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0  INTRODUCTION

A distinctive feature of the contemporary container 
port industry is that competition has become fiercer 
than ever [1]. Improving productivity sufficiently 
to accommodate a large portion of the anticipated 
increase in container traffic presents a particular 
challenge to terminal operators and port authorities.

As the demand for international trade and 
global logistic services continues to increase, to 
remain competitive [2], in [3] the authors claimed 
that container terminals have to invest heavily in 
sophisticated equipment or in dredging channels to 
accommodate the most advanced and largest container 
ships. It is necessary to note that pure physical 
expansion is constrained by a limited supply of 
available land, especially for urban-centric ports, and 
escalating environmental concerns [4]. In addition, 
excessive and inappropriate investment also can 
induce inefficiency and the wasting of resources. In 
this context, expanding port capacity by improving 
the productivity of terminal facilities and exploring 
the critical factors affecting the productivity appears 
to be a viable solution [5].

For a container terminal, productivity 
performance makes a significant contribution to 
the terminal’s survival prospects and competitive 
advantage [6]. Traditionally, the performance 
of a container terminal has been evaluated with 
numerous attempts at calculating and seeking to 
improve or optimize the operational productivity of 
cargo handling at the berth and container yard [7]. 
A conceptual framework for analysing the outcomes 
of potential competitive strategies and their expected 

payoffs for container terminal operators in the 
container handling industry is presented in [8]. It is 
based on the integration of Bowley’s linear model 
of aggregate demand of product differentiation with 
Porter’s “Diamond” model. The authors developed ten 
competitive strategies for container terminal operators 
in order to present a theoretical scenario of two 
competing container terminal operators to exemplify 
the effectiveness of these strategies in terms of the 
number of TEUs handled, prices charged, and profits 
earned.

The data envelopment analysis (DEA) 
methodology has been applied to the evaluation of 
container terminal performance in the literature. 
For example, in [9] the first work to advocate the 
application of the DEA technique to the terminals’ 
context is presented; it remains a purely theoretical 
exposition, rather than a genuine application. DEA 
window analysis using panel data relating to the eight 
container ports in Japan is conducted in [10]. In [1], 
DEA-CCR (Charnes Cooper and Rhodes model) 
and DEA-Additive models are used to analyse the 
efficiency of four Australian and 12 other international 
container ports. Applying DEA to estimate the relative 
efficiency of a sample of Portuguese and Greek 
seaports is given in [11]. DEA and stochastic frontier 
analysis have been used to study the efficiency of 
the world’s largest container ports and compare the 
results obtained in [3]. In [12], the relevance of DEA 
was analysed to estimate the productive efficiency of 
the container port industry. Available DEA panel data 
approaches were applied to a sample of 25 leading 
container ports and evaluated in [13].
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In [14], five models of DEA were applied to 
identify trends in port efficiency of major container 
ports in the Asia-Pacific region. The impact of 
different groups on the efficiency of 28 container ports 
from 12 countries and regions in Asia was studied in 
[15]. In [16], the DEA method has been proven to be a 
suitable tool for evaluating performance with multiple 
inputs and outputs in respect to 77 global container 
ports. It was found that the number of berths and 
the capital deployed are the most sensitive measures 
impacting the performance of most container ports.

In contrast with previous investigations, this study 
aims to explore the relationship among productivity 
indicators of container terminals and determine 
which factors have a stronger impact on productivity. 
Regression analysis (RA) is primarily applied to 
analyse the relationship between one dependent 
variable and several independent variables. Here, we 
apply and extend some of the papers in which authors 
introduced a methodology that incorporates a new 
variable into the regression analysis that captures the 
unique weighting of each comparable unit, [17] to 
[20]. In [17], the different models (DEA and RA) were 
used in various combinations to determine efficiency 
estimation and evaluation. The relative merits of DEA 
and RA in assessments of the comparative efficiencies 
of organizational units were considered in [18]. In 
[19], the major differences between RA and DEA 
were identified, and their appropriateness as a primary 
means for assessing relative efficiency in the context 
of regulation with an application to the water industry 
were evaluated. A methodology that includes a new 
independent variable, the comparable unit’s DEA 
relative efficiency, into the RA is applied in [20]. 

From an overall perspective, in this paper, 
the sensitivity analysis method provides a more 
appropriate benchmark for identifying which 
factors are more responsible for the fluctuations in 
productivity of container terminal by removing the 
input variables one by one, and then re-estimating 
the correlation between productivity and investment. 
Sensitivity analysis has been studied, utilizing 
either DEA or RA. However, the existing literature 
reveals a lack of empirical evidence in relation to the 
comparative effectiveness of sensitivity analysis in an 
application to the port industry. This paper aims to fill 
this gap by applying the two approaches to analyse 
container terminal productivity.

The paper is structured as follows. The 
descriptions of DEA-CCR and RA with research 
procedure are given in Section 1. Section 2 
provides the data collection, efficiency analyses 
and standardization of variables. Empirical results 

and sensitivity analyses of DEA-CCR and RA 
are presented in Section 3. The major differences 
between RA and DEA-CCR with the relative merits 
are considered in Section 4. Finally, conclusions are 
drawn in Section 5.

1 RESEARCH METHODOLOGIES

1.1  Data Envelopment Analysis (CCR Model)

In order to describe the research methodologies for 
determining critical factors at container terminals, the 
first step is to explain the proposed analyses. DEA is 
a non-parametric method of measuring the efficiency 
of a decision-making unit (DMU). It was applied into 
operations research, where authors introduced the 
CCR model [21]. The evaluation of container terminal 
efficiency using the DEA-CCR method begins by 
choosing appropriate input and output variables.

Like in [3] but applying the expressions to 
container terminal efficiency, let the inputs be 
x x x x Rk k k Mk

M= ∈ +( , , )1 2  (in this case: berth length, 
quay crane, yard area, terminal crane and yard tractor) 
to produce outputs y y y y Rk k k Nk

N= ∈ +( , , )1 2  denoted as 
throughput per berth. The row vectors xk and yk  forms 
the kth rows of the data matrices X and Y, respectively. 
Let K

kk R+∈= ),,( 21 λλλλ  be a non-negative vector 
that forms the linear combinations of the K container 
terminals. Finally, let e = (1, 1, ..., 1)  be a suitably 
dimensioned vector of unity values.

In this study, the output-oriented DEA-CCR 
model seeks to maximize the proportional increase in 
output variables while remaining within the production 
possibility set. An output-oriented efficiency 
measurement problem can be written as a series of K 
linear programming envelopment problems, as shown 
in Eqs. (1) to (4) [3] and [12].

 max ,
,U

U
λ

 (1)

subject to
 U yy

' ' ,− ≤λ 0  (2)

 X x k' ' ,λ − ≤ 0  (3)

 λ ≥ 0  (DEA-CCR). (4)

The combination of equations from Eqs. (1) to 
(4) form the DEA-CCR model. Because the CCR 
model gives a value of 1 for all efficient DMUs, it is 
unable to establish any further distinctions among the 
efficient DMUs. 
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In this study, the DEA-CCR model conducts 
the efficiency value analysis first when efficiency 
is less than 1; this means that the efficiency of the 
inputs and outputs variables are not appropriate and 
that it is necessary to decrease inputs or increase 
outputs. However, when the scale efficiency is less 
than 1 it indicates inefficiency, meaning that the 
operational scale is not achieving an optimal value 
and that the operational scale should be enlarged or 
reduced (based on the return to scale). In addition, it 
is possible to compare the technical efficiency value 
with the scale efficiency value, with the smaller value 
of the two, indicating the major cause of inefficiency. 
Furthermore, the slack variable analysis handles the 
utilization rate of input and output variables. It does 
this by assessing how to improve the operational 
performance of inefficient DMUs by indicating how 
many inputs to decrease, and/or how many outputs 
to increase, so as to render the inefficient DMUs 
efficient. Finally, the sensitivity analysis removes 
the input variables one by one, and then re-estimates 
the aggregate efficiency. This facilitates an overall 
understanding of which input variables are more 
critical for efficiency improvement [16]. In summary, 
the flow process of multiple DEA-CCR analyses can 
be depicted as shown in Fig. 1.

Fig. 1.  Flow process of DEA-CCR model

1.2  Regression Analysis (RA)

The second research method proposed in this 
study is RA. It is used to determine which among 
the independent variables are related to the 
dependent variable, and to explore the forms of 
these relationships. More specifically, it aids in 
understanding how the typical value of the dependent 
variable changes when any one of the independent 
variables is varied, while the other independent 

variables are held fixed. In restricted circumstances, 
RA can be used to infer causal relationships between 
the independent and dependent variables. However, it 
is also widely used for prediction and forecasting, [22] 
and [23]. 

For this study, multiple linear regression analysis 
is adopted to test the hypothesized inter-relationship 
between the dependent performance variable and the 
independent variables that relate to the productivity 
of container terminals, [4] and [5]. This study tries 
two methods: Enter and Backward, of which one is 
selected as the best method for results (see Fig. 2). 
First, it is necessary to estimate the model with all 
the predictors. Second, this research method follows 
the inputs of all of the selected variables, then 
estimates all the predictors, using the enter method 
and backward elimination method. The backward 
elimination method is used with settings at 5% 
significance levels. If all the regression coefficients 
are significant, the procedure stops; otherwise, those 
with the smallest significance will be eliminated 
from the model. The procedure finally stops when 
all the regression coefficients are significant. Finally, 
analysing and explaining the regression results, 
some tests (R-squared and Adjusted R-squared, 
ANOVA and coefficient analysis) are conducted on 
each independent variable and F-test for the overall 
regression (see Fig. 2).

Fig. 2.  Regression analysis model

The regression formulation based on parameters 
β0, β1, ..., βr–1 with independent variables x1, ..., xr–1  
for n container terminals can be set up as follows:
 y x x r ni r r r= + + + + =− −β β β ε0 1 1 1 1 1... , , ..., .  (5)

1.3  Research Procedure

The research procedure of this study is summarized in 
Fig. 3 where the application of the proposed methods 
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is shown. On the basis of the literature review, survey 
and interviews, we eliminate the duplication factors so 
the initial input/independent variables can be chosen. 
Then, we assume a database for the 28 East Asian 
container terminals for which we decide the input/
independent variables and output/dependent variables. 
After the collection of data, we apply DEA-CCR 
and RA by selecting the output/dependent variable. 
Consequently, sensitivity analysis is performed to 
compare the obtained results from both methods. 
In such a manner, we identify the critical factors at 
container terminals.

This paper has two objectives. In the first, 
we propose the standardization of variables in order 
to constitute the accurate platform for the second 
objective. Moreover, definitions of variables should 
highlight the processes at container terminals and the 
factors impacting productivity. The second objective 
is to apply the two research methods to estimate the 
critical factors. This study represents a good starting 
point for identifying the sources of inefficiency 
and proposes services for improving operational 
performances at container terminals. 

Fig. 3.  Application of research methods

2 EFFICIENCY ANALYSES  
AND STANDARDIZATION OF VARIABLES

2.1  Data Collection

The first step towards conducting the productivity of 
container terminals is to define the port performance 
characteristics based on the combination of 

productivity factors (inputs) and then to highlight the 
outputs. Thus, many critical factors that relate to the 
terminal operation are to be considered. The sample 
comprises 28 East Asian major container terminals 
in 2008. The size of the sample is determined as a 
function of data availability and is more suitable for 
comparison [4] to [7].

The productivity indicator of this paper is 
assumed to be the annual throughput per berth. It is 
noteworthy that this study defines input/independent 
and output/dependent variables of each container 
terminal at the level of the berth. Accordingly, the 
standardization of variables is denoted as input/
independent variables per berth and output/dependent 
variables per berth. The data collection of the included 
container terminals is summarized in Table 1, [4] 
to [7]. The list of standardized input/independent 
variables includes: size of yard area (YA), number of 
quay cranes (QC), terminal cranes (TC), yard tractors 
(YT) and berth length (BL). Throughput is denoted as 
a standardized output/dependent variable.  

2.2 Definitions of Variables

Defining the objectives of container terminals is 
most important when determining the variables 
for efficiency measurement, [3]. In our paper, the 
objective is to maximize the throughput per berth; 
employment or any information on the equipment 
and count it as an input/independent variable. The 
variables should serve to reflect the existence of 
critical factors at container terminals. In this paper, the 
main objective is assumed to be the verification and 
maximization of terminal productivity. According to 
previously investigated papers ([4] to [7] and [24]), we 
chose the variables listed in Table 1 for both analyses: 
DEA-CCR and RA.

On the basis of efficient use of infrastructure 
and facilities, the previously mentioned independent 
variables seem to be the most suitable factors to 
incorporate into the models as input variables. There 
are some other factors that can be included in this 
analysis, such as crane operating hours, equipment 
age and maintenance etc., but they have not been 
included in this study. The variables should reflect the 
actual objectives and process of container terminal 
production as accurately as possible. The importance, 
difficulties and potential impact of variable definition 
can be found in [24]. 

Before defining variables at container terminals, 
we should incorporate them into the model as input/
independent variables: length of berth, number of 
quay cranes, size of yard area, number of yard cranes, 



Strojniški vestnik - Journal of Mechanical Engineering 59(2013)9, 536-546

540 Lu, B. – Park, N.K.

and number of yard tractors per berth as summarized 
in Fig. 4. On the other side, throughput per berth is 
in function of previously mentioned variables; as 
observed in the literature, this is the most important 
and widely accepted indicator of terminal productivity. 
It is the primary basis on which container terminals 
are compared. Container throughput is the most 
appropriate and analytically tractable indicator of the 
effectiveness of productivity.

From the perspective of the first method, DEA-
CCR provides the minimization of the use of inputs 
and maximization of the outputs. It is possible to 
acquire a variety of analytical results about the 
productivity efficiency for 28 container terminals. 
This procedure first identifies efficient container 
terminals and ranks the sequence of them, then 
finds the reasons the others are inefficient. This is 
followed by the identification of the potential areas 

of improvement for inefficient terminals by applying 
the slack variable method. Finally, by comparing the 
efficiency scores between the container terminals, the 
results can identify which input or output variables are 
more critical to the models.

Table 1.  Data statistics

Variables
Terminal

Yard 
Area/
Berth 
[ha]

Quay 
Crane/
Berth 

(number)

Terminal 
Crane/
Berth 

(number)

Yard 
Tractor/
Berth 

(number)

Berth 
Length/ 
Berth 
[m]

Throughput/ 
Berth  
(TEU)

HIT - Hongkong International Terminal in port of Hong Kong 15.0 4.0 16.0 37.5 325 877000
Shekou - Shekou Container Terminal in port of Shenzhen 13.2 4.3 15.1 27.7 301 817143
COSCO - COSCO-HIT Container Terminal 20.0 3.6 11.2 20.4 360 700000
DPI - DPI Container Terminal 17.3 4.1 10.5 23.3 288 700000
BICT - Busan International Container Terminal, 9.3 4.1 11.8 23.3 377 692083
CS-4 - Chuanshan Container Terminal Phase 4 13.8 4.1 12.0 23.3 306 655556
MTL - Hongkong Modern Terminal in port of Hong Kong 14.9 4.0 13.0 23.0 311 650570
PCTC - Pyeongtaek Container Terminal in port of Pyeongtaek 16.8 4.9 14.0 30.7 275 640000
NBCT - Ningbo Container Terminal in port of Ningbo 14.9 3.5 16.0 17.0 342 632997
HBCT - Hutchison Busan Container Terminal 25.2 3.3 10.7 16.7 340 600000
KX3-1 - KOREX Phase 3-1 Container Terminal in port of Gwangyang 17.5 4.0 14.5 27.5 317 600000
Chiwan - Chiwan Container Terminal 16.7 4.0 8.0 50.0 287 589000
KBCT - Korea Express Busan Container Terminal in port of Busan 14.3 4.0 10.0 30.0 251 588000
ACT - Asia Container Terminal 22.9 2.8 9.2 14.6 321 468353
HGCT - Hutchison Gamman Container Terminal 12.9 2.8 6.8 12.6 319 420594
DPCT - Dongbu Pusan Container Terminal 12.3 2.8 10.8 14.4 280 409165
NBSCT - Ningbo Second Container Terminal in port of Ningbo 21.0 3.0 8.0 12.0 330 403603
Hanjin - Busan Hanjin Container Terminal 9.6 2.0 6.0 10.0 311 355991
Yantian - Yantian Container Terminal in port of Shenzhen 37.2 3.0 8.0 15.0 353 333333
ICT - Incheon Container Terminal in Incheon 12.3 3.3 10.0 16.0 293 284868
Nansha - Nansha container Terminal in port of Guangzhou 7.4 2.5 6.5 11.5 232 279569
JUCT - Jeong-il Ulsan Container Terminal in port of Ulsan 6.9 3.0 6.5 7.0 325 172448
UTC - Uam Container Terminal in port of Busan 8.4 3.0 7.0 7.0 301 169952
DBE2-1 - Gwangyang DBE Phase 2-1 20.7 2.0 5.0 15.0 360 166371
KIT2-2 - Korea International Terminal Phase 2-2 in port of Gwangyang 21.0 2.0 6.0 15.0 288 124590
HKTL - Hutchison Kwangyang Terminal 21.0 2.5 8.5 11.5 377 76120
GICT1 - Gwangyang International Container Terminal Phase 1 17.6 2.0 3.8 4.0 306 51638
SGCT - Sun Gwang Container Terminal  in Incheon 12.2 1.5 3.5 4.0 311 14772
Average 16.2 3.2 9.6 18.6 310 445490

Fig. 4.  Variables at container terminal
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However, before utilizing the RA, it is necessary 
to be aware that all of the collected factors cannot be 
handled as dependent and independent variables. The 
possibility for duplication exists among the initial 
factors and non-linear correlation between dependent 
and independent variables. However, considering 
these circumstances first is required to establish the 
variables pre-processing model.

3  EMPIRICAL RESULTS

3.1  DEA-CCR Model Efficiency Results

Solver-EMS version 1.3 software is employed to 
provide the DEA-CCR model results. It is used 
to analyse the efficiency of the chosen container 
terminals. Empirical results derived from the first 
model are presented in Table 2. On the basis of five 
input variables, efficiency scores are drawn in the first 
column while ranking is shown in the last column. 

According to this table, nine container terminals are 
efficient because their efficiency scores are equal 
to 1. Otherwise, the results in bold mean the lowest 
value of five variables per terminal indicate they were 
relatively inefficient terminals. For instance, if we 
consider the Hanjin container terminal, the critical 
input is YT with a value of 0.69 and according to 
efficiency score, it ranks 14th place. There are three 
terminals that rank first place (Shekou, COSCO and 
CS-4) while the last ranking is presented for SGCT 
container terminal in Incheon port. 

Next is the identification of critical factors 
for each terminal. It is important to note that we 
have included four different ports in China and five 
in the Republic of Korea. Each port includes one or 
more container terminals as follows: five container 
terminals (ACT, COSCO, DPI, HIT and MTL) are 
located in the port of Hong Kong; seven (DPCT, BICT, 
HBCT, HGCT, KBCT, UTC and Hanjin) in the port 
of Busan; three (Chiwan, Shekou and Yantian) in the 

Table 2.  Empirical results derived from DEA-CCR model

Variables
Terminal

Efficiency
Scores

Yard Area/
Berth

Quay Crane/
Berth

Terminal Crane/
Berth

Yard Tractor/
Berth

Berth Length/
Berth

Ranking

HIT 1 0.96 1 1 1 1 3
Shekou 1 1 1 1 1 1 1
COSCO 1 1 1 1 1 1 1

DPI 1 1 1 0.71 1 1 13
BICT 1 1 1 1 0.83 1 10
CS-4 1 1 1 1 1 1 1
MTL 1 1 1 1 0.97 1 2
PCTC 1 1 1 1 0.95 1 4
NBCT 1 1 1 1 0.92 1 5
HBCT 0.98 0.98 0.98 0.9 0.91 0.98 6
KX3-1 0.93 0.93 0.93 0.9 0.77 0.93 11
Chiwan 0.91 0.86 0.91 0.88 0.9 0.91 7
KBCT 0.9 0.9 0.9 0.9 0.84 0.9 9
ACT 0.9 0.87 0.9 0.73 0.9 0.9 12

HGCT 0.89 0.87 0.88 0.88 0.85 0.89 8

DPCT 0.8 0.79 0.8 0.79 0.68 0.8 15

NBSCT 0.78 0.78 0.76 0.78 0.73 0.75 12

Hanjin 0.75 0.7 0.75 0.72 0.69 0.75 14

Yantian 0.74 0.71 0.73 0.69 0.74 0.74 14
ICT 0.66 0.66 0.66 0.66 0.43 0.66 18

Nansha 0.66 0.66 0.66 0.61 0.63 0.66 16
JUCT 0.65 0.65 0.65 0.65 0.38 0.65 20
UTC 0.52 0.5 0.52 0.5 0.47 0.52 17

DBE2-1 0.49 0.49 0.49 0.4 0.49 0.49 19
KIT2-2 0.35 0.35 0.35 0.35 0.19 0.35 22
HKTL 0.33 0.33 0.31 0.3 0.33 0.33 21
GICT1 0.18 0.18 0.18 0.18 0.15 0.18 23
SGCT 0.1 0.1 0.1 0.1 0.06 0.1 24
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port of Shenzhen; three (CS-4, NBCT and NBSCT) 
in the port of Ningbo; five (DBE2-1, GICT1, HKTL, 
KX3-1 and KIT2-2) in the port of Gwangyang; two 
(SGCT and ICT) in the port of Incheon; and one each 
(Nansha, JUCT and PCTC) in the ports of Guangzhou, 
Ulsan and Pyeongtaek.

In Table 3, the number of critical factors for 
each port is given based on the results in bold from 
Table 2. We have performed an analysis of all nine 
ports separately to determine their characteristics. For 
example, Hong Kong’s container terminals have the 
most critical factor TC while no port has indicated BL 
as being a critical factor at container terminals. The 
statistics show that YT is the most frequent critical 
factor in 16 container terminals, which is 57% of the 
28 considered terminals. TC is the second critical 
factor with 25% while QC occupies third place with 
11% and YA with 7%. Similarly, according to [16], we 
state that the number of yard tractors per berth is the 
major capital input in port operations. The efficiency 
of a port is the next factor to determine. Therefore, the 
highest average efficiency is provided by the container 
terminal in Pyeongtaek, which yields 0.99, while the 
lowest efficiency is reached in the Incheon container 
terminal at 0.353. 

Port efficiency statistics for each port are shown in 
Table 4. The main gap is between container terminals 
Shekou, COSCO and CS-4 with an efficiency of 1 on 
one side and on the other SGCT, which has one tenth 
the efficiency. Therefore, according to DEA-CCR 
analysis, we can conclude that Hong Kong, Shenzhen 
and Ningbo have the most efficient container 
terminals.

3.2  RA Models Efficiency Results

Regression models are statistical models that 
have the advantages of precisely analysing the 
relationship between one dependent variable and 
several independent variables, and identifying which 
factors have a stronger impact on the productivity of 
container terminal. Regression models also enable 

the relationships to be explored. The Solver-SPSS 
software is employed to provide RA model results. 
Independent variables (the same as input variables 
for DEA-CCR model) are established by extracting 
the whole major factors that have a relationship with 
productivity and the normalization process, which 
consists of three steps. After that, the interrelationship 
between independent variables and the dependent 
variable (throughput per berth) can be established.

Table 3.  Distribution of critical factors derived from DEA-CCR for 
each port

Port

Input
variables Ho

ng
 K

on
g

Bu
sa

n

Sh
en

zh
en

Ni
ng

bo

Gw
an

gy
an

g

In
ch

eo
n

Gu
an

gz
ho

u

Ul
sa

n

Py
eo

ng
ta

ek

Su
m

YA/Berth 1 0 1 0 0 0 0 0 0 2
QC/Berth 1 0 1 1 0 0 0 0 0 3
TC/Berth 2 1 1 0 2 0 1 0 0 7
YT/Berth 1 6 0 2 3 2 0 1 1 16
BL/Berth 0 0 0 0 0 0 0 0 0 0

With respect to obtaining a regression model 
summary with the backward elimination method, the 
R-squared value or correlation coefficient, ranges 
from 0.812 to 0.843, and the adjusted R-squared, 
which is the adjusted coefficient of determination, 
ranges from 0.797 to 0.807. This indicates the 
independent variables YA, QC, TC, YT and BL 
explain the regression analysis model as having a good 
fit. Accordingly, the RA model shows remarkable 
statistical significance, as can be seen in Table 5. 
The independent variables have been excluded from 
Models 1 to 4 in the following order: YA from Model 
2, BL and YA from Model 3, and QC, BL and YA 
from Model 4, which suggests that YT and TC are the 
most important variables. The standard error of the 
estimate is also given, which indicates a measure of 
the accuracy of predictions.

Other statistics have also been used to evaluate 
the critical factors at a container terminal. Using 
ANOVA analysis, we have also applied four models 

Table 4.  Port efficiency statistics derived from DEA-CCR for each port

Port
Statistics

Hong Kong Busan Shenzhen Ningbo Gwangyang Incheon Guangzhou Ulsan Pyeongtaek

No. of cont. term. 5 7 3 3 5 2 1 1 1
No. of effic. port 1 0 1 1 0 0 0 0 0
Maximum value 1 1 1 1 0.93 0.66 0.66 0.65 1
Minimum value 0.71 0.47 0.69 0.73 0.15 0.06 0.61 0.38 0.95
Mean value 0.9576 0.8106 0.8713 0.9147 0.4352 0.353 0.644 0.596 0.99
Standard Deviation 0.0447 0.1649 0.1320 0.1270 0.2869 0.3960 - - -
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with the elimination method and calculated the sum 
of squares and mean square values. From Table 6, 
the significant probability is always equal to 0.00 in 
applying independent variables removed in an orderly 
manner (as in the case of Table 5). In contrast, the 
F-test analyses the overall regression of the model and 
reflects satisfied results, which are also summarized. 
ANOVA analysis results show that the most significant 
independent variables are YT and TC.

Table 5.  Regression model summary

Model R R-Squared
Adjusted 

R-Squared
Std. Error of  
the Estimate

1 0.918(a) 0.843 0.807 108471.3905
2 0.917(b) 0.840 0.812 107046.0609
3 0.910(c) 0.828 0.806 108838.2806
4 0.901(d) 0.812 0.797 111440.0392

Note: (a) Predictors: (Constant), BL, YT, YA, TC, QC; (b) Predictors: 
(Constant), BL, YT, TC, QC; (c) Predictors: (Constant), YT, TC, QC; (d) 
Predictors: (Constant), YT, TC

Table 6.  ANOVA analysis results

Model
Sum of 
Squares

Mean 
Square

F-test Sig.

1
Regression 1.390E12 2.780E11 23.6 0.000a
Residual 2.589E11 1.177E10
Total 1.649E12

2
Regression 1.386E12 3.464E11 30.2 0.000b
Residual 2.636E11 1.146E10
Total 1.649E12

3
Regression 1.365E12 4.549E11 38.4 0.000c
Residual 2.843E11 1.185E10
Total 1.649E12

4
Regression 1.339E12 6.693E11 53.9 0.000d
Residual 3.105E11 1.242E10
Total 1.649E12

Note: (a) Predictors: (Constant), BL, YT, YA, TC, QC; (b) Predictors: 
(Constant), BL, YT, TC, QC; (c) Predictors: (Constant), YT, TC, QC; (d) 
Predictors: (Constant), YT, TC

The same four models have been analysed 
using coefficient analysis. Applying that and the 
T-test, which tests the single variable significance 
of the model, also reflect satisfied results. It shows 
that the BL variable has a negative impact on the 
dependent variable (throughput per berth). Similarly, 
the standardized coefficients’ Beta value appears 
minus the value for the variable BL. It means that, 
as throughput per berth increasing, the independent 
variable berth length would not be appropriate to 
handle this increased throughput. This implies that in 
this case BL is a critical factor for container terminals. 
However, the significant probability is decreasing, 

which suggest that variables YT and TC have the main 
impact on reaching throughput per berth. The results 
are summarized in Table 7. 

Table 7.  Coefficients analysis results

Model
Ustd. 

Coefficients
Beta 
value

T-test Sig.

1

(Constant) -75592.627 -0.490 0.629
YA 0.233 0.059 0.632 0.534
QC 92825.355 0.325 1.705 0.102
TC 34056.108 0.492 3.260 0.004
YT 5679.013 0.238 1.774 0.090
BL -765.770 -0.150 -1.470 0.156

2

(Constant) -65849.041 -0.434 0.668
QC 85529.610 0.300 1.628 0.117
TC 34277.077 0.496 3.327 0.003
YT 6010.075 0.252 1.929 0.066
BL -632.240 -0.120 -1.350 0.192

3

(Constant) -232134.707 -2.590 0.016
QC 79042.594 0.277 1.486 0.150
TC 32715.465 0.473 3.143 0.004
YT 5905.614 0.248 1.864 0.075

4
(Constant) -133732.596 -2.180 0.039
TC 43582.420 0.630 5.745 0.000
YT 8693.668 0.365 3.327 0.003

Finally, results from regression show that, in the 
scope of the independent variables, the numbers of YT 
and TC have a strong impact on berth productivity. 
The regression formulation, which is composed of the 
number of yard tractors and terminal cranes is:

Y X X= − + +133732 596 43582 420 8693 6681 2. . . ,  (6)

where X1 is the number of terminal cranes (TC) while 
X2 represents the number of yard tractors (YT).

4  IMPLICATIONS AND COMPARISON

The empirical results from DEA-CCR and RA 
analyses show that the input/independent variables for 
determining the critical factors at container terminals 
have a great contribution to terminal productivity. 
It is clear that the significance of critical factors 
for productivity is similar in respect to the chosen 
container terminals. The results indicate the first 
implication that the most important of factors are TC 
and YT. Table 8 shows the order of significance for the 
critical factors derived from both analyses. Obviously, 
both models affirm the importance of a number of 
terminal cranes and yard tractors.

Another implication of the results achieved in the 
analyses is that the facilities of a container terminal, 
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such as YA and BL, appear to exhibit lower levels of 
significance than the equipment. Although it is shown 
that huge YA or long BL do not always imply the 
higher productivity of terminals, it indicates that if the 
number of handling equipment like TC and YT were 
increased, the container terminal could improve its 
productivity.

Table 8.  Order of significance for critical factors derived from DEA-
CCR and RA analyses

Models
Input/
independent variables

DEA-CCR 
order of 

sign.

RA 
order of 

sign.

Output/
dependent 

variable
YA 3 5

Throughput 
per berth

QC 4 3
TC 1 1
YT 2 2
BL 5 4

In relation to the DEA-CCR model, the YA 
variable is in third place, with QC following. BL 
represents the input variable with the lowest level of 
significance. According to the coefficient results of 
RA, in the scope of the independent variables, the 
number of YT, TC and QC have a stronger impact on 
the throughput per berth. The YA also has a positive 
correlation, but in contrast, berth length has a negative 
correlation. 

Fig. 5.  Comparison of coefficients of efficiency for input/
independent variables (two different models)

Next, we compared the coefficients of efficiency 
for TC, YT and all input/independent variables in 
respect to different models (DEA-CCR, R-Squared, 
Adjusted R-Squared and Beta value as models of RA). 
The trend lines are shown in Fig. 5. The results for 
R-Squared imply the highest efficiency of container 
terminals with 0.8120, 0.8120 and 0.8430 for TC, YT 
and all input/independent variables, respectively. Next 
are the Adjusted R-Squared results of efficiency with 
0.7970, 0.7970 and 0.8070 for the same variables, 
respectively. DEA-CCR proposes the efficiencies of 

0.7368, 0.7075 and 07686 for TC, YT and all input/
independent variables, respectively. Finally, the Beta 
value gives the lowest results with 0.6300, 0.3650 and 
0.1928 for the same variables, respectively.

According to the results of both analyses, the 
following conclusions can be drawn. The higher 
the numbers of TC and YT, the higher the berth 
productivity will be. With respect to BL which has 
a negative correlation to throughput per berth, the 
increase of BL leads to a decrease in productivity. 
In contrast, YA differs from one case to another. 
For example, the yard area of the COSCO container 
terminal in Hong Kong is 20 ha and the throughput 
per berth is 700,000 TEU while the yard area of the 
HBCT container terminal in Busan is 25.2 ha, and the 
throughput per berth is 600,000 TEU. In contrast with 
the container terminals of the Republic of Korea, the 
yard area of Chinese ports is much larger. However, 
the reason the YA is not selected as an effective 
independent variable is that most container terminals 
use an off-dock container YA to improve yard 
utilization and rapid response to customers. The same 
assumptions are drawn with the average number of 
QC. Again, if comparing COSCO and HBCT container 
terminals, the average number of QC that are used at 
terminals for the first one is 3.6 while for the second 
is 3.3. COSCO reached 700,000 TEU per berth while 
HBCT reached 600,000 TEU per berth in 2008. It is 
a massive difference in total throughput even though 
the average number of QC at both container terminals 
is similar. This means that the number of QC is not 
related to the throughput directly. 

5 CONCLUSIONS

This study proposes DEA-CCR and RA models to 
assess the sensitivity analysis for identifying critical 
factors of productivity for container terminals. The 
sensitivity analysis shows that the input/independent 
variables for determining the critical factors at 
container terminals make a great contribution to 
terminal productivity. The sensitivity of an input or 
output measure is defined as the range of changes of 
the input or output measure to improve the efficiency 
of the frontier. The most sensitive factors are denoted 
as critical for considered container terminals. The 
empirical results indicated that the most important 
of them are TC and YT in the container terminals’ 
efficiency evaluation of the 28 chosen terminals 
in nine ports. These results have provided useful 
information indicating how relatively inefficient 
container terminals can improve their efficiency.



Strojniški vestnik - Journal of Mechanical Engineering 59(2013)9, 536-546

545Sensitivity Analysis for Identifying the Critical Productivity Factors of Container Terminals

As a benchmarking analysis, this study 
provides the two different approaches to efficiency 
measurement of container terminals, DEA-CCR and 
RA and compares their efficiency. These methods are 
applied to the same data set, and sensitivity analysis 
is conducted to compare the results of critical factors 
at container terminals. The productivity of a container 
terminal is influenced by a range of factors, which 
were removed one by one, and the correlation between 
productivity and investment then re-estimated. 

Furthermore, another major objective of this 
study was to compare the results obtained from 
applying DEA-CCR and RA. It is important to note 
some advantages of DEA-CCR over RA being as 
follows: DEA-CCR measures performance against 
efficient rather than average performance, DEA-CCR 
offers more accurate estimates of relative efficiency 
because it is a boundary method; DEA-CCR normally 
yields more accurate targets because it is a boundary 
method, and so on. However, some advantages of RA 
over DEA-CCR may be summarised as: RA offers a 
better predictor of future performance at the collective 
DMU level if it is assumed inefficiencies cannot 
be eliminated, RA offers the facility to estimate 
confidence intervals for point estimates, and RA 
could yield better estimates of individual maximum 
(minimum) levels where outputs (inputs) can vary 
independently of one another, among others [17] to 
[20].

Moreover, there are also some limitations of the 
research. Several factors of terminal productivity are 
not included in the variables, such as the number of 
vessel arrivals, manpower, the service time of vessels, 
and so on. However, the acquisition of data is quite 
difficult, and the combinations of independent/input 
variables and dependent/output variables that are 
utilized in this study also have to be adjusted. 

In further research, this study will enlarge the 
number of terminals and variables. The individual 
terminal simulation model will represent the direction 
for future investigations. 
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