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Določitev tornega količnika v brazdah z napetostno funkcijo

Determination of the Friction Coefficient of Groove Forms Using 
the Stress-Function Method

C. Erdem Imrak - Ismail Gerdemeli 
(Istanbul Technical University, Turkey)

Največja sila trenja, ki lahko nastane v brazdah, je  funkcija dejanskega tornega količnika med vrvjo 
in brazdo. Torni količnik je  predstavljen na različne načina za vsako vrsto oblike brazde. V prispevku je  
prikazan obrazec za porazdelitev tlaka na stični površini okrogle in/ali brazde v obliki črke U. Z  metodo 
napetostne funkcije smo določili tudi torni količnik brazd.
O 2007 Strojniški vestnik. Vse pravice pridržane.
(Ključne besede: žleb na obodu koluta, torni količnik, napetostne funkcije)

The maximum traction that can be developed in sheave grooves is a function o f the actual coefficient 
o f  friction between the rope and the groove. The coejjicient o f  friction is presented in different ways for every 
type ofgroove form. In this paper an expression for the pressure distribution on the contact surface o f round 
and/or U-shaped groves is obtained, and the friction coefficient o f  the groove forms is determined by the 
stress-function method.
© 2007 Journal o f Mechanical Engineering. All rights reserved.
(Keywords: rope groove, friction coefficient, stress function method)

0 INTRODUCTION

Driving sheaves are widely employed to 
transmit power to the ropes that drive elevators, cable 
cars, funiculars, etc. The groove form favourably 
increases the effective coefficient o f friction between 
the rope and the groove at the expense o f increasing 
the pressure and wear on the groove surface. The 
trade off between the traction produced and the pres­
sure causing the abrasion o f the groove may be best 
explained by the concept o f shape factors for the 
coefficient o f friction o f U-shaped grooves. During 
normal operations sheave and drum grooves are 
under constant pressure.

The groove form affects the magnitude of 
the tractive force on the driving sheaves for power 
transmission. The contact area between the rope 
and the groove is smaller with U-shaped grooves 
than with round grooves since the rope loses con­
tact with the groove where the undercut is machined. 
Thus an undercut groove provides a tighter grip­

ping action due to an increased groove pressure, 
and its traction capability is greater than that o f a 
round groove. However, a round groove has a longer 
rope life and a lower level of noise because of the 
lower groove pressure at high speeds. When the 
problem o f insufficient traction arises with a round 
groove it should be noted that it can be overcome 
by increasing the angle of wrap, by changing the 
groove form to a U-shaped groove with an appropri­
ate shape or by using a material with a higher coeffi­
cient o f friction [1],

The U -shaped groove sheave, found 
predominantly in older installations, is the sheave 
of choice for optimum rope life. Its large size, when 
compared with the drive sheave diameters in newer 
installations, in combination with its supportive 
grooves minimizes the amount of abrasion and fa­
tigue. The support given to the rope by the groove 
is illustrated in Fig.l. The groove cradles the rope, 
resulting in low groove pressures that allow the wires 
and strands to move about freely while the rope is



operating. Also important to the U-shaped groove’s 
success in achieving excellent rope life is the rela­
tive diameter of the sheave required to maintain trac­
tion. In general, an undercut U groove, a modem 
type o f  groove, increases the traction by increasing 
the groove pressures. The beauty o f these groove 
types is that the diameter of the sheave utilizing this 
modem groove design can be reduced.

The maximum traction that can be developed 
in the sheave grooves is a function o f the effective 
coefficient o f  friction between the rope and the 
groove and the angle o f contact that the rope makes 
with the circumference of the sheave (known as the 
angle o f wrap). The groove form can favourably 
increase the effective coefficient o f friction between 
the rope and the groove since the radial force due to 
the rope tension produces greater norm al and 
frictional forces acting along the area o f contact given 
by the shape o f the groove [2],

A iry introduced his stress function as a 
device fo r so lving certain  problem s in linear 
elastostatics for homogenous isotropic bodies. There 
are many published studies on the Airy stress func­
tion applied to solid mechanics ([3] to [10]). In this 
paper, to obtain the pressure distribution on the con­
tact surface of undercut groves, the Airy stress-func­
tion method was used. The effects o f the groove 
geometry and the angle o f wrap on the traction were 
investigated and tabulated with the ratio o f the forces 
for different angle values by Imrak and Ozkirim [ 1 ].

In this paper the application o f  the Airy 
stress-function method for determining the shape 
factors for the coefficient of friction for both round 
and undercut grooves is presented. The effect of 
the changes in the groove angle and the undercut­

ting angle on the coefficient o f friction and the 
traction are also studied.

1 BASIC EQUATIONS

Due to the existence of axial symmetry related 
to the geometry and specific pressure distribution 
along the boundary o f  a U-shaped groove it is 
preferable to employ polar coordinates rather than 
the Cartesian system and to assume that the stress 
condition is one o f plane stress. The geometry and 
the loading of an undercut groove are illustrated in 
Fig. 1. The angle of the outer normal lines o f the 
contact area ciinay have a maximum value 180°; the 
angle o f the undercutting ß  must not be greater than 
105°, as shown in Fig. 1.

Due to the normal force and the symmetrical 
loading in the traction drive, only the plane stress is 
employed. In the plane-stress state the following 
relations are valid as long as the mass forces are 
negligible. By plugging in the equations associated 
w ith A iry’s stress function into the equilibrium 
condition we can illustrate that the functions do in­
deed satisfy the equilibrium. The Airy function is 
chosen so as to satisfy the equilibrium equations 
automatically. The equation o f compatibility, which 
means that the body must be physically pieced to­
gether in terms of Airy’s stress function, is [11]:

v V =
dr2

1 d2 , 1  a Y a V .h 1 d2<t> + i d ^
r2 d<p2 r d r \ d r 2 r2 dip2 r dr

=  0
( 1)

where V2 is the Laplace operator. The Airy stress 
function is developed and used to solve classic two- 
dimensional problems fundamental to stress analy­
sis. The Airy stress-function approach works best



for problems where a solid is subjected to prescribed 
tractions on its boundary, rather than prescribed 
displacements [8].

Using symmetrical straining we obtain dldr 
= dldr. Therefore, Eq.(l) becomes:

[jL +L ± ) (  d l  + ldc f 'I

\d r2 r dr J[dr2 r dr J

Thus, the solution reduces to finding a solu­
tion o f the differential equation of compatibility that 
satisfies the boundary conditions of the problem.

To obtain a solution of these two equations, 
one can write an arbitrary function <j)= <f> ir,cp). This 
arbitrary function is called the Airy stress function [12], 
In the case of plane stress and in the event that the 
body forces are negligible the differential equations of 
equilibrium in polar coordinates are as follows:

d2</> d2<t> d2<f>
dt2 G^ 2 drdt

(3)

and the boundary conditions are <rr=p, cr = 0, and 
r =  0. dt = r sin d(p ~ r dcp with respect to the radial 
derivative. If the second derivative is evaluated in 
the tangential direction, we advance in the r direc­
tion by dr, then the angular change is dcp. In the case 
of plane stress and in the event that the body forces 
are negligible the differential equations of equilib­
rium in polar coordinates are as follows [11]:

dg, j 1 St  ̂ crr- u v 
dr r dcp r 

1 do> | dr | 2T _ 0 
r dcp dr r

(4).

The usual m ethod for so lv ing these 
equations is by introducing a single new function 

<j) (r, cp), commonly known as Airy’s stress function, 
which satisfies Eqs. (4) and is related to the stresses 
as follows:

1 d2c/> 1 d</> = a ¥
a ' r2 dcp2 r dr * dr2 (5).

d ( 1 dc/> j _  1 dcf> 1 d2tf> 
dr^r dip) r1 dcp r drdcp 

One can assume the stress function </(r,cp) = 
CFrr cp sin cp, where Fr denotes the radial force, the 
distribution C is a constant, r is the radius of the 
rope and <pis the angle. It can be easily verified that 
the stress function  sa tisfies the equation  o f  
compatibility. Thus, it represents the true stress func­
tion. For equilibrium, the stress distribution obtained 
from Eqs.(5) is:

1 d2<!> i 1 dcp 
Gr r2 dcp2 r dr

2CF
--------- -  cos cp

r

d ( 1 ć ^Y  1 80 1 d2</>
d r\r  dcp) r2 dcp r drdcp

The radial force distribution F  per unit length 
along the circumference o f the sheave, induced by 
the tangential rope tension S, is:

r, dN(= Sdcp) IS

»dip = *  ™
2

where D is the pitch diameter of the sheave. The 
boundary conditions along the area of contact, for 
r = dll, in the radial plane at an angle of a  are ex­
pressed by:

-dN = -Fr — da = 2 f arcoscpdA (8),
2  012

where dA represents an infinitesimal contact area 
with the dimensions (DH)da along the arc of the 
wrap o f the rope on the sheave and (d/2)dcp in the 
radial plane of the sheave, where d is the rope diam­
eter, hence dA = d D dcp dal A.

Substituting dA and Eq.(6) into Eq. (8), we
obtain: \

D 312—Fr—da = 2DdaCrj J cos2 cpdcp (9),
2  012

and then Eq.(9) reduces to:
ÖI2 ,

C f cos2 cpdcp = —  (10).J AßH
The constant C can now be determined by 

integrating Eq.( 10) and solving it for C so as to fulfil 
the last o f the boundary conditions:

C = ----------------------  (H ).
S - ß+sinS-sin/?

By putting Eq.(l 1) and Eq. (6) into Eq. (7), the 
field o f stress existing in the radial plane within the 
sheave at an angle of a  becomes:

P=\C7r\
ZS cos cp

Dd[S - ß  + sin<5 - sin /9) ( 12),

where S  is the rope tension at the point on the arc of 
the rope with an angle a.

2 SHAPE FACTOR FOR THE FRICTION 
COEFFICIENT

The drive traction force is initiated by the 
friction between the ropes and the sheave grooves 
in traction. The maximum traction that can be 
developed in the sheave groove is a function of the



Fig.2. The free body diagram o f an indefinitely small element o f  the rope
. 8  . ß

sin —  sin —
= 4 / 7 , -------- 1-------2

coefficient o f friction between the rope and the 
groove and the angle o f contact that the rope makes 
with the circumference of the sheave.

The groove form favourably increases the 
actual coefficient o f friction between the rope and 
the sheave. Considering the equilibrium condition 
o f an indefinitely small element o f the rope shown in 
Fig.2 when the rope is about to slide, the elementary 
tangential friction force dF developed by the radial 
force dN  can be obtained as follows:

(15).

dF = 2 J  pa pdA (13).

Substituting dA, Eq. (12) and into Eq. (13), 
we obtain:

( 8 - ß  + sinö  -sin ß )
The shape factor for the coefficient of friction 

can be defined as:
. 8  . ßsm ---- sin

a = 4 ?--------2-------2—  (16).
(<i>-/? + sin<?-sin/?)

The shape factors for the coefficient o f 
friction are plotted in Fig. 3. The figure shows how 
it changes with the changes in the angle of the outer 
normal lines of the contact area, 8  and the angle of 
undercutting, ß. The shape factor for the coefficient 
o f friction gets its maximum value, i.e.,a = 4/ n, when 
the angle <i> becomes 180° and the groove is round.

/ueffS  d a  = 4 fi.S
( 8 - ß  + s inh '-sin /?)

812

J cos(pdqtda
ßn

(14).

After the rearrangement and integration the 
final expression becomes:

3 CONCLUSIONS

The groove form favourably increases the 
effective coefficient o f friction between the rope and 
the groove since the radial force due to the rope

Fig.3. The shape factor for the coefficient offriction



tension produces greater normal and frictional forces 
acting along the area of contact given by the shape 
of the groove. Therefore, this work introduces the 
concept o f shape factors for the coefficient o f fric­
tion for U-shaped grooves and also derives it by 
means of the Airy stress-function method.

From a careful analysis it can easily be seen that 
when the angle of the groove decreases the traction 
improves, but also so does the specific pressure and 
resultant wear of both the grooves and the ropes. The 
round groove gives lower traction but a longer rope life, 
lower specific pressure and lower degree of noise than 
the undercut. When it is essential to use round grooves 
the traction capability can still be improved by using 
non-metallic groove liners with a high coefficient of 
friction. It is also advisable that the angle o f the 
undercutting should be under 90°, and must not be greater 
than 105° whenever undercut grooves are in use.

4 SYMBOLS

a shape factor for the coefficient o f friction
A contact area
d rope diameter
D pitch diameter of the sheave
F tangential friction force
F radial force distribution
N radial force
S rope tension
a angle of wrap
ß angle o f undercutting
<t> Airy’s stress function
8 angle o f the outer normal lines of the contact 

area

Peff effective coefficient o f friction
coefficient o f friction
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