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This paper explores the influence of the frequency of shaft sleeve rotation and radial load on a journal bearing made of tin-babbitt alloy 
(Tegotenax V840) under hydrodynamic lubrication conditions. An experimental test of the frictional behaviour of a radial plain bearing was 
performed on an originally developed device for testing rotating elements: radial and plain bearings. Using the back-propagation neural 
network, based on experimental data, artificial neural network models were developed to predict the dependence of the friction coefficient 
and bearing temperature in relation to the radial load and speed. Using experimental data of the measured friction coefficient with which the 
artificial neural network was trained, well-trained networks with a mean absolute percentage error on training and testing of 0.0054 % and 
0.0085 %, respectively, were obtained. Thus, a well-trained neural network model can predict the friction coefficient depending on the radial 
load and the speed.
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Highlights
•	 An artificial neural network was used to predict the friction coefficient of the hydrodynamic radial journal bearings.
•	 For the training and testing of artificial neural network (ANN), experimental data obtained by testing radial hydrodynamic journal 

bearings made of a tin- Babbitt alloy (Tegonenax V840) were used.
•	 The ANN model allows the prediction of the friction coefficient based on the radial load of the bearing and the speed.
•	 Prediction of the coefficient of friction using ANN has proven to be a competitive and efficient method.

0  INTRODUCTION

Hydrodynamic bearings support a rotating shaft 
with its associated loads, through a pressure field 
developed within the lubricant that separates the solid 
surfaces. Journal bearings made of tin-babbitt alloy 
(Tegotenax V840) under hydrodynamic lubrication 
conditions are widely used in compressors, turbines, 
pumps, electric motors, electric generators, mining ore 
crushers, etc. Sliding friction in the contact surfaces 
between the material of the shaft and the sleeve 
material is a dissipative process of a complex nature, 
accompanied by a series of phenomena: mechanical, 
physicochemical, electrical, metallurgical, and 
thermal characteristics, which lead to the wear and 
tear of coupled bodies. 

The coefficient of friction is significantly 
influenced by: normal load, geometry, relative surface 
motion, sliding velocity, the surface roughness of the 
rubbing surfaces, the type of material, system rigidity, 
temperature, stick-slip, relative humidity, lubrication 
and vibration.

Among these factors, normal load and sliding 
velocity are the two major factors  that play significant 
roles in the variation of the friction coefficient [1] to 
[4].

The effect of radial load on the friction coefficient 
and loss material of different polymer and composite 
materials was investigated [2]; it was found that the 
amounts of friction coefficient and loss material are 
different for different materials. The tribological 
actions of Babbitt alloy 16-16-2 sliding against 
aluminium bronze ZnCuAl9Mn2 lubricated by 
seawater were systematically investigated by Wu et al. 
[3]. The results indicated that the friction coefficient 
decreased as the load increased to 30 N and then 
remained steady at high loading but decreased with 
an increase in sliding speed. Zeren et al. [4] studied 
the tribological behaviour of two different tin-based 
bearing materials in dry sliding conditions: one of 
these alloys with low Sb content (7 %) is known as 
SAE 12 and is widely used in the automotive industry 
and the other with a high Sb content (20 %) is an Sn–
Sb–Cu alloy. Although search results have proved that 
WM-2 and WM-5 alloys can be used in dry sliding 
conditions, it is shown that the performance of WM-5 
under heavy service conditions is better than WM-2 
due to its alloying elements.

Artificial neural networks (ANN) are a successful 
tool for predicting some tribological properties. ANN 
is a mathematical model inspired by the biological 
nervous system. ANN technology is used to solve 
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complex scientific and engineering problems. The 
significance of this technology is that ANN models 
can be trained based on experimental data to recognize 
solutions. The ANN prediction method has been used 
in several applications, such as wear and friction.

Asafa and Fadare [5] have presented an ANN 
predictive model that captures the dynamic behaviour 
of the tool wear and can be deployed effectively for 
online monitoring processes. Nine different structures 
of multi-layer perceptron neural networks with feed-
forward and back-propagation learning algorithms 
were designed using the MATLAB neural network 
toolbox. An optimal ANN architecture of 5-12-4-2 
with the Levenberg-Marquardt training algorithm 
and a learning rate of 0.1 was obtained using the 
Taguchi experimental design method. Durmuş et al. 
[6] have presented the effects of ageing conditions 
at various temperatures, load, sliding speed, and 
abrasive grit diameter in 6351 aluminium alloy 
have been investigated using artificial neural 
networks. The experimental results were trained in 
the ANN’s program, and the results were compared 
with experimental values. It is observed that the 
experimental results coincided with ANN’s results. 
Knowing friction coefficient is important for 
determination of wear loss conditions at Al-Si alloys. 
Nagaraj et al. [7] investigated the effects of load, 
sliding velocity and sliding duration on the wear loss 
of the alloy. The experimental results were used to 
train the ANN program and the results were compared 
with experimental values. It was observed that the 
experimental results are very close to ANN’s results.

Kalidass et al. [8] focuses on two different 
models, regression mathematical and ANN models 
for predicting tool wear. Experiments have been 
conducted for measuring tool wear based on the 
design-of-experiment (DOE) technique in a vertical 
machining centre on AISI 304 steel using a solid 
carbide end mill cutter. The experimental values are 
used in Six Sigma software for finding the coefficients 
to develop the regression model. The experimentally 
measured values are also used to train the feed-
forward back-propagation ANN for the prediction of 
tool wear. Liujie et al. [9] used a back-propagation 
(BP) neural network to study the effects of the pv 
factor and sliding distance on the friction and wear 
behaviour of 30 wt. % carbon fibre reinforced poly 
(ether-ether-ketone) advanced composite (PEEK-
CF30) at the contact temperature of 120 ºC. An 
experimental plan was performed on a pin-on-disc 
machine for obtained experimental results under 
unlubricated conditions. Hassan and Mohammed [10] 
experimentally investigated the parameters affecting 

the wear debris and the temperature rise due to friction, 
as well as developing the model ANN using MATLAB 
program for predicting the wear and temperature 
of disc and pad. Since the hybrid materials had not 
been enough researched, Sathyabalan et al. [11] have 
presented application of ANN on the MMC (hybrid 
LM6 aluminium), which is reinforced by SiC and 
flyash. The aim of this study was the prediction of the 
influence of additives (reinforcement materials) on the 
wear and hardness of hybrid material. The best results 
were obtained with ANN (4-6-2). Input parameters are 
defined by variables (flyash size, SiC size, flyash in % 
and SiC in %) while the outputs are wear and hardness. 
Prediction accuracy was high, so the ANN has been 
validated for practical application by weight definition 
of the above-mentioned reinforcement materials for 
the hybrid material with good resistance against wear. 
An ANN model for the prediction of the wear process 
with glass-filled polytetrafluoroethylene (PTFE) 
composites is presented by Varade and Kharde [12]. 
An additional task of this research was establishing 
the dependence between load-sliding and time-sliding 
speed. The input parameters were velocity, load, time 
and percentage of glass fill, while the output was 
wear. Taguchi’s orthogonal array of 27 experiments 
was used. The results revealed that the material with 
the highest percentage of glass fill possesses better 
resistance against wear. As the friction coefficient 
also depends on selected lubricant, Durak et al. [13] 
have presented a back-propagation neural network 
(BPNN) for the prediction of the concentration of the 
additive (based on PTFE) in the base oil in order to 
decrease the friction coefficient of the journal bearing. 
A bearing for testing was made of ZnAl alloy. The 
best results were obtained by using BPNN (3-5-1). 
Prediction accuracy is high, so the presented BPNN 
can be used in practice. 

In order to research the applicability of the ANNs 
by friction coefficient prediction of the composite 
carbon-fibre-reinforced polymer (CGRP) material, 
Nasir et al. [14] have developed suitable ANN for this 
purpose. They have developed few different models, 
but the best results were with ANN (4-40-1), which 
used the Levenberg–Marquardt algorithm for training. 
The input parameters were fibre orientation, testing 
speed, normal force and duration time, while the 
output parameter was the friction coefficient. 

Artificial intelligence (AI) has many tools and 
techniques that can be applied in the prediction 
of different parameters. One of these is the 
adaptive neuro-fuzzy inference system (ANFIS). 
This methodology was used in combination with 
experimental research [15]. This work focuses on 
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establishing a correlation between friction coefficient 
and load by sliding bushing, made of a tin-based white 
metal alloy (TEGOTENAX V840). Experimental 
research [16] and [17] attempted to provide values 
(i.e., parameters), which will be used for ANFIS 
design: friction coefficient, speed and radial load. 
All mentioned values were measured in equal time 
intervals. The newly designed ANFIS was tested, 
and the results were compared, which showed that 
the prediction accuracy is high. As the final result, 
an expression was obtained that describes correlation 
friction coefficient - load under conditions of 
lubrication defined in advance. 

The present study’s objective was to predict 
friction coefficient in the radial hydrodynamic journal 
bearing of the white metal bearing alloys, known 
commercially as babbitt metal - Tegotenax V840, 
based on experimental research [16] and [17] using 
ANN.

1  EXPERIMENTAL DETAILS AND PROCEDURE 

1.1 Radial Journal Bearing Test Rig 

Fig. 1 shows a test rig for testing rotating machine 
elements, developed at the Faculty of Mechanical 
Engineering in Niš, Serbia, adapted for testing the 
tribological properties of plain bearings. The test rig 
for testing hydrodynamically lubricated plain bearings 
consists of three main systems: the drive system, the 
hydraulic system for realizing the load of the plain 
bearing, and the hydraulic system for lubricating the 
plain bearing.

Fig. 1.  Test rig 

The drive system of the test rig consists of an 
asynchronous induction motor (ABB, 400 V, 50 Hz, 3 
kW, 1460 rpm), which is connected to the shaft by an 
elastic coupling. The shaft is supported by two roller 
bearings and a test specimen (i.e., a journal bearing 
mounted between these two bearings). The motor 

is equipped with an E720 encoder for counting the 
engine speed.

The test specimen-journal bearings are 
hydrodynamically lubricated. The lubrication system 
consists of an electric motor (1450 rpm, 90 W), an 
ELP pump (AMGP-03C), and a 10 l hydraulic tank. 
The lubricating oil of the test plain bearing is ISO VG 
32. A schematic representation of the part of the test 
rig with the bearing assembly is shown in Fig. 2.

Fig. 2. The bearing-housing assembly (1-lower bracket; 2-sleeve; 
3-seal; 4-shaft; 5-top bracket; 6-top cover with seal; 7-screw; 

8-seal; 9-nut; 10-lever with which the bearing is loaded; 11-force 
sensor; 12-beam; 13-cylinder carrier; 14-cylinder; 15-piston; 

16-screw; 17-thermocouple; 18-roller bearing housing; 19-roller 
bearing; a-place of friction force measurement; c- thermocouple 

temperature measurement location; d-place of bearing loading by 
radial force, g, e, f- hydraulic ports)

A hydraulic system was used to load the sliding 
bearing, which consists of an electric motor (EM) 
(0.75 kW, 380 V, 1420 rpm), a pump (EATON 
PVQ10), and a 30 l oil tank. The hydraulic cylinder is 
used to load the test of a sliding bearing. The working 
fluid is the above-mentioned oil. The hydraulic 
cylinder exerts a load on the journal bearing sleeve via 
a radial force sensor (HBM U9C / 10 kN).

Table 1 shows the properties of the operating 
fluid.

Table 1.  Properties of hydraulic oil ISO VG32

Item Value Unit
Density at 15.6 °C ρ 868 kg/m³

Kinematic viscosity at 40 °C ν40 32.2 mm²/s

Kinematic viscosity at 100 °C ν100 5.52 mm²/s
Viscosity index 108 -
Flash point 212 °C
Pour point –33 °C
Aniline point 104 °C

The bearing sleeve is given in Fig. 3. The 
dimensions of the bearing are: bearing diameter  
d = 40 mm + 0.05 mm, bearing axial length B = 40 mm, 
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outer bearing diameter D = 60 mm, bearing diametral 
clearance Z = 0.025 mm.

    
Fig. 3.  Bearing sleeve

1.2  Preparation of Experimental Materials and Conditions

The journal bearing sleeve is made of AISI 440C 
stainless steel, and a 3 mm thick layer of white metal 
(Tegotenax V840) is applied to the sleeve. The shaft 
is made of AISI 440C stainless steel. The chemical 
properties of the steel layer and Babbitt layer materials 
are given in Table 2, and the mechanical and physical 
properties in Table 3.

Table 2.  Chemical composition of AISI 440C sleeve and material of 
internal sliding surface - white metal TEGOTENAX V840

Element TEGOTENAX V840 [wt. %] AISI 440C [wt. %]
Sn 88.7 -
Sb 7.6 -
Cu 3.7 -
C - 1.2
Si - 1
Mn - 1
Ni - 1
Cr - 18
Mo - 0.75
P - 0.04
S - 0.03

Table 3.  Mechanical and Physical Properties

Tin-based white metal 
alloy: TEGOTENAX V840

Shaft: AISI 
440C

Hardness HB 10/250/180

20 °C 23 269

50 °C 17 -

100 °C 10 -
150 °C 8 -

Yield Strength, Rp0.2 [MPa] 46 448

Tensile Strength, Rm [MPa] 77 758

Young’s modulus, E [MPa] 56500 200000

Density, ρ [kg/m3] 7400 7650

Poisson ratio, υ 0.33 0.27 to 0.30

1.3  Determination of Frictional Properties

The friction coefficient is determined by the moment 
of friction. The friction moment Mf(t) as a function of 
time is calculated as the product of the friction force 
Ff (t) and the bearing radius r. As a reaction of the 
friction moment, the force Fs(t) appears at the contact 
point of the force sensor, which is at a perpendicular 
distance L from the centre of the sleeve (Fig. 4).

 M t F t r F t Lf f s( ) ( ) ( ) .� � � �  (1)

Fig. 4.  Friction force measurement scheme

Based on the expression for determining the 
friction force:

 F t t F tf N( ) ( ) ( ).� ��  (2)

The friction coefficient is determined by the 
expression:
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The input parameters of the test are speed n, 
i.e., sliding speed v and bearing load FN. The radial 
bearing load was varied in the range FN = 1000 N to 
4000 N, with the variation of the shaft speeds in the 
range n = 1000 rpm to 3000 rpm. The test parameters 
and specific bearing load are given in Table 4. 

Table 4.  Defined	parameters	for	testing	plain	bearings

Speed, n 
[rpm]

Sliding speed, 

v [m/s]

Bearing load, 

FN [N]

Specific bearing load,  

p = FN /(d·B) [MPa]

1000 2.09

1000 0.625
2000 1.25
3000 1.875
4000 2.5

2000 4.2

1000 0.625
2000 1.25
3000 1.875
4000 2.5

3000 6.3

1000 0.625
2000 1.25
3000 1.875
4000 2.5
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For data acquisition within the experimental 
tests of tribological properties of the sliding bearing, 
a personal computer (PC) equipped with appropriate 
hardware (measuring and control interface) in 
conjunction with software developed in the LabVIEW 
environment is used. The data was transmitted to the 
recorder, which enabled monitoring and recording of 
the signals. The data about coefficient friction, radial 
load and sensor force were applied for 1/20 s and the 
temperature lubrication oil and load for 5 s.

1.4  Test Results

Based on the experimental plan given in Table 4, tests 
were performed on test specimens of plain bearings 
with a previously defined geometry. 

Figs. 5 to 7 show the changes of temperature 
and friction coefficient with the change of the radial 
load of the bearing FN = 1000 N to 4000 N and the 
speed n = 1000 rpm to 3000 rpm. Twelve different 
experiments were performed, each lasting an average 
of 5 hours (18000 s).

2  ANN MODEL DEVELOPMENT

In order to establish a mathematical relationship 
between the dependence of the experimental 
parameters of the journal bearing test in the conditions 
of hydrodynamic testing, two ANN models were 
developed. The first model was for the prediction of 
the friction coefficient, and the second was for the 
prediction of the bearing temperature. For training 
and testing of the network, the data of the measured 
values of the friction coefficient µ and the bearing 
temperature T for 18000 s were used as a function of 
the change of the radial load FN and the speed of the 
shaft n.

The neural network architecture for both models 
had three neurons in the input layer (bearing load 
FN, speed n and time t), one neuron in the output 
layer (friction coefficient µ respectively bearing 
temperature T) and one hidden layer with 6 neurons 
(Fig. 8).

For the ANN model, a linear activation 
function and a nonlinear sigmoid activation function 
were combined in the output and hidden layers, 

a)              b) 

c)              d) 
Fig. 5.  Trends in time of friction coefficient and bearing temperature at 1000 rpm speed, for a load of  

a) FN = 1000 N; b) FN = 2000 N; c) FN = 3000 N and d) FN = 4000 N
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a)              b) 

c)              d) 
Fig. 6.  Trends in time of friction coefficient and bearing temperature at 2000 rpm speed, for a load of  

a) FN = 1000 N; b) FN = 2000 N; c) FN = 3000 N and d) FN = 4000 N

respectively. Accordingly, the obtained experimental 
data were normalized in the range [–1, 1]. During the 
development of the ANN model, the available input/
output data set was randomly divided into two sets: a 
training set and a test set for the ANN network model. 
295 data points were used for ANN training, and 43 
data points were used to test trained ANN network 
models.

The Levenberg-Marquardt algorithm was chosen 
for ANN training due to its high accuracy and fast 
convergence. In order to solve the convergence 
problem and minimize, as well as slow the 
convergence, the ANN training process was repeated 
several times with the help of different initial weights 
established by the Nguyen-Widrow method. During 
the ANN training process, although the maximum 
number of training iterations was set at 1000, it was 
observed that much fewer iterations were sufficient to 
train ANN models, Fig. 9.

Upon completion of the training process, the 
prediction performance of the trained ANN model 
was assessed. For this purpose, the mean absolute 

percentage error (MAPE) was calculated according to 
the Eq (4):

MAPE
N N

�
�

��1 1
Experimental value Estimed value

Experimental value
000 %� �, (4)

where N is the number of data.
The average errors for training and testing 

data for the first model are 0.0054 % and 0.0085 
%, respectively, which are very small indeed. The 
average errors for training and testing data for the 
second model are 0.12 % and 0.023 %, respectively, 
which are very small.

3 ANALYSIS AND DISCUSSION 

Fig. 10 shows the prediction of the friction coefficient 
as a function of bearing load and speed for the 
white metal alloy bearing internal sliding surface 
of Tegotenax V840. The prediction of the friction 
coefficient of the sliding bearing’s internal surface 
made of tin-based white metal alloy showed that the 
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a)             b) 

c)             d) 
Fig. 7.  Trends in time of friction coefficient and bearing temperature at 3000 rpm speed, for a load of  

a) FN = 1000 N; b) FN = 2000 N; c) FN = 3000 N and d) FN = 4000 N

Fig. 8.  Neural network architecture

Fig. 9.  Minimized mean squared error (MSE) during the ANN 
training process for friction coefficient prediction

friction coefficient has a downward trend with an 
increased bearing load.

The values of the change of the friction 
coefficient take the form of a downward trend - curve 
with increasing bearing load and decreasing speed, as 
shown in Fig. 10.
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lubricant temperature, which results in a decrease 
in the shear stress of the lubricant, which leads to a 
decrease in the viscosity of the lubricant and hence a 
decrease in the friction coefficient.

Fig. 11 shows the prediction of bearing 
temperature T as a function of the speed n and a 
sliding time t for the bearing load FN = 2500 N. This 
change has a growing trend with an increasing sliding 
time and speed.

It can be seen that the bearing temperature 
T increases with time t, as shown in Fig. 11. As 
the friction coefficient is directly proportional to 
the dynamic viscosity η, and the increase in oil 
temperature leads to a decrease in dynamic viscosity, 
which certainly leads to a decrease in friction 
coefficient. In Fig. 11, two zones can be observed, 
the unstable zone and the stable zone. In the zone of 
an unstable state, the temperature inside the system 
increases with time. The duration of this zone is 
estimated at about 4000 s. The second zone is a stable 
state in which the temperature remains approximately 
constant: somewhere around 41 °C to 54 °C.

Fig. 12.  Prediction of the ratio of the friction coefficient µ, in 
relation to the speed n and the sliding time t with the help of BP 

neural network

Fig. 12 shows the predicted friction coefficient 
µ in relation to the speed n and the sliding time t at 
constant load FN = 2500 N. It can be seen that the 
friction coefficient µ increases with the speed n. As 
the sliding time increases, the friction coefficient 
decreases according to the increase in temperature and 
the decrease in the viscosity of the oil.

The optimization of the ANN model using 
metaheuristics indicated a maximum friction 
coefficient of 0.1513, which was obtained in a 
combination of values of process parameters: n = 
3000 rpm, FN = 1072 N and t = 300 s. With regard to 

Fig. 10.  Prediction of friction coefficient µ as a function of bearing 
load FN and speed n with the help of BP neural network

Fig. 11.  Prediction of bearing temperature T as a function of 
speed n and sliding time t with the help of BP neural network

The sliding friction between the shaft sleeve, 
bearing, and lubricant causes an increase in the 
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the stochastic nature of metaheuristics, i.e., inability 
to guarantee the optimality of the found solution, the 
solution was checked by creating a three-dimensional 
(3D) diagram of the friction coefficient for t = 300 s, 
which is shown in Fig. 13.

Fig. 13.  The highest friction coefficient µ, obtained by optimizing 
the ANN model

As can be seen from Fig. 13, the value of the 
maximum friction coefficient of 0.1591 is obtained in 
a combination of the force FN = 1000 N and the speed 
n = 3000 rpm.

Based on experimental data, it was determined 
that for FN = 1000 N, n = 3000 rpm and t = 300 s, the 
resulting coefficient of friction has a value of 0.1579, 
which once again confirms the accuracy of the created 
ANN model.

4  CONCLUSIONS

The research into tribological properties of sliding 
bearings was performed on the originally developed 
equipment for testing rotating elements at the Faculty 
of Mechanical Engineering in Niš in the Laboratory 
for Mechanical Constructions, Development, and 
Engineering. A bearing made of tin-based white 
metal alloy-TEGOTENAX V840 were tested under 
hydrodynamic lubrication conditions with selected 
ISO VG 32 hydraulic oil.

Based on the conducted experimental research 
and developed ANN models for the prediction of 
the friction coefficient (first model) and bearing 
temperature (second model), the following 
conclusions can be drawn:

The ANN architecture for both models was 3-6-2, 
and the Levenberg-Marquardt algorithm was used to 
train the ANN. The result of ANN prediction shows 
that the models are extremely good with minimal 
mean square error training and testing data for the 

first model 0.0054 % and 0.0085 % and for the second 
model 0.12 % and 0.023 %, respectively.

The optimization of the ANN model, the highest 
friction coefficients 0.1513 were obtained at a bearing 
load of 1072 N and a speed of 3000 rpm, while the 
lowest coefficients of friction 0.00288 were obtained 
at a maximum load of 4000 N and a speed of 1675.22 
rpm.

The bearing temperature prediction model 
indicates a growing trend of change with increasing 
sliding time and speed. The bearing temperature T 
increases with time t; after a little more than 1 hour 
(about 4000 s), the bearing temperature stabilizes 
at approximately 50 °C at all bearing loads and all 
bearing rotation frequencies.
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