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0  INTRODUCTION

Mechanical systems are composed of different 
machine elements, with the lubricant being one of 
the most important machine elements of each rotating 
machine. The main task of the lubricants is the 
lubrication of the bearing surfaces in the tribological 
contacts. It is also responsible for cooling and washing 
the wear particles away from the contact surfaces. 
The lubricant in the operating machines is the most 
important courier of information about the condition 
of the oil and the machine.  During operation, it is 
difficult to determine the exact time of critical oil 
degradation and substitution. Because it is difficult 
to determine when the oil needs changing, periodical 
(off-line) or permanent (on-line) monitoring of the 
physical and chemical properties of the lubricant 
and the presence of wear particles is required [1] 
and [2]. During the off-line process of oil condition 
monitoring, samples are taken at pre-defined intervals 
from random locations in the oil reservoir. Samples 
are analysed in a laboratory environment using several 
known techniques, such as total base number (TBN) 
analysis, viscosity measurements, ferrography, etc. [3] 
and [4]. The randomness of the sampling location does 
not, however, ensure that a representative assessment 
of the machine’s actual condition is being performed 
[5]. In on-line oil condition monitoring, the system 
for oil analysis is connected directly to the operating 
reservoir of the mechanical device. In comparison to 

the off-line methodology, the processes of sampling 
and analysis are performed without disruption. The 
generated wear particles on the lubricated elements can 
also be tracked continuously and with more accuracy, 
allowing for an early detection of mechanical failures 
[4] and [5].

As of today, on-line monitoring systems are being 
designed and tested by the major oil condition on-
line sensors manufactures, but a system with full oil 
diagnosis coverage is not yet available on the market. 
An example of a system integrating several individual 
on-line sensors has been presented in the context of 
marine diesel engines monitoring [6]. In that study, 
intelligent software was developed to autonomously 
analyse the oil properties and diagnose the machine’s 
health state. Concerning oil monitoring in real-
time, the challenge lies in the application of a robust 
automated method for change detection and diagnosis. 
CUSUM (Cumulative Sum of Errors) is a sequential 
analysis technique used to detect changes in a given 
time series assumed to have a statistical distribution of 
a Gaussian-type centred on 0 and a variance equal to 1 
[7]. This approach is the basis for the trend extraction 
algorithm presented by Charbonnier et al. [8]. 
Alternatively, Vaswani [9] presents a more complex 
CUSUM method by applying two different likelihood 
functions, the expected (negative) log likelihood 
(ELL) and observation likelihood (OL), which are 
suitable for slow and fast changes, respectively. Other 
variations in the CUSUM technique are available 
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in Basseville and Nikiforov [7], with theoretical 
justification.

In Section 1, a multisensory oil monitoring unit 
(ISU) that is able to measure the fault-indicative 
oil properties on-line will be presented. This will 
be followed by a detailed description of intelligent 
algorithms behind the assessment of lubricant 
condition. Section 2 is reserved for the experimental 
evaluation of the SOOA system, including two sets of 
tests: pitting and water contamination.

1 DESCRIPTION OF THE SYSTEM FOR ON-LINE OIL ANALYSIS 

1.1  Architecture

Fig. 1 shows the system for on-line oil analysis 
(SOOA), which consists of three main parts: an 
integrated sensor unit (ISU), an analysis environment 
(AE), and a maintenance centre (MC).

  

a)                                                          b)
Fig. 1.  Architecture of the system for on-line oil analysis:  

(1) electromotor pump; (2) hydraulic valve; (3a) to (3c) on-line oil 
monitoring sensors; (4) smart node; (5) database;  

(6) programmable device; (7) server; (8) display screens

1.2  Integrated Sensor Unit (ISU)

The Integrated Sensor Unit (ISU) is connected 
directly to the oil reservoir, Fig. 1a. The ISU includes 
an electromotor pump (1), a hydraulic security valve 
(2) and a set of on-line oil monitoring sensors (3a) 
to (3c). The sensors are able to measure on-line the 
oil temperature, relative water content and relative 
dielectric constant, calculate the generated mass 
of wear particles, and perform counting of ferrous 
and non-ferrous particles. The counted particles 
are divided into five size classes and grouped into 
two main sets, small and large-sized [10]. For data 
communication, the ISU unit includes the smart node 
(SN) unit (4). SN unit is a general programmable 

platform, responsible for data acquisition and 
communication with the analysis environment (AE) 
shown in Fig. 1b. Communication is done wirelessly. 
Details regarding SN are presented in [11].

1.3  Analysis Environment 

As shown in Fig. 1b, the AE consists of a database 
(DB) (5) and programmable device (6), such as a 
computer or laptop. The data processed in the AE is 
also sent to the main server (7) in the MC. The MC’s 
personnel are able to remotely consult the results 
provided by the SOOA system over digital display 
screens (8).

The AE is a digital platform designed to evaluate 
the current oil, wear particles and machine condition 
based on the measured oil properties and wear particle 
analysis. In the AE, a graphical user interface (GUI) 
and a diagnostics module (DM) are included (Fig. 2).

Fig. 2.  Architecture of the Analysis Environment

From the DB, the data is channeled for processing 
at the DM. The main purpose of the DM is to analyse 
the data from the DM and perform an evaluation of 
the oil and particles in the oil.

The diagnostics module includes two algorithms: 
a change detection algorithm (CDA) and a decision 
algorithm (DA). 

1.3.1  Change Detection Algorithm (CDA)

The CDA is a tool developed in MATLAB to identify 
trend changes in a series of data x(ti), i = 1, ..., N,  
acquired from on-line sensors and stored in the 
database. Besides identification of changes, CDA is 
also able to classify these changes in comparison to 
the acquired signal’s history.
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1.3.1.1  Data Acquisition and Normalization

At any given instant t = tn, a vector of the acquired 
signal, containing the last N samples, is set up, i.e.  
X(tn) = [x(tn–(N–1)), …, x(tn)], which is called 
the current data vector. The current data 
vector is normalized in the following form  
N(tn) = [x*(tn–(N–1)), …, x*(tn)]. Each value of the 
normalized vector x*(tj) is calculated by using the root 
mean square (RMS (Xn)) and average ( Xn ) value as 
follows:

 x t
x t X
RMS Xj

j n

n

*( )
( )

.=
( ) −  (1)

1.3.1.2  Evaluation of Trends

Quantitative evaluation of the trend is based on 
evaluating the linear approximation of the time series 
X(tn). A linear trend model is defined as:

 f t a a t t t tn n N n( ) = + ∈ − −0 1 1, [ , ].( )  (2)

In Eq. (2), a0 is the value at the origin and a1 
the slope of the approximation. Both parameters are 
obtained by the least squares method [12]. The new 
vector F(tn) of the approximated values is defined as 
F(tn) = [f (tn–(N–1)), …, f (tn)].

Using Eq. (2), the normalized vector N(tn) is 
modeled as F*(tn) = [f* (tn–(N–1)), …, f *(tn)]. The linear 
regression parameters of F*(tn) are denoted a0

*  and  
a1
* .

1.3.1.3  Error and CUSUM Computation

Having determined a0
*  and a1

* , we predict the function 
values at tn+1 using Eq. (2). The extrapolated value 
f* (tn+1) from the vector of the approximated values 
F(t) is compared with the extrapolated value fR

*(tn+1) 
from the vector of the approximated values FR(t). The 
vector FR(t) was calculated from the reference vector 
XR(t). How to obtain the reference vector XR(t) will be 
detailed later in this section.

An error e(tn) is obtained as the difference 
between the two extrapolated values:

 e t f t f tn n R n( ) ( ) ( ).* *= −+ +1 1  (3)

The cumulative sum (CUSUM) technique, 
suggested by Charbonnier et al. [8], is used to decide 
whether the current trend complies with the reference 
trend. This is done by summing the error values, 
sample by sample. The CUSUM value E(tn) is then 
given by:

 E t e t E tn n n( ) ( ) ( ).= + −1  (4)

The CUSUM value E(tn) is used to classify how 
the reference trend and current trend comply with 
each other. Classification is divided in three stages: 
acceptable, warning and unacceptable:
• 0 ≤ | E(tn) | ≤ Th1 :  Acceptable;
•	 Th1 < | E(tn) | ≤ Th2 : Warning;
• | E(tn) | > Th2 : Unacceptable.

When the CUSUM value E(t) exceeds the 
threshold Th2, i.e. the unacceptable stage, a new 
reference vector XR(t) must be set. The new reference 
vector XR(t) contains the acquired signal values x(t), 
when E(t) is between the thresholds Th1 and Th2, i.e. 
the warning stage.

1.3.1.4  Classification of Trends

The new reference vector XR(t) which is set with the 
acquired values x(t), will be modeled according to 
Eq. (2). The parameter a1, Eq. (2), is transformed into 
reference slope a1R. The current state of the signal 
is classified with one of the so-called trend states 
presented in Table 1.

Table 1.  Definition of the trend states

Trend state s
Trend limits

from to
“Changing (increasing)” 3 Q+ +∞
“Unchanging (increasing)” 2 Q– Q+

“Stabilizing (increasing)” 1 Th0 Q–

“Stable” 0 –Th0 Th0

“Stabilizing (decreasing)” -1 –Q– –Th0

“Unchanging (decreasing)” -2 –Q+ –Q–

“Changing (decreasing)” -3 –∞ –Q+

The new trend state is determined by comparing 
a1R and the former reference slope a1r. The parameter 
a1r is used to define the trend limits presented in 
Table 1, using two additional thresholds ThQ and Th0 
(“Stable” and “Unchanging” thresholds, respectively). 
ThQ can be set in terms of percentages. Th0 is an 
absolute parameter which is set in CDA. Th0 should be 
measured and adjusted according to the oil property or 
wear particle number. Q– and Q+ are the limits of the 
“Unchanging” trend state and are defined as follows:

 Q+ = a1r + 0.5(a1r · ThQ), 
 Q– = a1r – 0.5(a1r · ThQ). (5)

The possible transitions from one trend state to 
another have their restrictions. Fig. 3 shows which 
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transitions are possible, depending on the original 
trend state.

Fig. 3.  Trend state transition diagram

The different transitions are coded by a letter and 
an index number (Fig. 3). The letter depends on the 
original trend state: A – “Stable”; S – “Stabilizing”; 
N – “Unchanging”; C – “Changing”. The index 0 
indicates that no change in the trend state occurred. 
When the indexes are larger than 0 this indicates that 
the new trend state differs from the previous one.

1.3.1.5  State-Transition Vector Definition

The state-transition (ST) vector is defined as  
ST = [st(1), st(2), …, st(M)]. The st values, i.e. state-
transition indicators, are the trend state values s  
presented in Table 1 that are relevant for signal shape 
recognition. For recognition to be possible via this 
method, repetition of st values within the ST vector 
are to be avoided – the trend state value s(t = tn) will 
only be added to the ST vector if it differs from the 
previous value st(M), i.e. if the transition index differs 
from 0, see the diagram in Fig. 3:

if s(t = tn) ≠ st(M) then ST = [st1, st2, …, stM, s(tn)]. (6)

In order to eliminate false alarms due to temporary 
variations in the targeted oil property or wear particle 
count, the output of the s(tn) value as the latest state-
transition value st is purposely delayed. The st value 
is only kept if s(tn) remains unchanged for a certain 
pre-chosen amount of time.

If the signal returns to a “Stable” state, then the 
ST vector is reset:

 if s(t = tn) = 0  then  ST = [0]. (7)

1.3.2  Decision Algorithm (DA)

The DA is a tool developed in MATLAB which 
uses the information provided by CDA to recognize 
modeled transient shapes of the signals, which are 
fault indicative and perform fault diagnosis. DA 
includes a fault-modes table (FMT), shape recognition 
and fault diagnosis modules (Fig. 4). 

The decision algorithm goes through all fault 
cases in the FMT to determine the probability of each. 
For the specific fault, DA checks the influence of all 
oil properties individually. 

1.3.2.1  FMT Table

The FMT is a knowledge database that connects faulty 
events to identifiable transients for each individual oil 
property. 

Table 2 shows which oil properties are indicative 
of a specific fault and how they evolve over time. 
Note that a fault-free case is included and can be used 
to assess if the mechanical system being diagnosed 
is performing under nominal conditions, i.e. if all oil 
properties are stable. A fault modes table has been 
established based on the theory and experimental 
work presented in [1], [5], [10] and [14] and predicts 

Fig. 4.  Decision algorithm’s process of fault diagnosis
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four possible fault events and one additional fault-free 
case. 

1.3.2.2  Shape Recognition

From the CDA signal processing of oil property 
k, the corresponding state-transition vector STk is 
determined. From the FMT, a model for the signal 
shape r is also provided in the form of a state-
transition vector STr. In order for the similarity test 
to be possible, these vectors have to be resized to the 
same length.

If STk and STr are composed of N and M 
elements, respectively, then these are resized into 
two new L-elements (L = N × M) vectors. The scaling 
process is done by replicating and proportionally 
distributing the elements in the original ST into a new 
resized ST' vector.

A sequence similarity test is then performed. For 
that, a binary scoring function is defined such that: 

 σ st l st l
st l st l
st l st lk r
k r

k r
( )( ) = ≠

≠




, ( )
, ( ) ( )
, ( ) ( )

.
0
1

 (8)

According to [15], the value of the alignment  
between the vectors ST'k and ST'r can be calculated 
by summing all scoring results from Eq. (8):

 A st l st l
l

L

k r= ( )( )
=
∑
1

σ , ( ) .  (9)

In the end, the similarity coefficient is the ratio 
between the vector alignment value A and the number 
of elements of any of the resized vectors:

 sim ST ST A
Lk r, .( ) =  (10)

1.3.2.3  Fault Diagnosis 

The result for the similarity test is inputted into 
the fault diagnosis process (Fig. 4). For each fault 
event defined in the FMT we perform a number 
K of  similarity tests. K is the number of acquired 
signals from the on-line sensors (Fig. 4). The fault j 
probability is calculated with the following equation:

 p j sim ST ST w
k

K

k k r k( ) = ( )×
=
∑
1

, ,  (11)

Where wk is the influence weight of oil property k  
for the specific fault j. If all oil properties are equally 
influential in the identification of fault j, then wk = 1/k. 
If not, then the summation of all wk must still be equal 
to 1:

 
k

K

kw
=
∑ =
1

1.  (12)

The results for all fault probabilities p(j) are then 
shown on the Graphical User Interface (GUI) as a 
percentage (Fig. 5b).

Table 2.  Fault-modes table 

Fault

Oil property

Temperature
Rel. water 
content

Rel. dielectric 
constant

Ferrous part. 
count 

(small-sized)

Ferrous part. 
count 

(large-sized)

Non-ferrous 
part. count 

(small-sized)

Non-ferrous 
part. count 

(large-sized)

(Fault-free)

Water 
contamination/ 
Condensation

(No influence) (No influence) (No influence) (No influence) (No influence) (No influence)

Chemical 
contamination/ 
Oil aging

(No influence) (No influence) (No influence) (No influence) (No influence) (No influence)

Excessive wear/ 
Pitting

(No influence) (No influence) (No influence) (No influence) (No influence)

Particle 
contamination

(No influence) (No influence) (No influence) (No influence) (No influence)
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1.3.3  Graphical User Interface (GUI)

The graphical user interface is a visual environment 
for the AE. The GUI is divided into two parts or 
subsections (Fig. 5).

Element (1) in Fig. 5 shows the plot of the 
acquired signals for oil properties and wear particles 
measured by the on-line sensors. The last value 
(2) and rate of change (3) of the acquired signal are 
also presented in this subsection. Concerning the 
traffic light indicator (4), the final status (“Good” – 
green, “Warning” – yellow and “Critical” – red) is 
determined for each oil property and wear particle 
count. 

Fig. 5 also presents element (5), which is the fault 
diagnosis subsection showing a monitored machine 
under nominal conditions of operation. If any fault in 
the tribological contact is evolving, the “fault-free” 
percentage will drop in favor of an increase in any 
probability of fault occurring.

1.4  Maintenance Center

The MC is composed of a group of maintenance 
experts that take decisions based on the SOOA’s 
evaluation of condition of the oil and identification 
of faults. In the MC, the experts can control the oil 
condition monitoring process by consulting the 
visual elements presented in the GUI (Fig. 5). The 
SOOA system also provides reports about the on-line 
oil monitoring process upon occurrence of a fault-
indicative event.

The data and diagnostic results are stored in 
the DB and are available to be included in the local 
computerized maintenance management system 
(CMMS). With the CMMS, the maintenance managers 
can compare the machinery documentation with the 
on-line oil condition monitoring information. With 
this, the experts at the MC can make a final decision 

about the state of health of the machine and schedule 
the necessary interventions.

2  EVALUATION OF THE ON-LINE OIL ANALYSIS SYSTEM

In order to test the efficiency of the system, 
experiments were performed on a laboratory test rig to 
observe the following faults: pitting (Section 2.2) and 
water contamination (Section 2.3).

2.1  Experimental Setup

The laboratory experimental setup consists of a 
synchronous electric motor (1) and a brake-generator 
(3) that imposes resistive torque. A single-stage 
gearbox (2), with a transmission ratio of 1.5, connects 
the input and output shafts. Shafts are coupled to the 
motor and generator by two elastic and one fixed 
coupling. The ISU unit (4) hydraulic input and output 
were connected directly to the gearbox (Fig. 6).

Fig. 6.  Experimental setup

The synchronous electric motor has a rated 
power of 12.7 kW and speed of 1470 rpm. The brake-
generator has a 20.2 kW rated power and 110 Nm 

   
Fig. 5.  Graphical user interface; (1) acquired signal plot, (2) last value of the acquired signal,  

(3) rate of change for the acquired signal, (4) light indicator, (5) fault diagnosis subsection
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maximum torque. Inside the gearbox, a pair of nitrated  
spur gears (DIN 42CrMo4) with 16 and 24 teeth was 
installed. Two liters of gear oil were poured inside the 
gearbox for each test.

Before starting the monitoring process, the 
CDA’s input parameters were inserted into the DM as 
presented in Table 3.

Table 3.  Input parameters for the Change Detection Algorithm 
(CDA)

Oil property

Data 
window 
length 

[h]

CUSUM 
thresholds

Trend state 
thresholds

Th1 Th2 Th0
ThQ 
[%]

Relative water 
content

3 5 % 50 % 0.5 %/h 25%

Ferrous particle 
count (small-sized)

6
20 

particl.
200 

particl.
100 

particles/h
25%

Ferrous particle 
count (large-sized)

6
20 

particl.
200 

particl.
20 

particles/h
25%

All parameters presented in Table 3 were 
determined from observation and testing of the data 
from previous experiments on the experimental setup. 
These are the parameters we recommend for on-line 
monitoring of gear oil for this specific experimental 
setup. These parameters can be changed from the GUI 
at any time by the maintenance expert once the type of 
lubricant or the machine elements have been changed 
by the maintenance intervention.

2.2  Pitting Test

The pitting test was conducted for 120 hours. The 
sampling time was 1 minute for every analysed signal. 
The test was conducted under time varying torque 
conditions to test the influence of load variation in 
promoting pitting phenomena. The torque was set to 
vary in steps of 33% of the motor’s maximum torque 
every 7 hours, as shown in the profile presented in Fig. 
7. The motor speed was set to a constant 1296 rpm.

The acquired data was analysed and presented in 
the GUI (Fig. 5). To present the results of the pitting 
test from GUI in a more suitable form, we prepared 
the plots as shown in Fig. 8. The fine black lines in 
Fig. 8a and b show the number of small and large-
sized ferrous particles generated during the pitting 
test.

During the running-in period, from 0 to 56 hours, 
the small and large-sized particles increased very 
slowly. Following the running-in period, both size-
class particles started to increase faster (Fig. 8a and b). 

In the running-in period, the fault-free probability is 
100%, meaning that no faults occurred.

After this period, CDA indicated an increase in 
the number of small and large-sized wear particles 
(Fig. 8,  “Changing +”). CDA’s indication transmitted 
to DA which calculated the fault-free probability 
and excessive wear in the tribological contact. The 
probability of fault-free then decreased from 100 
to 72% (white bold line). On the other hand, the 
probability of excessive wear increased from 0 to 50% 
first and to 100% after (black dashed line). The pitting 
fault was fully indicated by the diagnostics module 
after 62 hours of the test run. Pitting on the gear teeth 
surface was confirmed with visual inspection at the 
72nd hour.

The following variations in CDA’s output and 
DA’s calculation of fault-free and excessive wear 
probability are resulted from the variations in imposed 
torque, Fig. 7.

Fig. 7.  The time varying torque profile and temperature evolution

2.3  Water Contamination Test

This test was performed in order to observe and 
indicate the influence of water contamination in the 
operating gear oil. The water contamination test lasted 
for 60 hours. Motor speed was set to a constant 1000 
rpm and the torque to constant 28 Nm. After 5 hours of 
the test run, 1 ml (500 ppm) of tap water was dropped 
through an inlet socket into the gearbox (white circle 
in Fig. 9).

The water ingression immediately produced an 
abrupt change in the relative water content. After this 
change, the relative water content slowly decreased 
until 60 hours into test run (Fig. 9).

After approximately 6 hours, the fault-free 
indication dropped from 100 to 86% (white bold line). 
At the same time, DA indicates an increase in the 
water contamination probability, from 0 to 50% and 
then to 100% (black bold line). This fully confirms 
that the gear oil was contaminated with water.
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a)   

b)   
Fig. 8.  Results of the pitting experiment; a) Ferrous particle count (small-sized), b) Ferrous particle count (large-sized)

Fig. 9.  Results from the water contamination experiment

After 18 hours of operation, CDA detects that 
the relative water content readings are stable. As a 
consequence of this, the DA fault-free results increase 

back to 100% and the water contamination probability 
falls to 0%.
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3  CONCLUSIONS

The SOOA system can monitor physical and chemical 
gear oil properties and generation of wear particles, 
in terms of number, size and mass. Based on the 
monitoring of oil properties and generated particles, 
the SOOA system makes a fault diagnosis through 
integration of individual assessments.

An analysis environment for communication with 
the operator/maintenance centre was developed and 
tested under live conditions. The evaluation of the 
diagnostic module was achieved through experimental 
tests in a laboratory environment. The response of the 
diagnostic algorithms was achieved in appropriate 
time, proving that the methods used for transient 
identification are able to successfully pinpoint the 
occurrence of the modeled failure events.

The SOOA can operate as a separate system or as 
a part of a larger integrated diagnostic system. In this 
integrated diagnostic system, full machinery diagnosis 
can be achieved by merging oil condition monitoring 
with vibrational and acoustic signal analysis and by 
monitoring the environment and contact temperature.
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