An Improved Form for Natural Convection Heat Transfer Correlations

Eugene F. Adiutori
Ventuno Press
12887 Valewood Drive
Naples, Florida 34119
United States of America
efadiutori@aol.com

Abstract

Natural convection heat transfer correlations are usually in the form Nusselt\{Rayleigh\}, and occasionally in the form Nusselt $\{$ Rayleigh* $\}$. Both forms are inconvenient because they oftentimes require indirect solution: - When Nusselt \{Rayleigh\} correlations are used to calculate heat flux, solution is simple and direct. But when they are used to calculate boundary layer temperature difference, solution must be indirect-i.e. must be based on an indirect method such as iteration or trial-and-error. - When Nusselt\{Rayleigh*\} correlations are used to calculate boundary layer temperature difference, solution is direct. But when they are used to calculate heat flux, solution must be indirect.

This manuscript describes an improved form for natural convection heat transfer correlations. The improved form allows direct solution for heat flux and for boundary layer temperature difference. Included in this manuscript are graphical and analytical correlations in the improved form obtained by transforming $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations from the literature.

Introduction

In forced convection, the heat flux (q) is essentially proportional to the boundary layer temperature difference $(\Delta \mathrm{T})$. Therefore the heat transfer coefficient (h) is a constant coefficient-ie its value is independent of $\Delta \mathrm{T}$ and q . Because h is a constant coefficient, correlations in the usual form $\mathrm{Nu}\{\operatorname{Re}, \operatorname{Pr}\}$ can be solved directly for q and for $\Delta \mathrm{T}$.
In natural convection, q is a nonlinear function of $\Delta \mathrm{T}$, and therefore h is a variable coefficient-ie its value is dependent on $\Delta \mathrm{T}$ (or equally on q). Because h is a variable coefficient, correlations in the form $\mathrm{Nu}\{\mathrm{Ra}\}$ cannot be solved directly for $\Delta \mathrm{T}$. They must be solved using an indirect method such as iteration or trial-and-error. Similarly, correlations in the form $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ cannot be solved directly for q , but must be solved using an indirect method.
This manuscript describes an improved form for natural convection heat transfer correlations. The improved form allows direct solution for q and for $\Delta \mathrm{T}$.

Applications in which $\mathbf{N u}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations are solved directly

$\mathrm{Nu}\{\mathrm{Ra}\}$ correlations are solved directly if the value of q is to be calculated. The solution is obtained as follows:

- Note that $\mathrm{Nu}\{\mathrm{Ra}\}$ is $(\mathrm{hD} / \mathrm{k})\left\{\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{TD}^{3} / \mu \mathrm{k}\right\}$.
- Calculate the value of $\left(c_{p} \rho^{2} g \beta \Delta T D^{3} / \mu k\right)$ from the given information.
- Calculate the value of (hD/k) from the given $\mathrm{Nu}\{\mathrm{Ra}\}$ correlation and the calculated value of ($\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{TD} \mathrm{D}^{3} / \mu \mathrm{k}$).
- Calculate the value of h from the calculated value of (hD / k) and the given information.
- Calculate q from the calculated value of h , the given value of $\Delta \mathrm{T}$, and $\mathrm{q}=\mathrm{h} \Delta \mathrm{T}$.
$\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations are solved directly if the value of $\Delta \mathrm{T}$ is to be determined. The solution is obtained as follows:
- Note that $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ is $(\mathrm{hD} / \mathrm{k})\left\{\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}\right\}$.
- Calculate the value of ($q c_{p} \rho^{2} g \beta D^{4} / \mu k^{2}$) from the given information.
b unspecified function of fluid flow rate, fluid properties, and geometry
Bu symbol arbitrarily assigned to $\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$; identical to NuRa and Ra* (dimensionless)
c_{p} specific heat, $\mathrm{J} / \mathrm{kgK}$
D diameter, m
G mass flow rate, kg / s
g gravity constant, $\mathrm{m} / \mathrm{s}^{2}$
h heat transfer coefficient, $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$
k thermal conductivity, W / mK
L length, m

Nu Nusselt number hD / k (dimensionless)
Pr Prandtl number $\mathrm{c}_{\mathrm{p}} \mu / \mathrm{k}$ (dimensionless)
q heat flux, $\mathrm{W} / \mathrm{m}^{2}$
$\mathrm{Ra} \quad$ Rayleigh number $\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{TD}^{3} / \mu \mathrm{k}$ (dimensionless)
Ra^{*} modified Rayleigh number, RaNu (dimensionless)
Re Reynolds number DG/ μ (dimensionless)
T temperature, K
β temperature coefficient of volume expansion, K^{-1}
$\mu \quad$ dynamic viscosity, $\mathrm{kg} / \mathrm{m} \mathrm{s}$
ρ density, $\mathrm{kg} / \mathrm{m}^{3}$

- Calculate the value of (hD / k) from the calculated value of $\left\{\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}\right\}$ and the given $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlation.
- Calculate the value of h from the calculated value of $(\mathrm{hD} / \mathrm{k})$ and the given information.
- Calculate $\Delta \mathrm{T}$ from the calculated value of h , the given value of q, and $\Delta T=q / h$.

Applications in which $\mathbf{N u}\{\mathrm{Ra}\}$ and $\mathbf{N u}\left\{\mathrm{Ra}^{*}\right\}$ correlations cannot be solved directly

$\mathrm{Nu}\{\mathrm{Ra}\}$ correlations cannot be solved directly for $\Delta \mathrm{T}$ because neither ($\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{TD}{ }^{3} / \mu \mathrm{k}$) nor (hD / k) can be calculated if $\Delta \mathrm{T}$ is not included in the given information. An indirect solution such as the following is required:

- Note that $\mathrm{Nu}\{\mathrm{Ra}\}$ is $(\mathrm{hD} / \mathrm{k})\left\{\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{TD}{ }^{3} / \mu \mathrm{k}\right\}$.
- Select $\Delta \mathrm{T}_{1}$, an initial estimate of $\Delta \mathrm{T}$.
- Calculate $\left\{\mathrm{c}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \Delta \mathrm{~T}_{1} \mathrm{D}^{3} / \mu \mathrm{k}\right\}$ from $\Delta \mathrm{T}_{1}$ and the given information.
- Calculate $(\mathrm{hD} / \mathrm{k})_{1}$ from the given correlation and the calculated value of $\left\{c_{p} \rho^{2} g \beta \Delta T_{1} D^{3} / \mu k\right\}$.
- Calculate h_{1} from $(\mathrm{hD} / \mathrm{k})_{1}$ and the given information.
- Calculate $\Delta \mathrm{T}_{2}$ from the calculated value of h_{1}, the given value of q , and Equation (1).
$\Delta \mathrm{T}_{2}=\mathrm{q} / \mathrm{h}_{1}$
- Iterate until convergence is obtained.
- If the solution diverges, select a different iteration scheme. Or select a different indirect method, such as trial-and-error.
$\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations cannot be solved directly for q because neither (hd / k) nor ($\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$) can be calculated if q is not included in the given information. An indirect solution analogous to the above is required.

The underlying problem with $\mathbf{N u}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$

The problem with $\mathrm{Nu}\{\mathrm{Ra}\}$ may be seen by noting that
$\mathrm{Nu} \alpha \mathrm{h}$
$\operatorname{Ra} \alpha \Delta \mathrm{T}$

Relations (2) and (3) indicate that $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations are in the form
$\mathrm{h}=\mathrm{b} f(\Delta \mathrm{~T}\}$
where b is a function of fluid properties, fluid flow rate, and geometry. The underlying problem with $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations is that they are in the form of Eq. (4), a form that allows direct solution for h if $\Delta \mathrm{T}$ is given, but does not allow direct solution for h if q is given.

The problem with $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ may be seen by noting that
$R a^{*} \alpha q$
Relations (2) and (5) indicate that $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations are in the form
$\mathrm{h}=\mathrm{b} f\{\mathrm{q}\}$
The underlying problem with $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations is that they are in the form of Eq. (6), a form that allows direct solution for h if q is given, but does not allow direct solution for h if $\Delta \mathrm{T}$ is given.

An improved correlation form that allows direct solution for both q and ΔT

Equation (7) is in a form that allows direct solution for both q and $\Delta \mathrm{T}$ because the left side is dependent on q but independent of $\Delta \mathrm{T}$, and the right side is dependent on $\Delta \mathrm{T}$ but independent of q.
$\mathrm{q}=\mathrm{b} f\{\Delta \mathrm{~T}\}$
A dimensionless correlation in the form of Eq. (7) requires the following:

- A dimensionless group that is dependent on $\Delta \mathrm{T}$ and independent of q.
- A dimensionless group that is dependent on q and independent of ΔT.
Ra satisfies the first requirement. The second requirement is satisfied by the dimensionless group $\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$. Let us arbitrarily assign the symbol Bu to this dimensionless group. (Note that Bu is identical to Ra^{*}, the product of Ra
and Nu . Also note that $\mathrm{q} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu^{2} \mathrm{k}$ also satisfies the second requirement.)

Since $B u$ is dependent on q and independent of ΔT, and since Ra is dependent on $\Delta \mathrm{T}$ and independent of $\mathrm{q}, \mathrm{Bu}\{\mathrm{Ra}\}$ correlations are in the form of Eq. (7).

Transforming graphical $\mathrm{Nu}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations to the form of Eq. (7)

Graphical $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations are transformed to the form of Eq. (7) in the following manner :

- List the Nu, Ra coordinates on a spreadsheet.
- Multiply each Nu coordinate by the corresponding Ra coordinate to obtain Bu, Ra coordinates.
- Prepare a $\mathrm{Bu}\{\mathrm{Ra}\}$ graphical correlation by plotting the Bu, Ra coordinates.
Figure 1 is a $\mathrm{Bu}\{\mathrm{Ra}\}$ chart obtained by transforming a $\mathrm{Nu}\{\mathrm{Ra}\}$ chart that appears in McAdams[1] and also in Kreith and Bohn [2]. Table 1 contains the spreadsheet calculations for the transformation. The Nu, Ra coordinates in Table 1 are those listed on the $\mathrm{Nu}\{\mathrm{Ra}\}$ chart in Kreith and Bohn [2].

Graphical $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ charts are transformed to the form of Eq. (7) as follows:

- List the $\mathrm{Nu}, \mathrm{Ra}^{*}$ coordinates on a spreadsheet.
- Divide each Ra* coordinate by the corresponding Nu coordinate to obtain Ra coordinates.
- Multiply each Nu coordinate by the corresponding Ra coordinate to obtain Bu coordinates.
- Prepare a $\mathrm{Bu}\{\mathrm{Ra}\}$ graphical correlation by plotting the Bu, Ra coordinates.

Transforming analytical $\mathbf{N u}\{\mathbf{R a}\}$ and $\mathbf{N u}\left\{\mathrm{Ra}^{*}\right\}$ correlations to dimensionless correlations in the form of Eq. (7)

Analytical $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations are transformed to dimensionless correlations in the form of Eq. (7) by multiplying both sides of $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations by Ra or Gr. Multiplying by Ra results in dimensionless $\mathrm{Bu}\{\mathrm{Ra}\}$ correlations. Table 2 lists several $\mathrm{Bu}\{\mathrm{Ra}\}$ correlations obtained by transforming $\mathrm{Nu}\{\mathrm{Ra}\}$ correlations from the literature.
Analytical $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations are transformed to dimensionless correlations in the form of Eq. (7) in the following manner:

- Substitute RaNu for Ra^{*} to obtain $\mathrm{Nu}\{\mathrm{RaNu}\}$ correlation.
- Separate Ra and Nu to obtain $\mathrm{Nu}\{\mathrm{Ra}\}$ correlation.
- Multiply both sides of the $\mathrm{Nu}\{\mathrm{Ra}\}$ correlation by Ra to obtain a $\mathrm{Bu}\{\mathrm{Ra}\}$ correlation in the form of Eq. (7).

Improving the reading precision of $\mathbf{B u}\{\mathrm{Ra}\}$ charts

Figure 1 illustrates that $\mathrm{Bu}\{\mathrm{Ra}\}$ charts of reasonable size cannot be read with acceptable precision because of the very large range in Bu. However, the precision of charts of reasonable size can be made acceptable by plotting ($\log \mathrm{Bu}-$ $\log \mathrm{Ra})$ vs $(\log \mathrm{Bu}$ or $\log \mathrm{Ra})$ as in Figure 2. (Table 1 lists
the calculations that underlie Figure 2.) Figure 2 is read in the following manner:

- From the given information, calculate $\log \mathrm{Ra}$ or $\log \mathrm{Bu}$. This value establishes the horizontal coordinate.
- If $\log \mathrm{Ra}$ was calculated in the first step, determine $(\log \mathrm{Bu}-\log \mathrm{Ra})$ from the curve marked Ra. Determine $\log \mathrm{Bu}$ from $\log \mathrm{Bu}=\log \mathrm{Ra}+(\log \mathrm{Bu}-\log \mathrm{Ra})$.
- If $\log \mathrm{Bu}$ was calculated in the first step, determine ($\log \mathrm{Bu}-\log \mathrm{Ra}$) from the curve marked Bu . Determine $\log \mathrm{Ra}$ from $\log \mathrm{Ra}=\log \mathrm{Bu}-(\log \mathrm{Bu}-\log \mathrm{Ra})$.

The impact of film temperature

The fluid properties in natural convection heat transfer correlations are usually evaluated at the film temperaturei.e. at the average temperature in the boundary layer. Since the film temperature usually cannot be determined from the given information, an initial estimate of film temperature must be made, and verified by the subsequent analysis. Thus the use of $\mathrm{Nu}\{\mathrm{Ra}\}$ and $\mathrm{Bu}\{\mathrm{Ra}\}$ correlations generally involves iteration on the film temperature.

However, the effect is usually so small that the first estimate of film temperature yields a result of sufficient accuracy, and no iteration on film temperature is required.

Selecting a name for the group $\left(\mathrm{qc}_{\mathrm{p}} \rho^{2} g \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}\right)$

The group ($\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$) is often assigned the name "modified Rayleigh number" and the symbol Ra*. Since Bu and Ra^{*} are identical, $\mathrm{Bu}\{\mathrm{Ra}\}$ correlations are also $\mathrm{Ra}^{*}\{\mathrm{Ra}\}$ correlations. Since $R a^{*}\{R a\}$ seems poor terminology, it would be desirable to assign a different name and symbol to the group ($\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$).

Lienhard and Lienhard [3] discuss the name and symbol usually assigned to ($\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$):

To avoid iterating, we need to eliminate ΔT from the Rayleigh number. We can do this by introducing a modified Rayleigh number, Ra*, defined as Ra* = RaNu.

In the application discussed herein, a modified Nu is created by multiplying Nu by Ra . Based on the reasoning that leads to Ra^{*}, the group $\left(\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}\right)$ as used herein would be a "modified Nusselt number", symbol Nu*.

It would be misleading to use "modified Nusselt number" and Nu^{*} for the group ($\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}$). Nusselt number is closely identified with h , and the group $\left(q c_{p} \rho^{2} g \beta D^{4} / \mu k^{2}\right)$ does not contain h.

It therefore seems advisable to assign a new name and symbol to the group $\left(\mathrm{qc}_{\mathrm{p}} \rho^{2} \mathrm{~g} \beta \mathrm{D}^{4} / \mu \mathrm{k}^{2}\right)$.

Conclusions

- $\mathrm{Bu}\{\mathrm{Ra}\}$ should replace both $\mathrm{Nu}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ because $\mathrm{Bu}\{\mathrm{Ra}\}$ allows direct solution for both q and $\Delta \mathrm{T}$, whereas $\mathrm{Nu}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ do not.
- Graphical and analytical $\mathrm{Nu}\{\mathrm{Ra}\}$ and $\mathrm{Nu}\left\{\mathrm{Ra}^{*}\right\}$ correlations are readily transformed to $\mathrm{Bu}\{\mathrm{Ra}\}$ correlations.
- The group ($q c_{p} \rho^{2} g \beta D^{4} / \mu k^{2}$) should be assigned a new name and a new symbol.

References

[1] McAdams, W.H., (1954), Heat Transmission, p. 176, McGraw-Hill, New York
[2] Kreith, F. and Bohn, M.S., (1986), Principles of Heat Transfer, p. 251, Harper and Row, New York
[3] Lienhard, J.H. IV, and Lienhard, J.H. V, (2003), A Heat Transfer Textbook, version 1.21, p. 424, Phlogiston Press, Cambridge
[4] Holman, J.P. (1981), Heat Transfer, p. 275, McGrawHill, New York

Table 1 Generation of coordinates used in Figures 1 and 2

Nu^{1}	Ra ${ }^{1}$	$\mathrm{Bu}=\mathrm{NuRa}$	$\log \mathrm{Ra}$	$\log \mathrm{Bu}$	$(\log (\mathrm{Bu})-\log (\mathrm{Ra}))$
0.49	1.E-04	4.90E-05	-4	-4.31	-0.31
0.55	1.E-03	5.50E-04	-3	-3.26	-0.26
0.66	1.E-02	6.61E-03	-2	-2.18	-0.18
0.84	1.E-01	8.41E-02	-1	-1.08	-0.08
1.08	1.E+00	$1.08 \mathrm{E}+00$	0	0.03	0.03
1.51	1.E+01	1.51E+01	1	1.18	0.18
2.11	1.E+02	$2.11 \mathrm{E}+02$	2	2.32	0.32
3.16	1.E+03	$3.16 \mathrm{E}+03$	3	3.50	0.50
5.37	1.E+04	$5.37 \mathrm{E}+04$	4	4.73	0.73
9.33	1.E+05	$9.33 \mathrm{E}+05$	5	5.97	0.97
16.2	1.E+06	$1.62 \mathrm{E}+07$	6	7.21	1.21
28.8	1.E+07	$2.88 \mathrm{E}+08$	7	8.46	1.46
51.3	1.E+08	5.13E+09	8	9.71	1.71
93.3	1.E+09	$9.33 \mathrm{E}+10$	9	10.97	1.97
${ }^{1}$ From Kreith \& Bohn [2], p. 251					

Figure 1 Natural convection heat transfer from horizontal cylinders

Table 2 Transformation of literature correlations

Literature Correlation	Dimensionless transformation	Dimensioned transformation
$\mathrm{Nu}=.10 \mathrm{Ra}^{\wedge} 1 / 3$ $\mathrm{Holman}[4] \mathrm{p} 275$	$\mathrm{Bu}=.10 \mathrm{Ra}^{\wedge} 4 / 3$	

Figure 2 Natural convection heat transfer from horizontal cylinders

