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Du�enje torzijskih vibracij in raziskava uèinkovitosti

A Damper of Torsional Vibrations and an Investigation of Its Efficiency

Bronislovas Spruogis - Vytautas Turla
(Vilnius Gediminas Technical University, Vilnius)

V prispevku so prikazani izvirni du�ilniki torzijskih vibracij, ki uèinkovito delujejo v �irokem obmoèju
motilnih frekvenc. Raziskali smo tudi nekaj mo�nih oblikovalskih razlièic. Osnovni sestavni del  du�ilnika
je rotacijski upogibni obroè. V prispevku raziskujemo gibajoèi se sistem na osnovi sistema nelinearnih
diferencialnih enaèb. Z razdelitvijo gibanja na enakomerno vrtenje in nihanje, razvojem koeficientov enaèbe
v Taylorjevo potenèno vrsto in izkljuèitvijo ustaljenih delov, dobimo sistem enaèb za majhna nihanja. Sistem
vsebuje vztrajnostne, upogibne in �iroskopske èlene. Izpeljali smo gibalne enaèbe in formulirali stabilnostne
pogoje za dinamièno ravnote�je sistema. Ustrezno pozornost smo namenili tudi drugim mo�nim nestabilnim
oblikam in podroèjem upogibnega obroèa. Analizirali smo lastne frekvence sistema. Oceno uèinkovitosti
du�ilnika glede na razliène parametre smo pridobili iz izraza za ekvivalentni vztrajnostni moment in njegovih
mejnih vrednosti.
© 2006 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: absorberji vibracij, obroèi kro�ni, vibracije, stabilnost, ekvivalent vztrajnostnih momentov)

This paper reviews an original torsional vibration damper retaining its efficiency over a wide
disturbing frequency band. Some potential design alternatives are considered. The basic structural ele-
ment of the damper is a rotary flexible ring. The paper investigates the motion system on the basis of a set of
nonlinear differential equations. By separating the motion into uniform rotary and oscillatory, expanding
the equation coefficients into a Taylor�s power series and excluding the static members, a system of equa-
tions for insignificant oscillations is derived. The system contains inertia, flexible and gyroscopic terms.
The equations of motion are derived and the stability conditions for the system�s dynamic balance are
formulated. Proper consideration is given to other possible loss-of-stability forms and regions of the flexible
ring. An analysis of the system�s natural frequencies is made. The efficiency estimation of the damper versus
various parameters is effected as a result of the expression of the equivalent inertia moment and its limit
values.
© 2006 Journal of Mechanical Engineering. All rights reserved.
(Keywords: torsional vibration dampers, rotary flexible rings, vibrations, stability, equivalent inertia moments)
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0 INTRODUCTION

New devices, mechanisms, assemblies and
machines should be very efficient. High efficiency
can be ensured by power- and speed-related
properties.

An increase in transmittable powers and
speeds of motion is accompanied by an
intensification of vibrations in the systems, and such
vibrations frequently exceed their dynamic loads.
The level of vibrations becomes one of the key
criteria of quality and reliability of machines. Because
of this, a limitation of the dynamic overloads of
machine assemblies is an urgent problem, directly

related to an increase of efficiency, reliability, accuracy
and longevity of machines, mechanisms, assemblies
and devices.

The authors have worked on damping the
torsional vibrations of complicated rotating rotor
systems for several decades. They explored various
methods and measures, for example, the first of them
[1] also carried out theoretical and experimental
investigations on the development of effective
dampers of torsional vibrations.

There is a variety of designs of dampers of
torsional vibrations that can be naturally inserted
into the structure of a relevant unit. Seeking a natural
arrangement is one of the causes of the above-
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mentioned variety of designs; however, successful
designs of vibration dampers are rare.

An advantage of the frictional dampers of
torsional vibrations is their capability to preserve
their efficiency in a certain frequency range.
However, seeking for essential efficiency in such a
case leads to a non-proportional increase of sizes,
weight, etc., the more so that frictional damping of
the vibrations is bound with the elimination of
heating energy, wear and the use of special materials.

Many works � both theoretical and
experimental � have been devoted to investigations
of vibration processes in mechanical rotor systems
([2] to [7]).

The well-known pendulous vibration damper
has an excellent feature of self-tuning for one
harmonic of the torsional vibrations on any change
of the speed of rotation of the system. However, it
almost does not affect the adjacent harmonics and
other torsional vibrations (for example, ones of
random character). In addition, a pendulous vibration
damper is completely discussed in transitional modes
of motion, in particular during the starting period.

The authors set the task to develop such a
dynamic damper of torsional vibrations that would
be tunable for a wide range of disturbing harmonics
(frequencies), remaining a natural element of the
rotating system.

It became clear that the set task may be solved
to a certain extent by the use of a vibration damper,
based on the rotating elastic ring situated on two
pendulous rings in the shape of elastic frames. The
torsional vibrations of the system generate trans-
versal bending vibrations of the elastic ring. The
damping system includes an elastic ring, special
masses that can be additionally fixed on it and elas-
tic frames.

1 THE SCHEMES OF CONSTRUCTIONS OF
VIBRATION DAMPERS

The design scheme of  the simplest damper
of torsional vibrations in the shape of a rotating
elastic ring [8] is presented in Fig. 1,a. The key
element of such a vibration damper is the ring 2
connected to the principal system 1 with two

Fig. 1. Schemes of dampers of torsional vibrations based on an elastic ring
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opposite frames 3. The ring can be equipped with
supplemental masses 5 (Fig. 1,b,c), perpendicular to
masses 4.

1.1 The principle of operation of a vibration damper
on the base of an elastic ring

In the case of the absence of rotation or
ideally uniform rotation, the axial line of the ring is
an ideal circle in the limits of stability. Torsional
vibrations of the principal system cause bending of
the elastic frames 3 and periodic compression of the
ring 2 in the transversal direction. The ring 2, because
of its elasticity and centrifugal mass, can efficiently
damp the torsional vibrations of the shaft 1 upon
certain parameters across a wide range of harmonics.

The technical realization of the vibration
damper according to this scheme is presented in Fig.
1, a-1, a-2. In Fig. 1, a-2, the elastic frames are
connected to the ring with swivel clamps.

If two supplemental masses of a particular
size are fixed to the ring, symmetrically with the axis
of rotation in the plane perpendicular to the plane of
the elastic frames (see Fig., 1,b), the ring is extended
into an ellipse-shaped body on the rotation. In many
cases, such an extended ring exhibits improved
vibration-damping properties. The bent centrifugal
pendulums 3 can be stabilized by a swivel
parallelogram (Fig. 1, b-1) or replaced with symmetric
elastic frames 3, tilted by a certain angle with respect
to the radius (Fig. 1, b-2).

In many cases the efficiency of the vibration
damper can be increased by fixing the elastic ring on
two symmetrically tilted pendulums (see Fig. 1, c).
The tilted pendulums can be elastic frames (Fig. 1, c-

1) or elastically fixed tilted pendulums (Fig. 1, c-2).
The vibration damper presented in Fig. 1, c-2 includes
one more elastic rings of small diameter 3 in the
middle, clamped at two opposite points. The ring is
an elastic swivel.

1.2 Investigation of the operation of the vibration
damper

Let us start the investigation of the operation
of the vibration dampers (see Fig. 1) with a calculation
of the potential energy of the deformed ring and the
kinetic energy of the system. The potential energy
of a half-ring as an elastic body, deformed by the
impact of concentrated forces (Fig. 2), can be found
from the following expression according to [8]:

                                                                                                         (1),

where a
B
 and b

B
 are coefficients, and P and Q are

fictitious forces.
Let us find the coefficients a

B
 and b

B
. For

this purpose, the shifts of the ring in the direction of
the forces P and Q should be found. In accordance
with [8]:

                                                            
(2).

Thus:

                                                                             (3).

Fig. 2. For determining the potential energy of a deformed elastic ring
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Let us consider that the shift of point A
consists of two components, i.e.:

                                                                                                                                   (4),

where uD is the shift of point A caused by the force P,
u

0
 is the shift of the point B caused by the force Q:

                                                                                                                     (5),

correspondingly:

                                                                                                                                   (6).

On the basis of Equations (4) and (6), we find
u

2
:

                                                                                                                        (7).

Let us find the potential energy of the
deformed ring as a function of the shifts u

1
 and u

2
.

From the above expressions (2) and (3), the forces P
and Q are expressed as follows:

                                                                                                                                   (8)

                                                                                                                                          (9).

After the insertion of the expressions of the
forces from (8) and (9) into the expression (1), we
find the full potential energy of the elastic ring from
the forces P and Q as follows:

                                                   (10),

where:

                                                                                            (11).

The total potential energy of the system (P
S
)

consists of the potential energy of the elastic ring
(P

k
), the potential energy of other deformable

elements of the vibration damper (P
i
) and the

potential energy of the torsion of the shaft (P
v
), i.e.:

                                                                                                                      (12),

where:

                                 (13).

In order to calculate the kinetic energy, let us
consider the system to be a system with three
degrees of freedom. Fig. 3 presents the estimated
scheme of the vibration damper, where j

1 
and j

2
 are

independent of the angular coordinates, R is the
initial radius of the elastic ring, m is the reduced
mass of the part of the ring with the relevant
concentrated mass, m

0
 is the reduced mass of the

part of the ring with the supplemental mass, r is the
distance of the mass m from the axis of rotation, r

0
 is

the distance of the mass m
0
 from the axis of rotation,

r and r
0
  in the general case are a function of the

rotational deformation of the vibration damper. If the
radial shift of the mass m(u

1
) is a function of (j

1 
- j

2
),

the radial shift of the mass m
0
 also includes the

independent component u
0
 that is the third

generalized coordinate.
The kinetic energy of the system, taking into

account the existence of two couples of masses, is
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found from the following expression:

                                                                                                           (14),

where:

I
1
 is moment of inertia of the rotated mass; the super

point means differentiation with respect to time.
In order to simplify the estimated

dependences, we consider that the radius of the
string clamping (r) equals a half of the radius of the
elastic ring (R).

Then, the following is concluded from Fig. 3:

                                                                                 (15).

Finally, we find the following expression for
the kinetic energy:

                                                                                                                                                     
   
(16).

After relevant transformations, we find the
kinetic energy as a homogenous quadratic form of
the generalized speeds [8]:

                                    
   (17),

where the values of the relevant coefficients are as
follows:

          (18).

For the formation of differential equations of
motion we will use Lagrange equations of the second
order [9]:

                                                                                        (19),

where M
i
 is the generalized moment of potential

forces.
After the differentiation, we find the

equations of motion of the system, neglecting the
frictional forces:

          (20),
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0
c is the statistic component, v is a small varying

value), where each equation is divided into two parts,
corresponding to stationary and vibrating motion.

1.3 Investigation of the stability of the dynamic
balance

Taking into account a certain identity of two
first equations of the system (20), its is described by
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two equations only:

                                                                                                                        
(21).

Let us check the stability of the positiveness
of the matrix determinant:

                                                                               (22),

thus:

where:

The system will be stable if D > 0 and

                                                                                                                               (23).

With an experimental investigation of the
various schemes of dynamic vibration dampers on
the basis of an elastic ring, some other forms of loss
of stability were obtained: 1) because of an excessive
increase in the ring�s radius for its extension, 2)
because of a symmetrical deflection of the ring from
the axis of rotation, 3) because of non-symmetrical
sideways deflections, etc. On the basis of the
experimental data, an analytic investigation on the
stability of dynamic balances of the elastic ring was
carried out at the preset static deformation, and some
peculiarities were cleared up.

The criterion of the stability of the dynamic
balance shall be considered as the existence of the
maximum of kinetic potential in the preset position
(point). In such a case, if the kinetic energy itself is
equal to the maximum, the stability shall be
considered natural and the position of the balance
will not depend on the mode of the speed.

If for the point under investigation the kinetic
energy is equal to the minimum or at least does not
depend on the disturbance under discussion, the
forced stability will only be possible at this point,

i.e., we will consider that rigid forced stabilization is
possible due to elastic elements. In other cases, we
will ensure forced stability is possible on a certain
shift of the point of dynamic balance. The size of
such a shift depends, among other factors, on the
mode of the speed. However, such a shift usually is
bound with the appearance of a certain instability
that is not allowed in a vibration damping system.

Let us discuss various cases:

1. Stability of an ideally symmetric concentric ring
in the case  of  its uniform  rotation

Let us suppose that the concentricity of the
ring is ensured in any case and no static bending
exists. The kinetic energy of the ring is:

                                                                                                                (24),

where R is the initial radius of bending of the elastic
ring, g

n
 is the mass of the unit of length of the ring,  w

is the average rotational frequency of the system,
Dl is the absolute elongation of the ring.

The potential energy of the ring is:

                                                                                                                            (25),

where F is the area of the cross-section of the elastic
ring, E is the module of longitudinal elasticity.

Let us consider that a stable extension of the
ring corresponds to the maximum kinetic potential,
i.e., the following condition should be satisfied:

                                                                                                (26).

In such a case, the extension of the ring will
be as follows:

                                                                                                                        (27)

and the limit value of the angular speed will be:

                                                                                                                                      (28).

The condition (28) identifies the limit of the
zone of a stable extension of the ring.

2.  Symmetrical longitudinal extension of the ring
As our investigations showed, the maximum

efficiency of the vibration damping is achieved when
z > 1 (in Fig. 3,  z = m
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/m) and the ring operates as

extended. If we consider that the ring is deformed
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according to the scheme provided in Fig. 3, the
element and a more precise investigation provides
that the angle a = 0, if z < 1, and a > 0, if z > 1, i.e., the
deformation, identified with the torsion angle a,
when z > 1, has a stable fixed value, dependent on
the rigidity of the elastic ring and other elements.

It is notable that the bending rigidity of the
ring itself does not affect the limits of the zones of
stability (z = 1), it only defines (together with other
parameters) the value of the static deformation.

3. Symmetrical sideways deflection of the ring
The element investigation of stability of the

positions of dynamic balance upon the condition of
the extremity of the kinetic potential allowed us to
make the following conclusions:
a) zero deformation of the ring is possible only on z

< 1/3 (if the ring is fixed on swivels of pendulum
frames);

b) if z = 1/3, a certain statistical deformation of the
ring is set, depending on the mode of the speeds
and the rigidity of the rings;

c) if z > 1/3, the ring does not achieve a natural
balance, so a symmetric deflection may  transform
into a non-symmetrical one.

Some other possible disturbances of the ring
were discussed, and the conditions of balance were
explored as well.

2 INVESTIGATION OF THE EFFICIENCY OF
OPERATION OF THE VIBRATION DAMPER

Let us divide the motion along the cyclic
coordinates j

1
 , j

2
 into a uniform rotational motion

and vibrations around it, using the expressions:

                                                                                                                         (29)

and introduce the transformation:
                                                                                                                                    

 (30),

where a
1
 and a

2
 are the phases of motion of the

driving and driven links, respectively, w is the
average frequency of rotation, t is the time, b

1
 and b

2

are small deflections of the coordinates j
1
 and j

2

from the state of uniform rotational motion, u
0
c is the

static component, and v is a small variable value.
After the disintegration of the coefficients of

the non-linear equations of motion into a Taylor�s
series and the elimination of the static parts of the
equations that identify the dynamic balance, the

linearized equations of small free vibrations around
the position of stationary motion will be as follows:

                        (31).

The linearized equations of motion (31)
include inertial, gyroscopic and quasi-elastic
members. Thus, the dynamic link of the vibration
damper is a rather complicated link between rotating
objects, and in the general case it cannot be reduced
to the usual (linear or non-linear) elasticity.

2.1 Solution of the system of equations

The natural frequencies of the system with
the vibration damper can be found on the basis of
the characteristic determinant:

(32),

where l = iwpc,   pc is one of the natural frequencies.
This determinant (32) provides three natural
frequencies.
     For a determination of the natural frequencies of
a vibration damping system only, the below reduced
equation (33) can be used; this equation is the
condition of frequency tuning for the vibration
damper as well:

          (33).
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The periodic component of the reactive
torsional moment is:

                                                 (34)

and the equivalent moment of inertia is:

                                                                                                                                     (35).

After insertion of the values:

                                         i=1,2

as well as their fluxions ,  ,  ,  ,i i v vb b& && & &&  and ratios

2 1 2 1/ ,  /A A B B  and so on into (35), we find the
following expression for the equivalent moment of
inertia:

             (36).

The limit values of the equivalent moment of
inertia for low- frequency disturbances will be found
from the following expression:

   (37)

and for high-frequency disturbances:

                                     
   (38).

In our case, the coefficients will be expressed
as follows:

                                                             (39),

where R = 2r, m
0
 = mz, a

1
 - a

2
 = a, and z is the ratio of

the centrifugal masses m
0
 and m. Other coefficients

will be expressed as follows:

                                                (40).

Fig.4. Dependence of the critical frequency of rotation (w) of the damper on the thickness of the elastic
ring (t

k
), when b = 20 mm,  z = 2,0,  m = 0.03 kg, where the curve 1 corresponds to R = 80 mm and the

curve 2 to R = 100 mm (the zones of stability are shaded)

( ) ( )

( )( )

11 1 1 12 2 13 2 13 23

2 2
1 2 22

2 ' ' '

1
'' '' '

2

p

x

M a I a a v w a a v

w a v

b b wb w

w b b w

= - - - - + + + -

- - P - +

&& && &&& &

1

p
e

M
I

b
= -

&&

3 3

sin cos

sin cos
i i iA pt B pt

v A pt B pt

b = +

= +

( )( )

( ) ( )

( ) ( ) ( ){ }
]

2 2 2 2 4
11 1 22 23 23 12 23 22 23 12 33

2 4 2 2 2
22 33 23 22 22 33 22 23

2 2 2
1 33 13 22 11 1 22 12

2 2 2 2
22 22

2

1
'' ' '

2

2 '' '' '

1

2

e
xx xx x

x

x xx xx

a I a a a a a a a a a p
I

a a a p a a a w a a

w I a w a a a I a a

a p a

w w w

aw w

w w

é ù- - - - - +ë û=
é ùæ ö- - P - - - P - +ç ÷ê úè øë û

é ù é ù+ - - P - - - -ë ûë û
æ ö+ - P -ç
è ø

( )

( ) ( )

( )

( ) ( ) ( )

2 2 4
22

2 2 2 2 2
22 13 22 23 11 1 22

2 2 2 2 2 2
22 22 22 22

2 2 2 4
1 22 1 22

1
'' '' '

4

1
4 ' '

2

1
2 ' 2 ' ' '' ''

2

1 1
2 '' '' 2 '

2 4

x

xx xx x x

xx xx x x x

xx xx x

w a

a w a a w a a I a p

w w a a a w a

w I a w w I a

w w

w w w

w w w w w

w w iw

+
- P +÷

é ù+ P - + - - - +ê úë û
ì é ùæ öP - + - - P -ï ç ÷ê úï è øë û+ í

æ öï- - P - - P - -ç ÷ï è øî

ü
ï
ï
ý
ï
ïþ

( )

( )

( ) ( ) ( )( ) ( )

2 2 2 2 2 2
22 22 22 22

0 2 2 2 4
22 22

2 2 2 4
1 22 1 22

1
2 ' 2 ' ' '' ''

2
lim

1 1
'' '' '

2 4

1 1
2 '' '' '' 2 '

2 4

xx xx x xx xx

e
p xx xx x

xx xx x

w w a a a w a

I
a w a

w I a w w w I a

w w w w w

ew w w

w w w aw

®

é ùæ öP - + - - Pç ÷ê úè øë û= -
æ ö- P - - P -ç ÷
è ø

æ ö- - P - - P - -ç ÷
è ø

( )( )2 2 2
11 1 22 33 23 12 23 22 23 12 33

2
22 33 23

2
lim e

p

a I a a a a a a a a a
I

a a a®¥

- - - - -
=

-

( )

( )

( ) ( ) ( )

( ) ( ) ( ){ }
( )

( )

( )

2 2 2
11 1

2 2 2
12

2 2
22

2 2
0 0

2
13

2
23

22
33

2 sin 1

2 sin 1

2 1 4 1 cos 1

2 1 1 2 1 1 cos

2 1 sin

2 1 sin

2 1

a I mR zk

a mR zk

a mR z mR zk k

mu z k u k R k

a mzkR k

a mzkR k

a mz k

a

a

a

a

a

a

= + +

= - +

= + + - + +

+ - - + + -é ùë û

= -

= - -

= -

( )

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

( )

( )

2 2
11

22 0

2 2
12

2 2
0

2 2
11

22 0

2 2
12

2
22

2

' 2 sin 2 1

' 4 1 sin 1

' 2 sin 2 1

'' 2 1 cos 1 2 cos 2 1

'' 4 cos 2 1

'' 4 1 cos 1

'' 4 cos 2 1

' 4 1 sinx

a mR zk

a mzkR k R u k

a mR zk

w mzkR k R u k mR zk

a mR zk

a mzkR k R u k

a mR zk

a mzkR k

a

a

a

a

a a

a

a

a

a

= +

= + + -é ùë û

= - +

= + + - - +é ùë û

= +

= + + -é ùë û

= - +

= -

( )

( ) ( ) ( ){ }
( )

( )

( )

22
2

2 2
22 0

2
1

2 3

2 3 32

1 2 3

4 1

4 1 1 cos 1

'' cos cos 2

8 20 32

8

16

8

xx

x

n

xx
n

n

mz k

a mz k kR R u k

C R

EI
C

R

EI
C

R

a

a a

p p p

p

p

p

= -

é ù= - - + + -ë û

P = -

- +
P = =

-

=
-



Strojni�ki vestnik - Journal of Mechanical Engineering 52(2006)4, 225-236

233Du�enje torzijskih vibracij - A Damper of Torsional Vibrations

From the equations of dynamic balance we
find the average angle of torsion a

1
-a

2
 of the

vibration damper and u
0
c is the static component of

the independent variable u
0
:

                              (41)

                                                   (42).

The complete expression of the equivalent
moment of inertia (36) of the vibration damper under
discussion is not presented here because of its
length. The equivalent moment of inertia in the high-
frequency zone of disturbances is expressed as
follows:

(43).

As specific quantitative calculations showed,
it is sufficient to describe the deformed ring in many
constructions of vibration dampers with only two
generalized coordinates, i.e., it can be considered
that a transversal compression of the ring is
proportional (in some cases equal) to its longitudinal
extension.

In such a case, the expression for kinetic
energy is reduced to the well-known quadratic
trinomial [11], and its coefficients are as follows:

                                    
(44).

Correspondingly, the potential energy will be
equal to:
                                                                                                                            

  (45),

where ( ) ( )
22

1 1 2

1
2 1 cos

2k nC r j jP = - -é ùë û  is the
potential energy of the elastic ring; P

v
 is the potential

energy of the shaft torsion that is a function of j
1
.

     Based on the methods described in [12], we find
linearized equations for the small torsional vibrations
that may be used for an assessment of the stability
of dynamic balance and the efficiency of the vibration

Fig.5. Dependence of the natural frequencies of vibration damper (pc) on its structural parameters and
the number of revolutions, when the radius of the elastic ring R = 80 mm, m = 0.03 kg, n = 1500 rpm, z =

1.25, t
k
 = 1.1 mm, b = 20 mm (the solid lines are obtained by using the equations (33) and the dotted

ones by  using the simplified calculation (48)), where the curves 1, 1�, 1�� � pc = f(n),  2, 2�, 2�� -  pc = f(z),
3, 3�, 3�� � pc = f(t

k
), the index ´ corresponds to the first frequency and the index � � to the second

frequency (in the formula (33))
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damper. To a certain extent, such cases are described
in [7] to [9] as well.

In this case, the stable positions of the
dynamic balance of the ring are described by one of
the following conditions:

a) if z < 1,  a
1
 - a

2
 = 0,

b) if z > 1, 
( )

2
1

1 2 2
1

4
arccos

2 1
n

n

C zm

C z m

w
a a

-
- =

- +

For the case b), the minimum cross-section
of the ring (its axial moment of inertia) will be found
from the following inequality:

                                                                                                               (47).

3 RESULTS

The possible combinations of the parameters
are illustrated in Fig.4.

The frequency of resonance tuning of the
vibration damper is:

                                  (48).

Fig. 5 illustrates some curves of natural
frequencies.

The expression for the equivalent moment of
inertia will be as follows:

                                                                                                                                                      (49),
where:

The dependence of equivalent moment of
inertia structural and performance parameters is
presented in Fig.6. The limit value I

e
 in the low-

frequency zone:

                                     (50),
in the high frequency zone:

                                                                                       (51).

Fig. 6. Equivalent moment of inertia of the damper, where 1 � I
e
 = f(m),  2 � I

e
 = f(R),  3 � I

e
 = f(z),  4 � I

e
 =

f(t
k
),  5 � I

e
 = f(w),  and 6 � I

e
 = f(EI)

(46).
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The comparison of the values of the
equivalent moment of inertia, found from the equation
(36) and the simplified calculation (49), is provided
in Fig. 7.

4 CONCLUSIONS

The general results of the investigation are
provided in the presented schemes of vibration
dampers:
- the schemes a, a-1, a-2 (Fig. 1) are distinguished

by natural stability, if z < 1/3. In such a case, the
frames 3 may be designed in the shape of strings
that only resist extension,

- if z > 1/3, a rigid forced stabilization can be achieved
because of the elasticity of the frames 3,

- the vibration dampers, showed in the schemes b
and c, can be stabilized by the introduction of a
relevant elastic element, resistant to the deflection
of the frames 3,

 -  the remaining schemes are distinguished by rigid
stability and preserve their strict symmetry on the
relevant rigidity of the elastic elements. The side
stabilization of the extended elastic ring can be
ensured by a connection of the deflected
centrifugal pendulums 3 with the swivel
parallelogram (see Fig. 1, b-1) or the replacement

of centrifugal pendulums with symmetric elastic
frames 3, situated at a certain angle with respect
to the radius (see Fig. 1, b-2),

 -   in many cases the efficiency of a vibration damper
may be increased by fixing the elastic ring on two
symmetrically deflected centrifugal pendulums (Fig.
1, c). In such a case, the vibration damper is not a
stable system; it is inclined to a non-symmetric
sideways �deflection�. The stabilization of the ring
can be ensured if the deflected pendulums are elastic
frames (see Fig. 1, c-1) or elastically fixed pendulums
(see  Fig. 1, c-2).

- the analytical investigation of the efficiency of
the vibration damper, applying special sets of
programmes, allows us to state that a vibration
damper can be sufficiently precisely presented as
a vibrating system with two degrees of freedom
for most practically important ranges,

- in many cases the simplified calculation ensures
sufficient accuracy,

- with an increase in the radius of the elastic ring,
the critical frequencies of rotation of the vibration
damper decrease,

- the value of the equivalent moment of inertia is
mostly affected by the thickness of the elastic ring,

- the efficiency of a vibration damper increases with
an increase in its natural frequencies.

Fig.7. Comparison of the efficiency of the damper for various estimated models (the dotted lines
correspond to the approximate calculation), if  R = 80 mm, m = 0.03 kg, z = 2.0,  t

k
 = 1.2 mm, b = 20 mm,

where 1 - 0,1,  2 1,0,  3 10.
p p p

w w w
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