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Izrazi za popis upogibnega nihanja palice nespremenljivega
prereza

Equations for the Flexural Vibration of a Sample with a Uniform Cross-Section

Igor �tubòa - Anton Trník

V prispevku je predstavljen kratek pregled �e znanih izrazov za popis upogibnega nihanja,
uporabljenih za doloèitev Youngovega modula in hitrosti zvoka. Predstavljen je tudi nov izraz, ki velja za
vztrajnost kro�enja in vpliv stri�nih sil z izrazom 2 4 2 2[2(1 ) / ]( / )zi y t xm k+ ¶ ¶ ¶ , v katerem je iz polmer vrtenja
prereza, m je Poissonovo razmerje in k je oblikovni faktor, ki ga je uvedel Timo�enko. Krivulje porazdelitve
ka�ejo zelo dobro ujemanje splo�no uporabljanega Timo�enkovega izraza in novega izraza, ki sta ga
razvila �tubòa in Majerník.
© 2005 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: upogibno nihanje, enaèbe diferencialne, izraz Timo�enkov, momenti upogibni)

A short review of the known equations of flexural vibration used for determining the Young�s modulus
and sound velocity is presented, as well as a new equation that accounts for the rotary inertia and the
influence of the shear forces with the term 2 4 2 2[2(1 ) / ]( / )zi y t xm k+ ¶ ¶ ¶ , where iz is the radius of gyration of the
cross-section, m is Poisson�s ratio, and k is the shape coefficient introduced by Timoshenko. The dispersion
curves show a very good fit between the commonly accepted Timoshenko�s equation and the new equation
derived by �tubòa and Majerník.
© 2005 Journal of Mechanical Engineering. All rights reserved.
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0 INTRODUCTION

The most convenient type of vibration used

for measurement is a flexural vibration. It is easy to

excite it, and the magnitude of the vibration is

sufficiently high. The resonant frequency of the

flexural vibration is smaller than the resonant

frequency of the longitudinal or torsional vibration

of a sample of the same length and cross-section.

These properties of flexural vibration make it

preferable for measuring the elastic modulus (or

velocity of sound propagation) at elevated

temperatures.

The theory of the flexural vibration of prisms

and rods is based on deriving and then solving a

partial differential equation of vibration for the

sample. The exact solution of a three-dimensional

form of the equation is extremely difficult. Fortunately,

the mathematical approach to the solution of the

vibration of a sample with a simple and symmetrical

form can be simplified, and a reasonably exact

solution can be obtained. For this reason, only the

vibration of the sample with a simple uniform cross-

section (circular or rectangular) serves for a

measurement of the elastic parameters of solid

materials.

In this paper a short review of the equations

of flexural vibration commonly used for a

determination of the Young�s modulus or sound

velocity, as well as the new equation, is presented.

1 THEORY OF FLEXURAL VIBRATION

The simplified partial equation of flexural vi-

bration of beams with a uniform cross-section is

derived on the basis of the following assumptions

([1] and [2]):

a)  The amplitude of vibration is small.

b)  The mass element in the direction of vibration is

in equilibrium (see Fig. 1), i.e.:
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(1)

where r is the density of the beam material, S is

the area of the cross-section, T is the shear force,

t is time and  x, y are coordinates.

c)The equation of the elastic line holds:

(2)

where M is the bending moment, E is the Young�s

modulus and J is the moment of inertia of the cross-

section around the axis parallel with the z-axis.

d)The relationship between the shear force and the

bending moment has the form:

(3).

Eliminating the shear force T from Eq. (1) with

the help of Eqs. (2) and (3) we obtain:

 (4)

where 
0 /c E r=  is the sound velocity (i.e., the

velocity of the longitudinal wave propagation in the

sample), /zi J S=  is the radius of gyration of the

cross-section. Eq. (4) describes the vibrational mo-

tion of the sample with a sufficient exactness only

when the ratio l/d > 20, where l is the length of the

sample and d is the diameter of the cylindrical sam-

ple or thickness of the prismatic sample in the direc-

tion of vibration. The solution of Eq. (4) is the func-

tion:

(5)

where 1j = - , 2 /cw p l=  is the angular fre-

quency, c is the phase velocity of the flexural wave

and l is the wavelength. Substituting Eq. (5) into

Eq. (4) we obtain:

(6).

In Eq. (4) we anticipated only a displacement

motion of the mass element in the direction of the y-

axis. In the case of a fundamental mode vibration of

a short sample (in which l/d < 20) the rotation of the

mass element around the axis parallel with the z-axis

must be taken into account. The rotation of the mass

element must also be accounted for in the case l/d >

20 when the sample vibrates at a higher mode be-

cause the sample is divided into short parts by knots.

The rotary motion of the mass element is described

as (see Fig. 1):

(7).

If we derive Eq. (7) according to x and elimi-

nate T and M by means of Eqs. (1) and (2) we obtain

an equation that includes the Rayleigh�s correction

(see e.g., [3]):

(8).
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Fig. 1. Bending line, forces and moments effecting the mass element
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Substituting Eq. (5) into Eq. (8) we obtain:

(9).

As we can see from Fig. 2, the curves of the

functions (6) and (9) correspond to the curve of func-

tion (15) only for a long wavelength.

Another step in the agreement between

theory and experiment was made by Timoshenko

[1], who proposed a correction for the effect of shear

forces. Timoshenko made a hypothesis according

to which the angle between the tangent to the elas-

tic line and the x-axis is the sum:

(10)

where the angles y and c are connected with the

shear force and the bending moment according to:

and (11)

and the moment condition of the equilibrium of the

mass element is:

(12).

In Eq. (11) G is the shear modulus of elastic-

ity and k is a constant that depends on the shape of

the cross-section. From Eqs. (12), (11), (10) and (1)

we obtain Timoshenko�s equation [1] by the sequen-

tial elimination of the values of  M, T, y  and c:

(13)

where /sc G r=  and 2(1 ) /p m k= + , and

where ( / 2 ) 1E Gm = -  is Poisson�s ratio.

Timoshenko�s equation describes the flexural vibra-

tion of the sample with a circular or square cross-

section very well and in accordance with experimen-

tal results. For samples with a different form of cross-

section Pickett proposed equation [4]:

(14).

Eq. (14) transforms into Eq. (13) for a circular

or square cross-section. However, the influence of

the fourth term in Eq. (14) in the case of other cross-

section shapes is very small. Substituting Eq. (5)

into Eq. (13) we obtain:

where:

(15).
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Fig. 2.  Disperse curves for the steel rod. S �for simplified equation (6), R - for equation with Rayleigh´s
correction, Eq. (8), T � for Timoshenko´s equation (13), K � for Kuzmenko´s equation (16), SM � for

equation derived by �tubòa and Majerník (20)
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A curve calculated from Eq. (15) is shown in

Fig. 2.

From the analysis of Eq. (12) it is evident that

on its left-hand side there is only an angular accel-

eration coming from the bending moment, and on its

right-hand side there is a sum of all the moments of

the forces effecting the mass element. The total an-

gular acceleration is given by Eq. (7). Kuzmenko used

Timoshenko�s hypothesis (Eqs. (10) and (11)) to-

gether with Eqs. (7) and (1), [5]. Combining these

equations we get:

(16)

and substituting Eq. (5) into Eq. (16) after mathemati-

cal modifications we obtain:

(17).

The result of Kuzmenko�s attempt is shown

in Fig. 2. The values c/c
0
 for short wavelengths are

different from those calculated by means of Eq. (15).

The ratio  c/c
0
 for the short wavelengths must ap-

proach the value c
R
/c

0
, where c

R
 is the velocity of

the propagation of Rayleigh�s wave. For steel m =

0.29 and c
R
/c

0
 = 0.577, [2]. To fulfil the physical re-

quirement Rc c®  when l® 0, it is necessary to

change the coefficient from (1+p) in Eq. (17) to p.

Then:

(18),

as can be seen in Fig. 2. After substituting p into Eq.

(16) we obtain the equation:

(19)

which gives a result very close to the curve of Eq.

(15), see Fig. 2. We obtain the equation for phase

velocity (19) from the new equation derived by

�tubòa and Majerník [6]:

(20)

which we obtain in the same way as Eq. (16) by us-

ing p instead of (1+p).

The solution for the differential equation of

flexural vibration (20) can also be written in the form

of a function of the type:

(21)

where:

(22)

The values for the bending moment and the

shear force are:

(23)

which together with the solution of Eq. (21) and its

derivation with respect to x make it possible to com-

pile the frequency equation for given boundary

conditions.

2 CONCLUSION

The simplified Eq. (4) suffices for flexural

waves with a long wavelength (i/l < 0.03). For this

case Eqs. (8) and (16) give identical results, but they

are more complicated. For flexural waves with a

shorter wavelength (i/l > 0.03) Eq. (13) or Eq. (20)

must be used. The dispersion curves show a very

good agreement between the commonly accepted

Timoshenko�s equation (13) and the new equation

(20) derived by �tubòa and Majerník.
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