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As a kind of tiny gear based on space curve meshing theory, the line gear is very suitable for miniaturized machines due to its compact size 
and low weight. However, the line gear usually suffers from serious vibration problems since its line teeth are designed as twisted three-
dimensional cantilevers to provide conjugated meshing curves. A dynamic model of the line gear pair is established in this paper using the 
numerical manifold method (NMM) to alleviate its vibration conditions, which can simultaneously provide mathematical and physical covers. 
The displacement function is first derived for the line teeth, and the dynamic equations of the manifold element are acquired. After inspecting 
the reasons that cause meshing excitation, the dynamic response of the line teeth is attained in all three orthogonal directions. The attained 
dynamic response shows that the vibration in the axial gear direction is more significant than that in the curvature direction. Furthermore, the 
vibration differential equations of the line teeth are solved through a detailed example, and the relationship between the design parameters 
and the natural frequency is revealed. The vibration characteristics of the first four order of the line gear are revealed through the method of 
NMM and compared with the result that is carried out through the commercial finite element method (FEM). The comparison shows that NMM 
can efficiently relieve the vibration problems of the line gear.
Keywords: line gear, dynamic response, vibration, numerical manifold method

Highlights
•	 The line gear is designed to be applied in miniaturized machines.
•	 The line teeth of the line gear are twisted three-dimensional cantilevers.
•	 A dynamic model of the line gear is established through the numerical manifold method.
•	 The numerical manifold method provides mathematical and physical covers simultaneously.

0  INTRODUCTION

As core parts to transmit motion and moment in 
miniaturized machines, tiny gear-boxes and the mini-
gears inside them have raised significant concern. 
These days, many new gears have been proposed 
[1] to [3]. Among them, the line gear, as a tiny gear 
based on space curve meshing theory, has shown great 
potential in precise transmission in limited space. The 
line gear has been used in several kinds of small gear 
transmissions [4], but its line teeth usually suffer from 
fatal vibration problems and meshing transmission 
failure during the meshing process [5].

Many traditional gears also face similar vibration 
problems. Yi Yang et al. [6] investigated the non-linear 
dynamic response of a spur gear based on periodic 
mesh stiffness to improve the dynamic characteristics, 
and Zong Meng et al. [7] studied the vibration 
response and analysed fault characteristics of gears. 
To alleviate the vibration conditions, Belingardi et al. 
[8] made a dynamic analysis of a gear transmission 
system for an electric vehicle through a multibody 
approach, and Marco Cirelli et al. [9] presented a 
novel implementation of a specific multibody model 
through the tip relief micro-modification on spur 

gears. In addition, the method of simulating gear pair 
dynamic response is a potential research direction. 
Cirelli et al. [10] proposed a refined methodology 
to simulate the non-linear dynamic response of spur 
gears through the multibody model based on a penalty 
contact formulation and considers teeth. Ebrahimi and 
Eberhard [11] established a rigid-elastic modelling 
of meshing gear wheels to investigate the effects of 
multi-tooth contact, as well as backlash and left and 
right-hand side contact of the meshing teeth. The 
calculation of gear meshing stiffness is indispensable 
in the dynamic analysis of gear pairs, and is also one 
of the research directions for scholars. Cooley et al. 
[12] studied the calculation methods of gear meshing 
stiffness, and compared the average slope method 
and local slope method. Luo et al. [13] proposed a 
tooth tip modelling method based on defect ratio and 
independent of gear shape to better calculate the time-
varying meshing stiffness of the gear. However, due to 
the irregular shape of the line teeth, the dynamic study 
on the traditional gears cannot be applied to alleviate 
the vibration conditions of the line gear [5].

As shown in Fig. 1, the line teeth can be 
considered multiple twisted three-dimensional space 
curved cantilever beams axisymmetrically fixed 
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around the end of the wheel cylinder. The vibration 
problems of the line gear are mainly caused by these 
cantilever beams [5]. For now, many theoretical 
models of three-dimensional cantilever beams 
have been studied. Wang and Li [14] calculated the 
natural frequency of functionally graded cantilever 
beam and analysed the effects of material gradient 
parameters, the length-depth ratio of cantilever beam 
and boundary conditions on the vibration. Zhang et 
al. [15] investigated the natural frequency and mode 
of pyramidal Timoshenko beams, and analysed the 
effects of mechanical properties, rotational inertia 
and shear deformation on the natural frequency of 
beams with different taper ratios. Zhao and Wu [16] 
established the motion coupling equation of a rotating 
three-dimensional cantilever beam, and showed 
the effects of Coriolis term and steady-state axial 
deformation on coupling vibration. It is worth noting 
that stress and deformation analysis of the cantilever 
beam is an important research direction. For instance, 
Zhou et al. [17] investigated the 3D dynamics of 
a rotary functional gradient cantilever beam and 
revealed the couplings among the axial, flap-wise, 
and chordwise deformations. However, the previous 
models mainly focus on a 3D cantilever of normal 
shapes, rather than twisted three-dimensional space 
curved cantilever beams in the line gears.

In this paper, we propose the numerical manifold 
method (NMM) to relieve the dynamic problems of 
the line gear. The NMM is a numerical calculation 
method based on the concept of manifold elements, 
and has been widely used in solving continuous 
linear elasticity problems [18], crack problems [19], 
and continuous stress-strain field problems [20]. 
The research results show that NMM can improve 
computational accuracy and convergence compared 
with the finite element method [21]. Wei-bin WEN et 
al. [22] presented a new NMM based on quarticuniform 
B-spline interpolation, which has high interpolation 
accuracy and rapid convergence. Compared to other 
methods, the NMM can provide mathematical covers 
and physical covers simultaneously. The mathematical 
cover is not limited by the physical cover since 
unknown variables contained in mathematical covers 
are no longer corresponding to the node displacement. 
Therefore, the NMM can reduce the sensitivity of 
unit distortion in the line gears and efficiently obtain 
numerical results with decent accuracy.

In this paper, the dynamic equations of manifold 
element are established through the NMM, and the 
vibration differential equation of the cylindrical helical 
line tooth is derived from the stress analysis of the line 
tooth micro-element. The effects of the main design 

parameters of line gears on their natural frequency are 
analysed. The dynamic response of the line gear pair 
and the natural vibration modes of the first four orders 
are revealed, and the comparison between the natural 
frequency result computed with the commercial finite 
element method (FEM) and the NMM is carried out to 
verify further that the dynamic model established by 
the NMM.

Fig. 1.  Space curved cantilever beams on a pair of line gears

1  DYNAMIC MODEL

The usual interpolation functions for NMM include 
polynomial function, trigonometric function, and 
B-spline function. Polynomials and trigonometric 
functions are widely used due to their convenient 
calculation, but they are inaccurate and too sensitive 
for the mesh distortion when describing the 
displacement continuity in a pair of line gears. In 
contrast, the B-spline interpolation function possesses 
advantages of continuity, local support, local control 
and modification, and can be employed to solve 
mechanical problems effectively [23]. Therefore, 
the B-spline function is adopted as the interpolation 
function of NMM in this paper for the line teeth, 
which are sensitive to the unit deformation.

1.1  Displacement Function of Manifold Element

The line gear meshing model and the meshing 
coordinate systems of line gears are shown in Fig. 
2. The driving gear is a cylindrical helical line gear. 
The rotating speed of driving gear is donated as ω1, 
and the rotating speed of driven gear as ω2. o1 – x1 y1 z1  
and o′1 – x′1 y′1 z′1 are the fixed coordinate system and 
the rotating coordinate system of the driving gear, 
respectively. o2 – x2 y2 z2 and o′2 – x′2 y′2 z′2 are the fixed 
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coordinate system and the rotating coordinate system 
of the driven gear, respectively. The angle of the 
centre axis is (π – θ). The pair of interaction meshing 
forces between the driving gear and the driven gear 
are donated as F and F′, respectively.

a) 

b) 
Fig. 2.  Simulation diagrams of line gears: a) meshing model; b) 

meshing coordinate systems

The B-spline interpolation function has different 
kinds of definitions in mathematics. To ensure the 
coming programming practical, the B-spline basis 
function in this paper is explicitly defined by recursion 
and expressed in polynomial form. The B-spline basis 
function is defined as:
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where [xi′ , xi′+1] is defined as the B-spline node 
interval i′, i is the number of B-spline, and k is the 
order of B-spline function.

To mesh the line gear model, the three-
dimensional B-spline interpolation function needs to 
be established. Through Eq. (1), B-spline functions 
in x, y and z directions can be obtained, respectively. 
Three-dimensional B-spline interpolation functions 
can be obtained as follows:
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where k1, k2 and k3 are the order of B-spline function 
in x, y and z directions respectively, and i, j and l 
are the number of B-spline in x, y and z directions 
respectively.

Eq. (2) indicates that the three-dimensional 
B-spline function satisfies the requirement of 
weight function; thus, the B-spine function can be 
taken as the covering weight function of the three-
dimensional manifold element. The k order B-spline 
polynomial function with non-repeated nodes has 
k – 1 order continuity and coordination in the whole 
element, which ensures the solution accuracy. The 
B-spline basis function has high order continuity 
and coordination, and obtains decent interpolation 
precision. Each weight function should correspond 
to the local mathematical cover Ui–k1+n1, j–k2+n2, l–k3+n3

, 
and each manifold element corresponds to at least one 
local cover function. The whole displacement function 
of manifold element e is:

 U N SD T De
e

e e e� � � � � � � �� �� � � ,  (3)

where Ne, S, T(e) and D(e) are the interpolation function 
matrix of the element e, the order matrix of the local 
cover function, the covering matrix of the element e 
and the degree of freedom matrix of the element e, 
respectively. Also, matrix D(e) contains time variable, 
t. T(e) and D(e) are expressed as:

 T N S N S N Se
n

� � � � �1 2  ,  (4)

 D e
i k j k l k i j l

T
d d� �

� � �� �� ��1 2 3, , , , .  (5)

The cover form of element e is shown in Fig. 3. 
The overlap part of each local cover function and the 
physical domain is manifold element e. The global 
cover function on the solution domain can be obtained 
through the cover function and weight function on 
each manifold element.
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Fig. 3.  Relation between manifold element and local 
mathematical cover

1.2  Dynamic Equation of Manifold Element

The vibration characteristic of the manifold element 
e is investigated without loss of generality. The linear 
elastic strain energy matrix Ve is:

 Ve e T e x y z� �� �����
1

2
�� ��

�

d d d ,  (6)

where σe and εe are the stress matrix and strain matrix 
of the manifold element e, respectively. Ω is the 
integral domain. σe and εe are expressed as:

 ��e e e e e e� � �� � � � � � � �QU QT D B D ,  (7)

 �� ��e e e e e e� � �� � � � � �E EQT D EB D ,  (8)

where Q, E and B are the differential operator matrix, 
the elastic matrix and the element strain transformation 
matrix, respectively. The strain energy matrix Ve and 
kinetic energy matrix We of the manifold element e 
can be obtained as follows:
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Through the Lagrange equation of the second 
kind, the differential equation of motion is:
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The viscous damping theory is adopted to take 
into account the damping influence, and the dynamic 
equation of manifold element is:

 M D C D K D Fe
e

e
e

e
e

e
 

� � � � � �� � � ,  (12)

where Me, Ce and Ke are the element mass matrix, 
the element damping matrix and the element stiffness 
matrix, respectively. They are expressed as:
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To acquire the final global dynamic equation 
expediently, a transformation matrix is defined as 
C′(e). The global generalized mass matrix M, the 
global generalized damping matrix C, and the global 
generalized stiffness matrix K are expressed as:
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The global dynamic equation of manifold element 
can be obtained as follows:

 MD CD KD F � � � .  (15)

2  ANALYTICAL SOLUTION OF EQUATION

2.1  Initialization and Calculation Method of Manifold 
Element Equation

It is notable that D, D  and D  in the dynamics 
equation of manifold element are generalized 
unknowns and no longer correspond to the 
displacement, velocity, and acceleration in the solution 
domain. In the NMM, the nodes of the manifold 
element only reflect the cover information and 
irrelevant to the actual physical nodes. As a result, the 
corresponding initial values D0, D0  and D0  must be 
derived by transformation. The total number of 
manifold elements is N′x × N′y × N′z , where N′x, N′y 
and N′z are the number of discrete interpolation 
elements in x, y and z directions, respectively. The 
final calculation nodes are: 
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k′ nodes are defined out of the physical cover to 
cover the entire solution domain. These nodes can 
help to clarify all the weight functions and meanwhile 
ensure that the interpolation functions near the node 
satisfy the coordination requirements. The initial 
displacement and the initial velocity of the given node 
are U U0 � � �x y zi j l, ,  and  U U0 � � �x y zi j l, , . D0 
and D0  can be obtained as follows:
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In Eq. (18), GIi, Jj, Ll
 is the transformation matrix. 

And through Eq. (15), D0  is attained as follows:

  D M F KD CD0
1

0 0� � �� �� .  (20)

It is worth noting that the matrices in the dynamic 
equations remain symmetric and positive, so the 
time integral method can be used for calculation. 
Considering the great increase of freedom degrees 
in the manifold elements, the Newmark method with 
good numerical dissipation is adopted. According to 
Eq. (15), the dynamic equation of manifold element at 
time t + Δt can be written as

 MD CD KD F 

t t t t t t t t� � � �� � �� � � � .  (21)

The basic formulas are:
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When the conditions γ' ≥ 0.5 and β' ≥ (0.5 + γ')2 / 4 
are satisfied, the algorithm is stable with good 
numerical dissipation unconditionally, and the 
dynamic response function of the line teeth can be 
obtained.

2.2  Natural Frequency and Mode of the Line Tooth

In Fig. 2b, F represents the meshing load on the 
line tooth. The meshing load F can be converted 
into equivalent load f on the constant section micro-
element of the curve length ds. It is assumed that the 
torsion deformation and shear deformation of the line 
tooth micro-element are ignored. Without considering 
the central axial stress of the line tooth, the micro-
element is subjected to the equivalent external force 
f, the shear force q, the bending moment m' and the 
inertial force ρAds · ∂u2(s,t) / ∂t2. The force analysis is 
shown in Fig. 4.

Fig. 4.  Force analysis of the micro-element  
at any position of the line tooth

The force balance equation and the moment 
balance equation are established as follows:
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where u(s, t), G(s) and λ are the displacement vector 
function, the mode function, and the helical angle, 
respectively, and h(t) is the unit vector.

The second-order component of the moment 
equation is omitted, and the motion differential 
equation of the cylindrical helical line tooth for the 
undamped free vibration is obtained as follows:

 � �A
u s t
t

EJ
u s t
t

� � �
�

�
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�

�
2

2

4

4
0

, ,
cos .  (25)

Through the separated variable method, Eqs. (26) 
and (27) can be attained,

 d

d

2

2

2 0
H t
t

H t( )
( ) ,� ��  (26)
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The solution of the Eq. (26) is:

 H t C tH( ) sin( ),� �� �  (29)

where CH and φ are undetermined coefficients 
determined by initial conditions.

Supposing that G(s) is eas, and the solution of the 
Eq. (27) is:
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The boundary conditions are that one end of the 
line tooth is fixed and the other is free. That means:
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Substituting the boundary conditions into Eq. 
(30), the frequency equation is:

 cos cosh .� �s st t� � �1 0  (33)

Thus, the natural frequencies of each order are 
obtained as follows:
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where β1st = 1.875, βist = 0.5(2i – 1), (i = 2, 3, ..., n), and
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The mode functions corresponding to each order 
of natural frequency are:
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3  VIBRATION ANALYSIS OF THE LINE TEETH

3.1 Meshing Excitation Analysis of Line Gear

The dynamic excitation of line gear pair in meshing 
transmission can be divided into three types: meshing 

stiffness excitation, error excitation, and meshing 
impact excitation.

	Meshing stiffness excitation
The contact ratio of line gear in the meshing 

process is a periodic function. The change in the 
number of meshing gear pairs will cause the change in 
the gear angular velocity. Due to the inhomogeneity of 
the velocity, the vibration of the line teeth is generated. 
When the contact ratio of line gears changes 
periodically during the meshing process, the meshing 
stiffness of gear pairs alters in the same period. The 
product of the meshing stiffness ks of the gear pair 
and the relative displacement Δs't of the meshing line 
teeth in the normal direction is defined as the meshing 
stiffness excitation force, Fk(t).

 F t k sk s t( ) ,� �� '  (38)

 k k k ts m v m k� � � �� ��� ��sin ,� �  (39)

 k k k k km � �� �' ' ' '1 2 1 2/ ,  (40)

 k kv m� �� �� 1 ,  (41)

 �s k kt l l' � � �� �1 0 5 1 2. ,  (42)

where km, k'1 and k'2 are the average stiffness of gear 
pairs, the single-tooth stiffness of the driving line tooth 
and the driven line tooth, respectively, kl1 and kl2 are 
the correction coefficients of the centre curve of the 
driving line gear and the driven line gear, respectively, 
and ε is the coincidence degree of the line gears.

	Error excitation
The meshing error of the line gears is caused by 

machining error and installation error. The machining 
and manufacturing methods of line gears can be 
divided into three types: profiling, stereo lithograph 
apparatus (SLA), and selective laser melting (SLM). 
The comparison of these three manufacturing methods 
is shown in Table 1.

Table 1.  Comparison of manufacturing methods of the line gear 
[24] to [26]

Shape 
accuracy

Dimensional 
accuracy [mm]

Surface roughness, 

Ra [μm]
Profiling poor <0.02 5
SLA good <0.02 20
SLM good <0.03 25

As shown in Table 1, error excitations of the 
line teeth are different, depending on the methods by 
which they were manufactured. The error excitation 
is mainly caused by the deviation of tooth shape and 
the surface roughness of the teeth. The deviation of 
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tooth shape comes from the discrepancy between the 
theoretical meshing curve and the actual meshing 
curve and leads to the vibration during the meshing. 
The surface roughness of line teeth can meet the 
requirements by secondary machining. Therefore, the 
vibration caused by roughness can be ignored. The 
error excitation is defined as:

 F t k kl s c� � � � �� �1 ,  (43)

where kc is the correction coefficient of the meshing 
curve.

	Meshing impact excitation
Due to the size error and pitch error of the line 

gear, the actual meshing point of engaging-in and 
engaging-out usually deviate from the theoretical 
meshing point of engaging-in and engaging-out in 
the meshing process, which disturbs the rotating 
speed of the meshing line teeth. The vibrations at the 
beginning and the end of gear meshing are defined as 
the approach shock and recess shock, respectively.

When the line teeth fail to rotate in time into 
the meshing state at the meshing point of engaging-
in due to the pitch deviation, the approach shock will 
occur. Meanwhile, when the meshing line teeth fail to 
separate in time at the meshing point of engaging-out 
due to tooth shape error or pitch deviation, and the 
latter pair of the meshing line teeth may rotate into a 
meshing state at the meshing point of engaging-in. In 
this case, the former pair of line teeth has to change 
their velocity to maintain their continuous motion 
transition, which will cause the recess shock.

The difference between the theoretical time T0 and 
the actual time t0 at the meshing point of engaging-in 
is defined as the action time of the approach shock.

 �t T t� �0 0 ,  (44)

 T
n0

1 1

2
�

�
�
.  (45)

The approach shock force at any time t in the Δt 
can be defined as:

 F
M U

tr
d d�
��
�



,  (46)

where Md and ∆ Ud  are the mass and the velocity 
variation of the single meshing line tooth.

Due to the inertia, the recess shock force will 
reduce to a negligible level, so only the approach 
shock in the meshing impact excitation needs to be 
considered.

3.2  Example

In the meshing process of the line gear, meshing 
stiffness excitation and error excitation are the 
periodic excitation and the meshing impact excitation 
is the transient excitation. As the dynamic response 
of the line teeth mainly belongs to the steady-state 
response, only meshing stiffness excitation and error 
excitation are needed to be concerned. Supposing the 
angular velocity ωm of the driving gear is π [rad·s–1], 
and the excitation function is:

F t F t F t F tk l m k( ) ( ) ( ) sin( ) ,� � � � �� � ��� ��1 1� � �  (47)

 F k k
k k

k k kl l c�
�

� �� � ��� ��
' '
' '
1 2

1 2

1 22 0 5. ,  (48)

 � � �� � �� 1 1 2n / ,  (49)

where Δφ1 and φk are the rotation angle of the single 
meshing line tooth and the initial phase.

The centre curve equations of the driving line 
tooth are:
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According to the theory of line gear meshing, the 
centre curve equations of the driven line tooth can be 
obtained as follows:
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From Eq. (33), the natural frequency function is 
attained:

   
�

�
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�
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� � �

i
i t

i t i t
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m t
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 (53)

where ρ is the material density, m is the base circle 
radius, λ is the helix angle, Δt is the line tooth length 
parameter, and E is the elasticity modulus of the 
material.

Eq. (53) indicates a one-to-one correspondence 
mathematical relationship between the natural 
frequency and the design parameters of the line 
gears. The parameter values of the line gears have an 
applicable range shown in Table 3, and the function 
relationship is shown in Fig. 6.

Table 3.  Applicable ranges of parameters affecting the natural 
frequency

d [mm] ρ [g·cm–3] λ [°] m [cm] Δt [-]
1 to 10 1 to 10 25 to 25 2 to 10 π/3 to  3π

a) 

b) 

where i12 is the transmission ratio, θ is the included 
angle of the gear surfaces, n1 is the tooth number of 
the driving gear, m is the base circle radius of the 
driving gear, n is the thread pitch parameter, k1d is 
the clearance coefficient of driving line gear, a is the 
centre distance, d is the diameter of line teeth, and n2 
is the number of the driven gear.

The main parameters of the cylindrical helical 
driving line gear and the corresponding driven line 
gear are shown in Table 2 as an example.

Table 2.  Main parameters of the line gears in the example

i12 θ [°] n1 m [mm] n [mm] k1d
2.5 150 6 30 20 1.5

kl2 kl1 n1 d [mm] a [mm] kc
0.95 0.9 15 1.5 120 0.95

The Newmark parameters γ' and β' are selected 
as 0.5 and 0.25, respectively. Let the damping c be 
zero, and the dynamic response function of the driving 
tooth is:

U x y z t

F
As

x m y i z

i
i i i

i

( , , , )

sin sin sin

�

�� � �� � � �� � �
�� � �

2 2 1

2 1�

� � �

� 22 2
1

1

1� � ��
�

�
�

� �
�

�
�

�

�


�

�

�

�

� �

�
�
�

�

/

sin sin ,

ii

n

i
i

i

n

t t  (52)

where αi = (2i – 1) / 2s.The displacement curves of undamped forced 
vibration of the driving tooth in x, y and z directions 
can be drawn as follows:

Fig. 5.  Undamped forced vibration response diagram of the 
driving tooth in x, y and z directions
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c) 

d) 

e) 
Fig. 6.  Function relationship between the natural frequency and 
main parameters of line gears; a) material density, b) line gear 

base radius, c) helix angle of line tooth, d) line tooth diameter; and 
e) line tooth length parameter

As shown in Fig. 6, the natural frequency of the 
line tooth is proportional to the diameter of the line 
tooth but inversely proportional to the helix angle 
approximately. The natural frequency is strictly 
inversely proportional to material density, base circle 
radius and line tooth length.

The transmission error can be caused by various 
types of errors, for instance, installation error and 
tooth profile error. The line gear meshing stress 
nephogram and the transmission error curve are shown 
in Fig. 7. The transmission error results computed 
with FEM and NMM are essentially consistent. We 
use an aluminium alloy as the manufacturing material. 
The elasticity modulus E of the material is 72 GPa. 
The material density ρ is 2.8 g·cm–3. The Poisson’s 
ratio μ is 0.3. The natural mode of the line tooth can 
be obtained from the natural frequency. The natural 
modes of the first four orders and their specific 
descriptions are shown in Table 4.

a) 

b) 
Fig. 7.  Line gear transmission error analysis; a) gear meshing 

stress nephogram, b) transmission error curve

Fig. 5 shows that the amplitude of the line tooth 
in z direction is larger than that in x and y directions. 
The comparison of frequency results between the 
FEM and NMM is shown in Table 4. The difference 
in the results could be caused by calculation error and 
grid division error. As shown in Table 4, the vibration 
of the line tooth mainly exists in the axial direction of 
the line gear and the curvature direction of line teeth. 
The force direction of the meshing line teeth is shown 
in Fig. 2. Obviously, the vibration of the line tooth in 
z direction is equal to the vibration of the line tooth 
in the axial direction of the gear, and the vibration in 
the curvature direction of the line tooth is composed 
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of the vibration in x and y directions. The line tooth 
vibration in the axial direction is more significant than 
that in the curvature direction. The numerical results 
from the example indicate that the natural vibration 
modes of the first four orders are coincident with the 
dynamic model according to NMM. 

Table 4.  The vibration characteristics of the first four orders of line 
teeth

Order
Natural 

frequency [Hz] Corresponding mode Descriptions
NMM FEM

The 
1st 

order
272 306

no node vibration 
of the line tooth 
in the gear axial 
direction

The 
2nd 

order
1704.5 1716.8

no node vibration 
of the line 
tooth in the line 
tooth curvature 
direction

The 
3rd 

order
4771.9 4834.2

single node 
vibration of the 
line tooth in 
the gear axial 
direction

The 
4th 

order
9353 9373.5

single node 
vibration of the 
line tooth in 
the line tooth 
curvature 
direction

4  CONCLUSION

The innovative method, NMM, is employed to 
investigate the dynamic characteristics and alleviate 
the vibration conditions of line gears. A B-spline 
interpolation function is used as the mathematical 
cover of the NMM since it can provide continuous 
local support and local control. The displacement 
function of the line teeth and the dynamic equation of 
the manifold element are constructed, and the dynamic 
response function of the line teeth is acquired. The 
results show that the line tooth vibration in the axial 
direction is more significant than that in the curvature 
direction. A micro-element of the line tooth with 
constant cross-section is used for stress analysis, 
and the constant cross-section vibration differential 
equation of the cylindrical helical cantilever is 
attained. Furthermore, the frequency equation and the 
natural frequency of the cylindrical helical line tooth 
are attained. Furthermore, the function relationship 
between the design parameters of line gears and the 
natural frequency is revealed. The natural frequency 

of the line tooth is proportional to the diameter of the 
line tooth but roughly inversely proportional to the 
helix angle of the line tooth. In addition, the natural 
frequency is strictly inversely proportional to material 
density, base circle radius and line tooth length. In 
the end, the comparison of frequency results between 
FEM and NMM and the natural modes of the first 
four order of the line gear verify the dynamic model 
according to the NMM. 
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6  NOMENCLATURE

a centre distance, [mm]
A cross-section area of a line tooth, [cm2]
B element strain transformation matrix, [-]
Bi,k B-spline basis function, [-]
c damping coefficient, [-]
C global generalized damping matrix, [-]
Ce element damping matrix, [-]
CH time function coefficient, [-]
C'(e) transformation matrix, [-]
d diameter of a line tooth, [mm]
di degree of freedom of a element, [-]
D global generalized degree of freedom matrix, [-]
D(e) degree of freedom matrix of the element, [-]
D0

 initial values of global degree of freedom matrix, 
[-]

E elastic matrix, [-]
f equivalent external force, [N]
F external force matrix, [-]
Fk meshing stiffness excitation force, [N]
Fl error excitation force, [N]
Fr approach shock force, [N]
G amplitude function, [-]
h unit vector, [-]
H time function, [-]
i1,2 transmission ratio, [-]
J moment of inertia of an area, [mm4]
ks meshing stiffness, [-]
km average stiffness of gear pairs, [-]
k'1 single-tooth stiffness of driving line tooth, [-]
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k'2 single-tooth stiffness of driven line tooth, [-]
kl1 correction coefficients of the centre curve of 

driving line tooth, [-]
kl2 correction coefficients of the centre curve of 

driven line tooth, [-]
kc correction coefficient of the meshing curve, [-]
kd clearance coefficient of driving line gear, [-]
Ke element stiffness matrix, [-]
K global generalized stiffness matrix, [-]
m base circle radius of the driving gear, [mm]
m' bending moment, [N·m]
Me element mass matrix, [-]
M global generalized mass matrix, [-]
n thread pitch parameter, [mm]
n1 tooth number of the driving gear, [-]
n2 tooth number of the driven gear, [-]
Ne interpolation function matrix of an element, [-]
q shear force, [N]
Q differential operator matrix, [-]
s curve length, [mm]
S order matrix of the local cover function, [-]
t time,[s]
T(e) covering matrix of an element,[-]
u displacement of the micro-element, [mm]
U global generalized displacement matrix, [mm]
U(e) displacement matrix of an element, [mm]
Ve strain energy matrix, [-]
We kinetic energy matrix, [-]
β’ Newmark parameter, [-]
γ' Newmark parameter, [-]
εe strain matrix of an element, [-]
θ angle of central axis, [°]
λ helix angle, [°]
ρ material density, [g·cm-3]
σe stress matrix of an element, [-]
φ angle of initial phase, [rad]
ϕ rotation angle of driving gear, [rad]
ψ transmission error, [°]
ω excitation frequency, [Hz]
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