculated 
for each of them. In the subsequent steps, the seed will 
be selected from the region with the highest value of 
STD. This procedure is repetitive, and the initial seed 
is defined for each image separately.

The rationale behind this kind of selection of 
region where the seed will be placed is as follows. 
A large scattering of pixel intensities is typically 
encountered in the objects that need to be extracted 
from image, while the scattering of pixel intensities in 
surrounding tissue (which is, as a rule, homogeneous) 
is smaller. Since all pixels inside a region have 
different intensity values, the larger the deviations in 
pixel intensities are, the STD value will be larger.

For a random variable vector A (in this case pixel 
intensity vector) made up of N scalar observations, the 
standard deviation is defined according to Eq. (10):

 σ µ=
−

−∑
=

1

1

2

1N Aii

N
( ) ,  (10)

Fig. 4  The principle of proposed RG method for image no. 13 from CBCT 1, CBCT 2, MRI 1 and MRI 2 3D image dataset showing  
a) initial segmentation, b) location of all regions on an image, c) selected region with its initial seed for RG method,  

d) segmented image using proposed RG method outlined in red line
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where μ is the average value of vector A, as shown in 
Eq. (11):

 µ = ∑
=

1

1N Aii

N
.  (11)

The proposed approach for coarse placement of 
seed has positive effect on the subsequent selection 
of initial seed and reduces the possibility for its mis-
selection. Specifically, using the proposed procedure, 
the size of region does not affect the result. In 
addition, it is worth noting that regions within images 
that have been enhanced using FCM will have a larger 
value of STD due to scaled pixels’ intensities inside 
them; this will be helpful for better selection of initial 
seed because values of STD inside those regions will 
be more distinct. Following the definition of the initial 
seed for each image, the tolerance parameter t which 
will enable segmentation using RG method must be 
defined.

The results of the application of the proposed 
procedure for region selection and initial seed 
extraction are presented using relevant examples in 
Fig. 4. The plots of STD of pixel intensities in initially 
segmented regions, using image no. 13 as an example 
from all four image datasets, are presented in Fig. 5.

Fig. 5. STD plot of regions in image no. 13 from all image datasets 
(region with highest value of STD is marked red): a) CBCT 1 dataset 
(region no. 13), b) CBCT 2 dataset (region no. 7), c) MRI 1 dataset 

(region no.2), d) MRI 2 dataset (region no. 9)

Since the FCM method enhances the boundaries 
of objects very well, the automated RG method can 
successfully segment the objects of interest from the 
enhanced images in order to obtain more accurate 
binary 2D images needed for 3D reconstruction. The 

results of the real-world image segmentation carried 
out by RG based on pixel intensities are presented 
in Fig. 4d. As a final step after the images have been 
segmented, some minor postprocessing is required 
in order to remove the small pixels surrounding 
the segmented object of interest with the use of 
morphological operations (dilation and erosion).

1.2.2  Seed Selection

When the region with the highest STD has been 
determined, it would be convenient to select its centre 
as the initial seed for the RG method. However, since 
regions can vary from simple shape to a very complex 
and irregular shape, the centre can be placed outside 
the region. To assure that the initial seed remains 
inside the region with the highest STD, we have 
developed a new method.

In this method, the basic principle is the 
skeletonization or thinning [32] of the region with 
the highest STD. As a result, the thinned skeleton (or 
lines) of the region is generated; it consists of many 
consecutive points with their (X,Y) coordinates. 
By extracting the middle pair of coordinates, the 
coordinates for the initial seed are determined. In this 
way, it is guaranteed that the selected seed remains 
inside the defined region with the maximum STD, 
which allows a proper segmentation using the RG 
method. 

Fig. 6.  Proposed method on seed selection showing  
a) original image, b) skeletonization of regions using the proposed 

approach for seed selection, c) locations of seeds of all regions 
present on image shown in red (centre of mass-based)  

and blue (proposed approach)

Fig. 6 shows the effect of the proposed method 
on seed selection using the proposed approach. The 
image shown in Fig. 6a is an artificially made image, 
and the results of skeletonization (or thinning) process 
of regions present in this image are given in Fig. 
6b. Fig. 6c shows the initial seed selected using the 
proposed approach (marked with blue), versus the 
seed selected using method (marked with red) which 
calculates the seed position based on the centre of 
mass of the region.
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From Fig. 6c it can be seen that the red shows 
incorrectly defined seeds that are outside of the 
regions. In some specific applications, centre of mass-
based seed selection presents an acceptable solution 
but regarding more complex and irregular shapes, 
it will not provide acceptable results. When the 
proposed skeletonization based approach is employed, 
the complexity of shapes does not represent an issue 
(shown in blue), which additionally contributes to 
the overall accuracy and stability of the presented 
approach.

2  EXPERIMENTAL

Performance evaluation of the proposed method was 
carried on two CBCT 3D image datasets and two MRI 
3D image datasets. Datasets used in this study were 
acquired anonymously, where all patient information 
was erased. The CBCT datasets are collected from the 
Department of Dentistry, Medical Faculty, University 
of Novi Sad, using a SCANORA™ 3D medical 
imaging device from Soredex, while MRI datasets 
were collected from the Department of Radiology, 
Medical Faculty, University of Novi Sad, using a 
Discovery™ MR750 medical imaging system from 
GE Healthcare. Acquisition parameters are shown in 
Table 1. 

Table 1.  Acquisition parameters used for the presented case 
studies on CBCT and MRI imaging scanners

SCANORA™ 3D
CBCT scanner

Discovery™ MR750
MRI scanner

X-ray energy [kV] 89 /
Current [mA] 8 /
Voxel size [mm] 0.133 1.2
Image resolution [pixel] 300×300 512×512
No. of images/slices 451 128
Field-of-view [mm] / 553×240

CBCT and MRI imaging systems were selected 
for this study due to their availability at the radiology 
department at the local clinical centre. While MRI 
datasets have perhaps more trivial and relatively 
distinct boundaries, two CBCT image datasets have 
more generally weak and indistinct boundaries due to 
the porosity of the maxilla bone.

After sifting through all the images related to each 
patient, only corrupted images on CBCT 3D image 
datasets and images containing tumour on MRI 3D 
image datasets were used for experimental analysis. A 
radiologist with over ten years of experience and who 
is responsible for interpreting medical records at the 
local clinical centre performed manual segmentation 

of all medical images using commercial medical image 
processing software 3D-DOCTOR v4.0 from Able 
Software Corp. Results of this manual segmentation 
provided binary segmented images that will be used 
as a foundation for evaluation. The proposed method 
was implemented in the R2018b version of MATLAB 
(Mathworks, Inc., Natick, MA, USA) on a PC 
(FUJITSU CELSIUS M470-2) with Intel(R) Xeon(R) 
CPU E5645, 2.40 GHz processor, and 16 GB RAM. 
The operating system used was Windows 7 (64-bit).

The segmented images obtained using the 
proposed method and other segmentation methods; 
fuzzy clustering method with level set method 
(FCMLSM) from [20], multi-region fuzzy thresholding 
method (MFT) from [22] and multiplicative intrinsic 
component optimization (MICO) from [21] were all 
individually compared against their corresponding 
manually segmented images obtained from the 
radiologist, in order to test the segmentation accuracy. 
As a result, performance measures, such as Dice 
coefficient, Jaccard index, sensitivity, and accuracy, 
are calculated. The proposed method and other 
methods were tested on all four 3D image datasets.

Fig. 7 shows the results of compared segmentation 
techniques, i.e. the final contours of the bone from 
CBCT 1 (Fig. 7a), CBCT 2 (Fig. 7b), MRI 1 (Fig. 7c) 
and MRI 2 (Fig. 7d) 3D image dataset on one image 
from each 3D image dataset. Two CBCT 3D image 
datasets were especially important for segmentation 
since the CBCT systems are prone to noise [33] and 
[34] and successful analysis of CBCT acquired images 
is of great importance. The two CBCT datasets contain 
the images of the upper maxilla, frequently used in 
the field of oral surgery and for other applications in 
dentistry, such as designing and fabrication of patient-
specific bone grafts [35] where accurate segmentation 
and extraction of initial 3D models is extremely 
important. These two 3D image datasets were also 
important for the analysis since the bone structure 
of the maxilla is porous and is difficult to properly 
acquire its bone structure by CBCT systems.

Fig. 7 shows the results of compared segmentation 
techniques, i.e. the final contours of a tumour on brain 
MRI images. MRI 1 and MRI 2 3D image datasets 
were used and, for this purpose, an ROI tool was used 
to localize the tumour. All four segmentation methods, 
including the proposed method, were used to segment 
the two image datasets. 

2.1  Performance Analysis of Seed Selection of RG Method

To test the accuracy of initial seed selection using 
our modified RG method, it was tested on all four 3D 
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image datasets. A performance analysis of the seed 
selection method using CBCT and MRI 3D image 
datasets is presented in Table 2. 

Table 2.  Performance analysis for seed selection on all four 3D 
image datasets

Dataset
Total no. of 

images
Used 

images
Initial seed

correctly detected
Accuracy

[%]
CBCT 1 303 16 16 100
CBCT 2 57 57 52 91.22
MRI 1 49 30 29 96.67
MRI 2 47 47 40 85.11

In the CBCT 1 dataset, all initial seeds were 
accurately detected inside a bone structure for all 
images, while in the CBCT 2 dataset the initial seed 
for RG method was not properly defined for the first 
five images. For MRI 1 dataset the initial seed was 
not selected properly only for the first image. This 
was also the case for MRI 2 dataset where on the 
first seven images the beginning of the tumour and 
the region is too small compared to the surrounding 
tissue for method to accurately define the initial 
seed. However, this did not further influence the 3D 
reconstruction process, and it will be dealt with in 
future research to overcome this issue.

2.2  Classification Performance

The performance of the proposed method and other 
segmentation methods was evaluated using two 
metrics: sensitivity and accuracy.

The sensitivity (S) is defined as the percentage 
of pixels correctly classified with respect to the 
number of pixels in the foundation for evaluation. The 
accuracy (A) is defined as the ratio of the correctly 
classified pixels and incorrectly classified pixels to the 
total number of pixels, as shown in Eqs. (12) and (13):

 S
TP

TP FN
=

+
,  (12)

 A
TP TN

TP FN TN FP
=

+

+ + +
,  (13)

where TP (true positive) represents the number of 
pixels that were correctly detected and TN (true 
negative) represents the number of background pixels. 
FN (false negative) denotes the pixels belonging 
to the segmented region, but wrongly classified as 
the background pixels, and FP (false positive) is 
the number of pixels incorrectly classified as the 
segmented region.

Fig. 7  Results of compared segmentation techniques for image no. 13 from a) CBCT 1, b) CBCT 2, c) MRI 1 and d) MRI 2 3D image dataset 
for FCMLSM [20], MFT [22], MICO [21], and proposed method (for CBCT 1: C=3, q=6, t=25, for CBCT 2: C=3, q=2, t=40, for MRI 1: C=3, q=2, 

t=95 and for MRI 2: C=3, q=3, t=25)
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Fig. 8 presents the results of the comparative 
analysis of the proposed method, FCMLSM [20], 
MFT [22] and MICO [21] when compared to images 
from the foundation for evaluation. They were tested 
for sensitivity and accuracy performance. These two 
metrics were evaluated for all four 3D image datasets.

For the CBCT 1 image dataset (Fig. 8a), it can 
be noted that the proposed method outperforms all 
other methods in terms of sensitivity and accuracy. 
In the CBCT 2 image dataset (Fig. 8b), it can also 
be observed that the proposed method excels when 
compared with other methods for sensitivity. For 
accuracy performance, the FCMLSM method [20] 
performs better.

For analysis of the MRI 1 image dataset (Fig. 
8c), the MFT [22] method was not taken into account 
due to its having the lowest performance results when 
compared to the other methods. The proposed method 
outperforms the FCMLSM [20] and MICO [21] 
segmentation methods for the MRI 1 image dataset, 
both for sensitivity and accuracy.

In the MRI 2 image dataset (Fig. 8d), it can be 
seen that FCMLSM [20] outperforms the proposed 
method in terms of sensitivity, while with regard to 
accuracy, the proposed method shows better results 
than other segmentation methods.

Table 3 summarizes the evaluation results of the 
proposed method and other segmentation methods. 
It can be observed that, overall, the proposed 
method shows better results regarding the accuracy 
performance in comparison to other methods, except 
for the CBCT 2 image dataset for which the FCMLSM 
method [20] excels with results of 95.69. Regarding 

the sensitivity, the proposed method also shows good 
results, except for the MRI 2 image dataset for which 
the MICO method [21] obtained higher results of 
88.93.

Table 3.  The average value of the classification performance 
metrics using the FCMLSM [20], MFT [22], MICO [21] and the 
proposed method

Image 
set

FCMLSM
[%]

MFT
[%]

MICO
[%]

Proposed 
method [%]

S A S A S A S A
CBCT 1 87.1 97.4 93.8 77.7 48.2 90.1 99 98.4
CBCT 2 32.6 95.7 45.5 89.3 41.8 76.4 47.2 89.9
MRI 1 94.2 99.9 51.2 99.8 98.6 99.9 99.1 100
MRI 2 80.1 99.4 53.4 99.4 88.9 97.2 75.6 99.6

2.3  Segmentation Performance

To determine the segmentation accuracy and to 
measure the segmentation performance of the 
proposed method and three other methods against the 
foundational images, Dice coefficient and Jaccard 
index were used. 

The mean values of Dice coefficient and Jaccard 
index for all four datasets and tested methods are 
listed in Table 4.The mean values of Dice and Jaccard 
for the CBCT 1 and CBCT 2 3D image dataset for 
the proposed method are 0.95, 0.88, and 0.60, 0.51, 
respectively, while for the MRI 1 and MRI 2 3D 
image dataset those values are 0.96, 0.93 and 0.81, 
0.70, respectively. It can be seen from Table 4 that 
the proposed method significantly improves both 

Fig. 8.  Results of sensitivity and accuracy comparison between FCMLSM [20], MFT [22], MICO [21] and proposed method for  
a) CBCT 1, b) CBCT 2, c) MRI 1, d) MRI 2 3D image dataset
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bone and soft tissue detection (brain tumour), based 
on all similarity indices, and it outperforms all other 
segmentation methods for all four image datasets. 
This indicates that the proposed method extracts the 
defined regions from both CBCT and MRI image 
datasets with higher accuracy.

Table 4.  The average value of the segmentation performance 
metrics (Dice coefficient and Jaccard index) using the FCMLSM 
[20], MFT [22], MICO [21] and the proposed method

Image
set

FCMLSM MFT MICO
Proposed 
method

DC JI DC JI DC JI DC JI
CBCT 1 0.91 0.85 0.84 0.73 0.62 0.45 0.95 0.88
CBCT 2 0.58 0.48 0.59 0.46 0.30 0.19 0.60 0.51
MRI 1 0.90 0.85 0.77 0.69 0.91 0.85 0.96 0.93
MRI 2 0.77 0.65 0.80 0.69 0.80 0.69 0.81 0.70

2.4 CAD-Inspection
CAD-Inspection has shown to be a valuable 

tool in current applications with regard to the 
dimensional inspection of 3D models. Since the 
proposed method can segment the 3D image dataset, 
MATLAB was used for the reconstruction of 3D 
models of a tumour located in the MRI 1 and MRI 2 
3D image datasets. Reconstructed 3D models were 
then exported in STL file format (Fig. 9a). A 3D 
model from ground truth images was generated using 
software 3D-DOCTOR. For CAD-Inspection, GOM 
Inspect v2016 software was used (Fig. 9b); the results 
of the inspection are presented in Table 5.

From the results presented in Fig. 9 and 
Table 5, it can be observed that the deviations for 3D 
model generated from the MRI 1 image dataset are 
distributed in the range from –0.15 mm up to +0.52 
mm, and the majority of deviations are located around 
+0.05 mm. Small values of standard deviation of 
+0.23 and mean distance of +0.16 show good accuracy 
of the overlapped 3D model with the foundational 3D 
model with the distance of ±0.99 mm. For the MRI 2 
image dataset, deviations are in the range from -0.75 
mm to +0.45 mm, with the majority of deviations 
located at the –0.15 mm mark. Standard deviation and 
mean value have smaller values, and they are +0.44 
mm and –0.22 mm, respectively. The minimum and 
maximum distance are in the range of ±1.30 mm. 
The dimensional analysis also showed some minor 
irregularities, which can be seen in certain areas on 
both inspections of the 3D models. This could be the 
result of surface shape, but also of the algorithm used 
for 3D reconstruction.

Fig. 9.  a) 3D model generated from MRI 1 and MRI 2 3D image 
datasets using the proposed method in MATLAB software, and  

b) CAD inspection of 3D models generated using proposed  
method compared to the ground truth 3D models  

in software GOM Inspect v2016

Table 5.  Results from CAD Inspection using the proposed method

3D image 
dataset

Deviation 
range 
[mm]

Min. dist. 
[mm]

Max. dist.
[mm]

Distance 
STD

[mm]

Mean 
distance 

[mm]

MRI 1
–0.15
+0.52

–0.99 +0.99 +0.23 +0.16

MRI 2
–0.75
+0.45

–1.30 +1.30 +0.44 –0.22

To test the influence of triangles count within 
reconstructed 3D models, sensitivity analysis was 
performed in which the triangles count were increased 
and decreased on the foundational 3D model that was 
used as a reference 3D model. The purpose of this 
analysis was to investigate the influence it might have 
on the accuracy of CAD-Inspection results. In this 
case, distance STD and mean distance were evaluated 
as two main parameters. Table 6 shows the sensitivity 
analysis of triangles count on CAD-Inspection results 
for the MRI 1 and MRI 2 datasets. By increasing 
and decreasing the triangles count as much as ±20 
%, the change in mean distance and distance STD 
values remained very similar for the MRI 1 and 
MRI 2 datasets. For the MRI 1 and MRI 2 datasets, 
the mean distance equals 0.01 mm. Based on these 
observations, it can be concluded that the influence of 
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triangles count does not have a major impact on the 
accuracy results from CAD-Inspection.

Table 6.  Sensitivity analysis of triangles count on CAD-Inspection 
results for MRI 1 and MRI 2 datasets

MRI 1

Percentage
[%]

–20 –10 0 +10 +20

Triangles 23158 26053 28948 31842 34737
Distance STD 
[mm] 

0.23 0.23 0.23 0.23 0.23

Mean distance 
[mm]

0.17 0.17 0.16 0.17 0.17

MRI 2

Percentage 
[%]

–20 –10 0 +10 +20

Triangles 50416 56718 63020 69328 75624
Distance STD 
[mm]

0.47 0.46 0.44 0.48 0.47

Mean distance 
[mm]

–0.23 –0.22 –0.22 –0.22 –0.22

3  DISCUSSION

Accurate segmentation is crucial for proper 
reconstruction of surface 3D models, due to the fact 
that it enables proper extraction of objects of interest. 
The results obtained in this paper confirm that the 
proposed method based on a combination of fuzzy 
C-means clustering and region growing shows good 
results when compared with other segmentation 
methods for segmentation accuracy and sensitivity. 
The new RG method for seed selection based on STD 
values shows good accuracy and robustness when 
tested on all four 3D image datasets. However, future 
improvements can be made to deal with the issue of 
the mis-selection of seed for the first few images of 
3D image dataset (lowest percentage accuracy was 
85.11 for MRI 2 image dataset).

Regarding the statistical evaluators, Dice 
coefficient and Jaccard index, the proposed method 
shows very good results, outperforming all other 
segmentation methods in [20] to [22] for all four 3D 
image datasets. When the 3D image datasets are 
evaluated for segmentation accuracy and sensitivity, 
it can be seen that the proposed method excels other 
methods on three 3D image datasets (CBCT 1, CBCT 
2 and MRI 1) regarding both accuracy and sensitivity, 
but shows lower results for sensitivity in the MRI 2 
image dataset with 75.6, compared with the method 
in [21] with an obtained value of 88.9. The reason 
for better performance of the proposed method for 
CBCT datasets definitely lies in the blurriness if the 
images and due to the presence of the artefacts on the 

3D dataset. Accurate delineation of objects borders is 
superior for those datasets.

As a final step for the evaluation of 3D models 
obtained by the proposed method, CAD inspection 
was performed by using the MRI 1 and MRI 2 image 
datasets. This inspection confirms the high accuracy 
of the proposed method in comparison to the 3D 
model obtained from ground truth images.

4  CONCLUSIONS

FCM clustering enabled the adaptive enhancement 
of objects of interest in images, and therefore served 
as an effective preprocessing for RG segmentation. 
Future work will focus on further improvements. For 
example, an automated method will be implemented 
in terms of automatically determining the number 
of clusters in FCM clustering, such as that proposed 
in [36] to [38]. In this way, the goal is to eliminate 
operator assistance during the processing stage. Also, 
the proposed method will be put into a friendlier 
graphical user interface which will enable more 
interactive use. Although images obtained from only 
CBCT and MRI scanners were used for this study, 
it does not limit the use of the proposed method on 
images obtained from other imaging systems as well, 
and future research will also include this investigation.
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