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Simbolno-�tevilèno analiziranje nihanj sistemov z velikim
�tevilom stopenj prostosti

A Symbolic-Numeric Vibrations Analysis of Systems with Many Degrees of Freedom

Regina Kulvietiene - Genadijus Kulvietis - Inga  Tumasoniene
(Vilnius Gediminas Technical University, Vilnius)

Za analizo nihanja sistemov z velikim �tevilom prostostnih stopenj smo uporabili metode raèunalni�ke
algebre. Z vidika raèunalni�ke algebre smo primerjali dve metodi re�evanja in izbrali metodo harmonskega
ravnovesja. Sistem smo razdelili v linearni in nelinearni del. Linearni del lahko popi�emo na obièajen
naèin. Za re�itev nelinearnega dela v zakljuèeni obliki pa smo uporabili simbolièni izraèun. Izbrani simbolno-
�tevièni pristop ima veliko prednosti, �e posebej pri sistemih z velikim �tevilom stopenj prostosti: vodi v
poenostavitev teoretiènih oblik modelov, opazno zmanj�anje obse�nosti dobljenih enaèb in zato tudi
skraj�anje èasa raèunanja ter poveèanje mo�nosti uporabe modelov z veè objekti v drugih posebnih okoljih.
© 2006 Strojni�ki vestnik. Vse pravice pridr�ane.
(Kljuène besede: analize nihanj, metode raèunalni�ke algebre, raèunanje simbolièno, stanja ustaljena)

Computer algebra techniques were applied to analyze the vibrations of systems with many degrees
of freedom. For this purpose, two solution methods were compared from the computer algebra point of view,
and the harmonic balance method was chosen. The system is divided into linear and nonlinear parts. The
linear part of the system can be formalized as usual, and symbolic computations were applied to perform a
closed-form solution of the nonlinear part. The symbolic-numeric approach chosen, specially dedicated to
systems with many degrees of freedom, affords various advantages: it leads to a simplification of the theoretical
formulation of the models, a considerable reduction in the size of the generated equations, and hence in the
resulting computing time, and also enhanced portability of the multibody models to other specific
environments.
© 2006 Journal of Mechanical Engineering. All rights reserved.
(Keywords: vibration analysis, computer algebra, symbolic-numeric computations, steady state)
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0 INTRODUCTION

It is difficult to find a branch of modern
engineering or science in which vibration problems
can be neglected. The theory of oscillations even
creates the foundation for many fields in technical
sciences, for example, acoustics, radio engineering,
automatic control, vibro-isolation. The development
and design of new machines belongs to many
domains of modern engineering, where the
investigation of the level of vibrations is one of the
main goals of basic and applied research [14].

The well-elaborated mathematical theory of
linear differential equations allows us to solve, with
sufficient accuracy, almost all the problems resulting
from the fast development of various types of

machines, mechanisms, machine tools, robots, traffic
means, etc. The increased requirements on the speed,
power, long life and reliability of mechanical systems
change the situation and prove that the linear models
of mechanical systems are only a first approximation
of the real process. Using the linear theory, we cannot
explain all the phenomena arising during operation.
This unexpected behavior is often connected with
catastrophic accidents [15].

In view of the accelerating trends of
innovation in machine design, in new technologies,
new electronic systems and in other branches of
science, more complex approaches and more exact
solutions are required. This cannot be done without
consideration of the very detailed mathematical
models respecting the nonlinear characteristics of
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real physical systems. For this reason it was
necessary to use nonlinear models in the form of
ordinary differential equations, differential equations
with time-varying parameters, with random
properties, with delayed arguments, [13] etc.

The nonlinear oscillations (or more precisely,
the oscillations of nonlinear systems) have been
intensively studied for half a century ([7] and [15]).
A lot of new methods for solutions were elaborated
and much new knowledge about the properties,
behavior and applications were presented ([13] and
[14]). These include the properties of free and forced
vibrations, sub- and ultra-harmonic resonances, self-
excited vibrations, the interaction of self-excitation
and external excitation, transients, bifurcation and
jump phenomena, stability problems, identification
procedures, etc.

The natural vibration of nonlinear systems is
of primary concern in studying resonance
phenomena because the backbone curves (the
amplitude-frequency relations) and the modes of
vibrations, i.e., dynamic characteristics of systems,
are determined. Analytical expressions for the
backbone curves are very complex and numerical
methods are not a convenient way to analyze
nonlinear oscillations.

In some cases, such as the one in the range
where the internal resonance exists, the
corresponding backbone curves have a very
complex shape owing to the presence of sharp peaks,
looping characteristics and rapidly changing slopes.
It is difficult to determine these types of backbone
curves using the developed numerical methods ([1]
and [2]). Simulations by means of numerical methods
are powerful tools for the investigation in mechanics;
however, they have serious drawbacks, e.g., finite
precision, difficulties in determining transient states
and steady states, and the investigation of stability
is error-prone and complex.

The analytical steady-state solution by hand
requires a lot of routine work, is error-prone and
available only for very simple systems ([3] and [11]).
Here, the computerized symbolic manipulation
systems � so-called computer algebra � are
indispensable tools. Symbolic manipulations
provided by computer algebra systems in
combination with the high-power number-crunching
abilities of traditional hardware and software really
opens a new way to the large-scale computations
needed in steady-state solutions and stability
analyses ([3], [5] and [9]).

Subsequently, Gilsinn [12] demonstrated that
with the help of a symbolic manipulator package ap-
proximations to the invariant tori can be developed
by using Galerkin�s variational method. However, the
amount of computation is so excessively large that
it soon becomes impracticable with the increasing
strength of the non-linearity.

The aim of this paper is to describe the theo-
retical background of systematic computer algebra
methods for analyzing the free and steady-state pe-
riodic vibrations of nonlinear structures. Many ana-
lytical steady-state solution methods are developed,
but each of them has different capabilities, e.g., small
parameter methods give a solution in closed form,
and the harmonic balance method only converts
nonlinear differential equations to algebraic.  On the
other hand, it is very important to assess the effi-
ciency of analytical methods in terms of the view of
a computer algebra system. For this reason, the
VIBRAN computer algebra system [4] was used. The
VIBRAN system has been developed by authors
and used for engineering problems since 1979. The
VIBRAN computer algebra system is a FORTRAN
pre-processor for analytical computation with poly-
nomials, rational functions, and trigonometric series.
The main distinction between VIBRAN and other
computer algebra systems is the representation form
of the analytical expressions. The analytical expres-
sions are stored in matrix form and the analytical
perturbations are replaced by matrix operations.

Analytical operations can be performed by
calling VIBRAN procedures directly from FORTRAN
code.

Figure 1 illustrates the VIBRAN procedure
fragment for performing a Fourier transformation. A
special VIBRAN procedure can generate an optimized
FORTRAN code from the obtained analytical expres-
sions, which can be directly used in the programs
for numerical analysis.

In this paper the efficiency of two analytical
methods is assessed from the point of view of a
VIBRAN computer algebra system and a symbolic-
numeric approach for vibrations analysis of the
multibody systems is presented.

1 REALIZATION OF THE SMALL-PARAMETER
METHOD

The small-parameter method (Poincaré�s
method) [7] was developed to solve systems of
nonlinear differential equations. Consider the
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algorithm of the small-parameter method realized by
the VIBRAN computer algebra system for systems
of nonlinear differential equations. For the sake of
clarity, an algorithm of the small-parameter method
is presented for one equation below:

(1),

where
, ,x x x& && - displacement, velocity and acceleration;

m - small parameter;
f(t) - continuous periodical time function with a

period 2p;
k - constant, not integer in the non-resonant

case and integer in the resonant case;
( , , , )F t x x m&  - integer polynomial function and

periodic with respect to t.
The solution of Equation (1) according to the

small-parameter method [7] can be found in the form:

(2),

where x
0
 is the solution of Equation (1) without

nonlinearities, x
i
, i = 1,2,3... are unknown functions

of t with a period of 2p.
To find these functions, the series (2) is

substituted into Equation (1) and the coefficients
with the corresponding  m power are equalized. With
respect to the m power, the linear differential
equations are obtained:

(3),

where F
i
 are the integer rational functions of

0 1 1 0 1 1, ,..., ; , ,...,i ix x x x x x- -
& & & and  a continuous periodical

function with respect to t. The solution of Equations
(3) can be found in the form:

(4),

where a
ij
 and b

ij
 are Fourier series coefficients of the

function F
i
.

In the resonant case, where k is an integer
and nearly equal or equal to n, this means:

where e has a finite value, the zero power solution
must be expressed in the form:

and the i-th power solution can be expressed in the
same manner.

In the general case, M
0
 and N

0
 can be found

from the equations:

where j
0
 is the zero power solution of Equation (1)

in the non-resonant case, excluding resonant
harmonics. The other coefficients M

i
 and N

i
 can be

found from the system of linear algebraic equations:

Fig. 1. A fragment of the VIBRAN procedures
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POLINOM C,D 
RATIONAL F 
READ 1, N 
PRINT 17, N 
DO 101 I=1,NN � 
BINT(C,D,F,IAR,I) � 
END 
 
PROCEDURE BINT(A,B,C,IAR,K) 

   POLINOM A,B,C �        
   FKCI(A,B,0) 
   SCA1(A,2.) �     

MXN(A,PI,1)� 
END 
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where:

are known periodic functions.
The small-parameter method was realized in

VIBRAN for both resonant and non-resonant cases
in systems of nonlinear differential equations [6].

2 REALIZATION OF THE HARMONIC
BALANCE METHOD

The harmonic balance method is probably
the oldest analytical method in the theory of
nonlinear vibration ([6] and [15]). Consider the
following nonlinear differential equation:

(5),

where , ,x x x& &&  denote displacement, velocity and
acceleration; ( , )f x x&  is a  nonlinear function,
expandable in a Fourier series; F(t) is  assumed to be
a periodic function:

The solution of the above-mentioned
Equation (5) can be expressed in a Fourier series in
time:

(6).

A nonlinear function is also expanded in the
Fourier series in time:

(7),

where the Fourier-series coefficients are calculated
using the following  formulae:

A substitution of the formule (6) and (7) into
Equation (5) gives an infinite number of algebraic
equations to determine the unknown coefficients of
Solution (6) :

(8)

or

The above-mentioned version of the
harmonic balance method was realized in VIBRAN
for the system of nonlinear equations [5].

3 EFFICIENCY MEASUREMENTS FOR BOTH
METHODS

Two VIBRANs programs that realize the
above-mentioned methods were tested for the
following equation:

This equation describes the dynamics of an
aerodynamically supported magnetic head in a
recording device ([8] and [10]). We present below
the result of the solution for the first harmonics: the
first index for the solution coefficients A and B is the
equation number and the second one is the
harmonics number. The first result corresponds the
first equation in Formula (8) and afterwards we
present the result for the cosine and sine coefficients
of the first term of the Fourier series.

The result for the first equation of Formula
(8) is:
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first term of the Fourier series is:
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0=-A11-B11*C1+A11*C3-B11*B12*C3-
2*A11*A10*C3-A11*A12*C3-
.75*C4*B11**2*A11-3*C4*B11*B12*A10-
1.5*C4*B12**2*A11-.75*C4*A11**3-
1.5*C4*A11*A12**2-3*C4*A11*A10**2-
3*C4*A11*A12*A10-D2

The result for the sine coefficient of the first
term of the Fourier series is as follows:

0=-B11-A11*C1+B11*C3-B11*A12*C3-
2*B11*A10*C3-A11*B12*C3-
.75*C4*B11**3+3*C4*B11*A12*A10-
1.5*C4*B12**2*B11-.75*C4*A11**2*B11-
1.5*C4*B11*A12**2-3*C4*B11*A10**2-
3*C4*A11*B12*A10-D1

In Figure 2 the number of terms in the solution
expression (M) for the small-parameter (upper
column) and for the harmonic balance method (lower
column) with respect to the number of harmonics (n)
in the solution (number of  power in the case of small
parameter method) is presented.

In Figure 3 the presented graphic illustrates
the convergence of the above-mentioned analytical
methods for the four coefficients.

The upper curve corresponds to the
harmonic balance method and the lower one
corresponds to the small-parameter method.

In this case, the magnetic head construction
parameters were:

The comparison of the above-mentioned
analytical methods illustrates the similarities and
differences of their application. The similarities illustrate
the tolerance curves that are of the same shape.

There are 12045 terms in the solution�s
expression for the small-parameter method (5
harmonics), whereas only 1524 terms are observed
for the harmonic balance method. This means that the
harmonic balance method is much more convenient
for computer algebra realization, especially for the
multibody system, but needs a special stability
analysis procedure for the steady-state solution.

5 SYMBOLIC-NUMERIC REALIZATION OF THE
HARMONIC BALANCE METHOD

Computerized symbolic manipulation is a very
attractive means to reliably perform analytical

Fig. 2. Number of terms in the solution�s expression
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calculations, even with complex formulae and
expressions. But often, a semi-analytical approach,
combining the features of analytical and numerical
computations, is the most desirable synthesis. This
allows the analytical work to be pushed further,
before the numerical computations start.

For symbolic-numeric computation of the
nonlinear oscillation multibody systems the
VIBRAN computer algebra system was used.
VIBRAN�s special procedure can generate optimized
FORTRAN code from obtained analytical
expressions, which can be directly used in programs
for numerical analysis. Figure 4 illustrates the scheme
of the proposed approach.

Let us discuss the multibody system with s
degrees of freedom. After good known perturbations
the equations of motion can be rewritten in the matrix
form:

(9),

where:

{f(t)} - continuous periodical time function or
expandable into a Fourier series, and vector ( , , )H x x t&

is the result from block 1.
The solution of the above-mentioned system

can be expressed using the harmonic balance
method in the form:

where {D
i
} are the unknown  vectors that can be

found from the nonlinear algebraic equations.
Following the harmonic balance method ([6]

and [15]) these equations for the first three vectors�
coefficients are:

 (10),

where f
i 
 are the coefficients of the function f(t) Fourier

expansion. Analogously, the equations for other
harmonics can be found using VIBRAN�s program,
shown in block 4. The expressions of H

i 
 and their

required derivatives are expressed in closed form
using computer algebra techniques with a FORTRAN
code generation procedure. The programs� structure
is shown in Figure 4.

Obviously, the matrix of coefficients [U]
consists of independent sub-matrix blocks located
at the main diagonal. Therefore, the linear part of the

matrix equation decomposes into m separate systems
(m is the number of harmonics in the solution vector)
of size 2s and one system (corresponding to the
zero harmonic) of size s. The obtained solution of
these systems serves as an initial approximation for
further computation.

The Newton�s iteration formula claims:

(11),

where {E(D)} is the system of equations and [E�(D)]
is the Jacobi matrix of the whole system (including
the linear part as well). Substituting these two
formulae the Newton iteration becomes

(12).

The iterations start with:

(13).

This linear matrix equation must be solved
for every iteration step. This equation can be
rewritten in the simple form

 
  (14).

It is not expedient to sum up the matrices [U]
and [f�] in advance, because they have quite different
structures. Matrix [U], as was already mentioned, is
block-banded, i.e., consists of separate sub-matrix
blocks located at the main diagonal. The structure
of matrix [f�] depends on the type and location of
nonlinear terms in the initial differential equation
system, but it is always sparse and can possess
nonzero elements far from the main diagonal. Thus,
matrix [D] is not stored in the computer memory at
all, and its every element is computed by a reference
to the special subroutine. Matrix [f�] is stored in the
main memory as a sparse matrix. Of course, such
storage demands corresponding modifications to the
solution algorithm itself.

In many applications the solution of the
differential equation system must be obtained in a
specified domain of some varied parameters
(frequency, stiffness, mass, etc.). Therefore, the
program is designed in such a way that any parameter
of the initial system can be varied with a regular or
logarithmic step. Note that the analytical computation
is performed only once, while the numerical
calculations are repeated every time when the value
of any parameter of the system is being changed.
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The proposed symbolic-numeric method was
tested for the dynamics of a double-head recording
device with aerodynamic support [8]. The following
equations describe the system behavior:

where:

Analytical expressions obtained according
to the VIBRAN program conclude the part of the
analytical calculations. The analytical result for H

i
 in

Equation (5) is:

H0=k3*a10+u1*a10+.5*u2*a11**2+.5*u2*b
11**2+u2*a10**2+1.5*u3*a10*a11**2+1.5
*u3*a10*b11**2+u3*a10**3+u0
H1=a20*k9+k8*a10+u1*a10+.5*u2*a11**2
+.5*u2*b11**2+u2*a10**2+1.5*u3*a10*a1
1**2+1.5*u3*a10*b11**2+u3*a10**3+u0
H2=b21*w*k2+w*b11*k1+k3*a11+a11*u1+
2*u2*a11*a10+.75*u3*a11**3+.75*u3*a11*
b11**2+3*u3*a11*a10**2
H3=-a21*w*k2-
w*a11*k1+k3*b11+b11*u1+2*u2*b11*a10+
.75*u3*a11**2*b11+.75*u3*b11**3+3*u3*
b11*a10**2
H4=b21*w*k7+a21*k9+w*b11*k6+k8*a11+
a11*u1+2*u2*a11*a10+.75*u3*a11**3+.75
*u3*a11*b11**2+3*u3*a11*a10**2
H5=-a21*w*k7+b21*k9-
w*a11*k6+k8*b11+b11*u1+2*u2*b11*a10+
.75*u3*a11**2*b11+.75*u3*b11**3+3*u3*
b11*a10**2

The corresponding derivatives are very
simple and there are only 25 nonzero terms:

H23 = k1*w+1.5*u3*b11*a11
H26 = k2*w
H31 = 2*u2*b11+6*u3*a10*b11
H32 = -k1*w+1.5*u3*b11*a11
H41 = 2*u2*a11+6*u3*a10*a11
H43 = k6*w+1.5*u3*b11*a11
H45 = k9
H46 = k7*w
H51 = 2*u2*b11+6*u3*a10*b11
H52 = -k6*w+1.5*u3*b11*a11
H55 = -k7*w
H56 = k9

Figure 4 illustrates the generated program
code that could be directly used for numerical in-
vestigations.

This code is very simple and contains only
89 floating-point product operations.

Fig. 4. A fragment of the code generated by
VIBRAN

5 CONCLUSION

On the basis of non-linear differential
equations solved by a harmonic balance method and
the synthesis of the VIBRAN analytical calculation
system an investigation method for non-linear
systems was created. This method combines the
advantages of analytical calculation methods and
computer algebra. They are compared on the principle
of a symbolic�numerical calculation, where the
analytical rearrangements are applied only to the non-
linear part of the system, and at the same time the
linear part of the system could be easily solved in a
numerical way. The proposed method provides smaller
expressions for the analytical computation and allows
the analysis of systems with greater order.

2 3
1 1 1 2 2 3 1 0 1 1 2 1 3 1 1

2 6 1 7 2 8 1 9 2 2

( )

( )

x k x k x k x u u x u x u x f

x k x k x k x k x f

t

t

+ + + + + + + =

+ + + + =

&& & &

&& & &

1 4 5

2 10 11

( ) sin cos ,  

( ) sin cos

f k k

f k k

t t t

t t t

= +

= +

SUBROUTINE ISRA01(A,O) 
      IMPLICIT REAL(A-Z) 
      DIMENSION A(20),O(60) 
      u0  =A(     1) 
      u3  =A(     2) 
      u2  =A(     3) 
      k3  =A(     4) 
         � 
     O(17)=a11*a10*u3      
      O(19)=b11*a10*u3      
      O(20)=O(31)*b21       
      O(21)=O(29)*b1 
          � 
         END 
SUBROUTINE ISRA(A,B,O) 
      DIMENSION A(20),B(42),O(60) 
      Y1=+.5*O(3)    
      Y2=+.5*O(4)   
      Y3=+1.5*O(6)     
    �     
      Y26=+.75*O(13)     
      Y27=+2.25*O(1)   
    
B(1)=+O(1)+O(2)+O(5)+O(8)+O(9)+Y1+Y2+Y3+Y4 

      B(2)=+O(10)+O(11)+Y5 
       � 
            END 
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The problem considered in this paper clearly de-
monstrates the power of the symbolic-numeric per-
turbation method. An important feature of this ap-

proach is that it provides both quantitative and quali-
tative results regarding the dynamic behavior of
multibody systems.
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