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Vpliv pravokotnosti mreže na konvergenco programa SIMPLE 
za reševanje Navier-Stokes-ovih enačb

The Influence of Grid Orthogonality on the Convergence of the SIMPLE Algorithm
for Solving Navier-Stokes Equations

Ivo Džijan - Zdravko Virag - Hrvoje Kozmar 
(University of Zagreb, Croatia)

Razvili smo metodo končnih volumnov za reševanje Navier-Stokesovih enačb na lokalno pravokotni 
nestrukturirani mreži z uporabo algoritma SIMPLE. Razvito metodo smo primerjali s podobno metodo na 
strukturirani, ne nujno pravokotni mreži, v členih pretekle konvergence in obsegu pod-relaksacijskih 
faktorjev, pri katerih se metodi približujeta. Kadar je  strukturirana mreža pravokotna, sta stopnji 
približevanja obeh metod podobni. Vprimerih, kadar strukturirana mreža ni pravokotna, se pokaže prednost 
predlagane metode pri lokalno pravokotni mreži v razmerah pretekle konvergence. V teh primerih je  obseg 
pod-relaksacijskih faktorjev, pri katerih je  predlagana metoda zadovoljivo konvergentna, mnogo večji kot 
pri metodi na nepravokotni mreži.
© 2007 Strojniški vestnik. Vse pravice pridržane.
(Ključne besede: Navier-Stokesove enačbe, metode končnih volumnov, algoritmi SIMPLE, nestrukturirane
mreže)

A finite-volume method for solving the Navier-Stokes equations on a locally orthogonal unstruc
tured grid using the SIMPLE algorithm has been developed. The developed method was compared with a 
similar method on a structured, not necessarily orthogonal grid, in terms o f convergence history and the 
range o f under-relaxation factors in which the methods converge. When the structured grid is orthogonal, 
the convergence rates o f the two methods are similar. For the cases when the structured grid is non- 
orthogonal, the superiority o f the proposed method on the locally orthogonal grid is demonstrated in terms 
o f convergence history. In these cases, the range o f under-relaxation factors in which the proposed method 
shows satisfactory convergence is much wider than for the method on the non-orthogonal grid.
© 2007 Journal o f Mechanical Engineering. All rights reserved.
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0 INTRODUCTION

The rapid development o f computers has 
brought about rapid developments in the field of 
computational fluid dynamics. Calculation domains 
are now more complex, which increases the need to 
use an unstructured grid for their discretization. Finite 
volume methods are widely applied for solving fluid 
flow problems. Initially, these methods were used 
on structured staggered grids. Nowadays they are 
used on unstructured collocated grids, on which 
segregate algorithms with the pressure-based ap
proach are applied for incompressible flows. The most 
popular algorithm based on pressure correction is 
the SIMPLE (Semi-Implicit Method for the Pressure-

Linked Equation) algorithm, Caretto et al. [1] and 
Patankar and Spalding [2], In the pressure-velocity 
correction relation the effécts coming from velocity 
corrections in neighboring nodes on the pressure 
correction in the central node are neglected. The 
consequence of this neglecting is the overestima
tion pf the pressure correction, which can cause the 
divergence of the numerical process. To ensure the 
stability of the numerical process, the under-relax
ation factor for the pressure is introduced. The opti
mal value of this factor cannot be estimated in ad
vance since it depends on the grid’s characteristics 
and the nature of the problem.

The SIMPLE algorithm is originally defined 
on a staggered grid where the pressure is calculated



in the cell centre and the velocity components are 
calculated on the cell faces. On a collocated grid, the 
pressure field and velocity components are calcu
lated in the cell centre. The application o f the SIMPLE 
algorithm on a collocated grid started with Rhie and 
Chow [3],

The grid non-orthogonality is one o f the fac
tors that increases the number of iterations o f the 
SIMPLE algorithm. If  the connecting line of two 
neighboring nodes is not perpendicular to the cell 
face, som e term s tha t appear due to non 
orthogonality are usually neglected. This is the case 
with the CAFFA public-domain computer code [4], 
It is believed that this neglecting slows down the 
rate o f  convergence o f  the num erical method. 
Therefore, the modification o f the finite volume 
method on an unstructured locally orthogonal grid 
is proposed. The rate o f convergence o f  the SIMPLE 
algorithm on that grid will be compared with the rate 
o f  convergence on a structured, not necessarily 
orthogonal grid.

1 MATHEMATICAL MODEL AND NUMERICAL 
PROCEDURE

The mathematical model o f steady, laminar, 
incompressible fluid flow with constant viscosity 
and without mass forces is adopted. The model is 
described  w ith  the fo llow ing  N av ier-S tokes 
equations:
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Fig. 1. A part o f calculation domain and a typical 
cell o f  locally-orthogonal unstructured grid

where p, v.,p, pandx. are the fluid density, velocity, 
pressure, viscosity and coordinates, respectively. 
These equations will be numerically solved on an 
unstructured locally orthogonal grid. A part of such 
a computational grid is shown in Fig. 1.

The main nodes, C and N, at which the veloc
ity and pressure fields are calculated, are placed 
within their respective cells. The connecting line CN 
is perpendicular to the cell face and the nodes C and 
N are at an equal distance from an auxiliary node n, 
which enables a simple formulation of the high-order 
interpolation. It is clear that such a grid is possible 
in every 2D case, because the cell vertex a in Fig. 1 is 
the circumcenter o f the triangle formed by the nodes 
C, M and K. Such a grid generator is described by 
Džijan [5], which includes a grid-smoothing proce
dure that forces the main nodes to be close to the 
cell centroids and the auxiliary nodes to be close to 
the cell-face centroids.

Discretization o f the equations starts with in
tegrating over the cell volume V, according to Fig. 1. 
By using the Gauss theorem and the mean-value 
theorem, the integrated governing equations take 
the form:

± [ F f =  0 (3)
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(4)

F v \ - p A = -V dp_
dx.

pA
dx.

where F = p A v n ,  = pAvn is the mass flow through 
the cell face and J t = F v f  -  pA (dvi / dx} ) is the 
momentum flux through the cell face. A ancf n are the 
cell-face area and its outward normal vector, Fis the 
cell volume, while k denotes the cell-face index and 
m is the number of cell faces on the considered 
volume. The scope of the differencing schemes is to 
define the velocity v,.| and its normal derivatives at 
the auxiliary node n in terms o f velocity values at the 
main nodes. Since the adopted grid is locally 
orthogonal, these values are defined by using only 
the values at nodes C and N. A blending scheme of 
the central differencing scheme (CDS) and o f the 
first-order upwind differencing scheme (UDS) is used 
in the CAFFA computer code. Therefore, the same 
scheme will also be used in the proposed method. In 
the case o f the locally orthogonal grid, the diffusion 
part o f the flux vector is modeled with the following 
equation:

J f = - P A ^ox,
n, = -p A = -p A

2s (5).



In the case o f a non-orthogonal grid, an additional 
term appears. In the CAFFA computer code this term 
is implemented by using the deferred correction ap
proach, i.e., by using the velocity values from the 
previous iteration.

In the first-order UDS, the convective flux is 
modelled by:

uns i fv -L  fo rF >0 /z-s J UDS = F v |  =<! ,c  (6),
' “ [ F v,.|n fo rF <0

and in the CDS (for the case when the node n lies in 
the middle of the CN connection line) by:

(7).

By introducing the mixing factor y  the final 
expression for the momentum flux is:

Ji = { i ~ r ) J - ' m + r j r + J t (8)

where, for y= 0 the result is the UDS, and for y= 1 the 
CDS.

Introducing the expressions for the fluxes into 
(4) results in:

ac vi lc -  Ž  [ aN v,- |N ]*  = + b,

where:
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and
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* = i L z  J  *= i *=i

(12).
It is obvious that all the terms coming from 

the CDS are treated as a deferred correction, the same 
as in the CAFFA code.

To reduce the possibility that the numerical 
process diverges, this equation is under-relaxed in 
the following form:

u - L acV,|c - £ [ a Nvf|N] = - V ~ - +b,+-

(13)
which was proposed by Patankar [6], The last term 
on the right-hand side is calculated from the previ
ous iteration, and a  is the under-relaxation factor7 UV

for the velocity.
According to Rhie and Chow [3], the mass 

flow through the cell face is defined as follows:

F = pAvn = pA(vn) - p A dp (dp \
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where the line above a symbol indicates the linear 
interpolation between the values at nodes C and N, 
as follows:

and
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In the case o f a locally orthogonal grid, the 
normal derivative of the pressure is defined by using 
the CDS, as follows:

d P _  F n  Pc 
dn n 2s

(18).

In the CAFFA code, where the grid is non- 
orthogonal, additional terms emerge and are treated 
explicitly by using the values from the previous 
iteration.

Solving the momentum equation with a given 
pressure field p ‘ results in the velocity field v *, and 
the mass flow F*, which does not necessarily satisfy 
the continuity equation. For that reason, the velocity 
corrections y  ’ and the corresponding F ’ and pres
sure correction p  ’ are searched, so that the corrected 
velocity field v. = v." + v ’ and corrected mass flow 
F = F* + F ’ satisfy the continuity equation. Accord
ing to Equation (14), the corrected mass flow is ap
proximated as follows:

F = F * - ^
2s (P n -■Pc) ~a N ( P n  P c )  

(19).

Introducing the corrected mass flows in the 
continuity equation (3) results in the following 
equation for the pressure correction:

where

and

m ,

ac Pc - Z [ ön’P n ]  = b P
k=1

< ' = Z K T
Jt=l

(20)

(21)

(22).

The solving o f this equation results in the 
pressure-correction field. Therefore, the pressure



field is corrected using the following equation:

P c= P c+ a PPc (23)

where a  is the under-relaxation factor for the pressure. 
The velocities in the main nodes are corrected as follows:

V_ty_
ac dx,

(24).

The gradients o f the physical values in the 
main nodes are calculated using the Gauss formula 
as follows:

V 2V

m

Y X ^ p A (25)

where <j) can stand for v ,p  or p
The steps in the SIMPLE algorithm for solv

ing the Navier-Stokes equations can be summarized 
as follows:
1. Guess the pressure fieldp* and the velocity field y .
2. Solve the momentum equation ( 13) to obtain y*.
3. Solve the p  ’ equation (20). Correct the pressure 

according to (23), correct the velocity according 
to (24) and the mass flow according to (19).

4. Treat the corrected pressure as p* and return to 
Step 2. Repeat the w hole procedure until a 
converged solution is obtained.

The converged solution is obtained when the 
no rm alized  residua ls for the co n tin u ity  and 
momentum equations become smaller than some 
small number, s. In this paper s=  10‘6 was used. The 
residual for the continuity equation is:

(26)

and the residual for the momentum is
M

* V ,= I/=1 k= 1

i „ T + F & 1 $3- __
_

1

InJ dx, C

(27).

In the above expressions, / denotes the cell 
index and M the total number of cells. The values of 
the variables in the above formula are from the 
current iteration, and the coefficients are prepared 
for the next iteration. The following residuals are 
usually normalized: the mass residuals with the inlet 
mass-flow rate and the residuals for the momentum 
equation with the inlet momentum flow rate.

2 RESULTS

The described numerical method is imple
mented in the FVM computer code. In this code the

residuals are defined and normalized in the same way 
as in the CAFFA code. The rate o f  convergence of 
the described method and of the method used in the 
CAFFA code will be compared by varying the grid’s 
non-orthogonality and the differencing scheme. 
Also, the range o f under-relaxation factors in which 
the numerical procedure converges will be analyzed.

2.1 Laminar flow in a lid-driven cavity with inclined 
side walls

In this test the 2D laminar fluid flow is calcu
lated in a closed cavity whose lid is moving in a 
tangential direction with velocity v Perič [7]. The 
Reynolds number based on the side length a is 
R e= p.y.atp= 1000. The calculation is performed for 
different inclination angles of the side walls, ß=  90°, 
67.5° and 45°. In this problem the residuals defined 
by (26) and (27) are not normalized.

Fig. 2 shows the qualitative picture o f the 
streamlines for /7= 90° and 45°. It is obvious that the 
initially assumed constant-velocity field will be very 
different from the final solution.

The problem is solved using the CAFFA nu
merical code on structured grids o f size 40x40 cells, 
and with the FVM code on unstructured grids with 
approximately 1600 cells. Fig. 3 a shows a part of the 
unstructured grid for ß=  45° that is used in the FVM 
code. The borders o f the finite volumes are pre
sented, and the main nodes are marked. Fig. 3 b 
shows a part o f the geometric grid for the same case, 
which is used in the CAFFA code. The displayed 
lines connect the main nodes at which the pressure 
and velocity fields are calculated.

In the SIMPLE algorithm, two under-relaxation 
factors should be given. The rate of convergence de
pends on the values of these two factors. Their optimal 
values are not known in advance, so that the described 
problem will be solved for a range of under-relaxation 
factors by varying am from 0.5 to 0.95 with a step of
0.025, and ap from 0.1 to 0.6 with a step of 0.1. The 
comparison criteria will be the number of iterations 
needed for the residuals to fall below s=  10"6.

In the CAFFA and FVM codes different sol
vers for linear algebraic equations are used. For this 
reason, a sufficient number o f inner iterations is given 
at every iterative step to be sure that the systems 
are solved equally well in both codes.

Fig. 4 shows the numbers o f outer iterations 
N  required to reduce the residual levels to f a s  a 
function o f the under-relaxation factors am and a ,



Fig. 2. Streamlines in laminar flow in a lid-driven cavity a) ß  = 90°, b) ß  = 45°

b)
Fig. 3. A part o f the grid for the lid-driven cavity problem for ß=  45° a) FVM, b) CAFFA

Fig. 4. Required number o f outer iterations to reduce residual levels to s  = 1 O'6 for the lid-driven cavity
problem for ß  = 90° (UDS) a) FVM, b) CAFFA

for ß=  90°. In this case, the grids for both codes are 
orthogonal, and the achieved results are almost iden
tical. This confirms the equivalent implementation 
o f the SIMPLE algorithm in both codes.

Fig. 5 shows Nc for two algorithms for 
ß=  45°. The SIMPLE algorithm in the CAFFA code 
converges in that situation only in the case that 
a  = 0.1, and only for small auy < 0.7. Nc is considerably



Fig. 5. Number o f  outer iterations required to reduce the residual levels to e=  1 O'6 for the lid-driven 
cavity problem fo r  ß  = 45° (UDS) a) FVM, b) CAFFA

la rger than  for the FVM  code, w hich  is a 
consequence o f the grid’s non-orthogonality.

Fig. 6 shows N e for two algorithm s for 
/?= 67.5°. In the FVM code, the necessary number of 
iterations has not significantly changed compared 
with the two previous cases. In the CAFFA code, 
the range o f under-relaxation factors in which the 
algorithm converges is narrower than for ß  = 90°, 
and wider than for ß=  45°. For the same combination 
o f under-relaxation factors, N  increases with the in- 
crease o f the grid’s non-orthogonality.

Fig. 7 a shows the convergence histories (the 
greatest o f three residuals versus the number of it
erations N.) o f two methods for ß =  90°, 67.5° and 
45°, at a corresponding optimum combination of 
under-relaxation factors and by using the UDS. It is 
obvious that the convergence history on a locally

orthogonal grid is unaffected by ß, unlike the case 
o f a non-orthogonal grid. It is worth noting that this 
comparison is valid for optimum values o f under
relaxation factors that are unknown prior to the 
calculation. The clear advantage o f the locally 
orthogonal grid over the non-orthogonal one can 
be read from Figs 4 to 6, from which one can conclude 
that the convergence history on this grid is slightly 
changed by a relatively large deviation from the 
optimum combination o f under-relaxation factors, 
which is not the case for the non-orthogonal grid.

Fig. 7 b shows the convergence histories of 
two methods for ß=  90° and 45°, at a corresponding 
optimum combination of under-relaxation factors and 
by using the CDS. The optimum values o f the under
relaxation factors are the same as for the UDS. The 
rate o f convergence slows down by switching from

a) b)
Fig. 6. Number o f  outer iterations required to reduce the residual levels to £= Kb6 fo r  the lid-driven 

cavity problem fo r  ß  = 67.5° (UDS) a) FVM, b) CAFFA



a) b)
Fig. 7. Convergence histories for the SIMPLE algorithm in the FVM and CAFFA codes for the lid-driven

cavity problems a) UDS, b) CDS scheme

the UDS to the CDS, which can be explained with 
the implementation of the CDS by using the deferred 
correction approach. Again, for ß — 90° the conver
gence history of the two methods is practically the 
same. For ß  = 45° the convergence history of the 
method on a non-orthogonal grid is considerably 
slowed down due to the addition o f the deferred 
correction on the non-orthogonality effects.

2.2 L am inar flow in a curved channel

The example of laminar flow in a curved chan
nel where the grid is in some parts orthogonal and in 
some parts non-orthogonal is chosen. This is the 
usual case in practical applications o f this method.

Fig. 8. Streamlines for laminar flow in a curved 
channel

a) b)
Fig. 9. A part o f  the computational grid for the curved-channel problem a) FVM, b) CAFFA



Fig. 10. Number o f outer iterations required to reduce the residual levels to s=  1 O'6 fo r  the curved-
channel problem (UDS) a) FVM, b) CAFFA

Fig. 8 shows the calculation domain and the stream
lines for this problem. Obviously, the final flow pat
tem is significantly different from the one that can 
be reasonably guessed at the beginning o f the cal
culation.

Fig. 9 shows the part o f the calculation area 
discretized with a locally orthogonal grid for the FVM 
and a structured grid for the CAFFA codes. The grid 
for the CAFFA code is non-orthogonal, and partially 
smoothed in the comers. In the straight parts o f the 
channel this grid is orthogonal. The grid for the FVM 
code has 1180 finite volumes and the grid dimen
sions for the CAFFA code are 20x60 finite volumes. 
The uniform profile o f the normal velocity vn is given 
at the inlet. At the outlet boundary, the standard 
assumption o f  a zero velocity gradient is applied. 
The other boundaries are impermeable walls. The 
Reynolds number based on the normal velocity vn 
and the inlet width a is Re = p v nalp = 200.

Fig. 10 shows Ne for the SIMPLE algorithm 
on a locally orthogonal grid. The range o f  good 
values o f the under-relaxation factors is wider than 
in the case o f  the non-orthogonal grid. For the non- 
orthogonal grid, N£ increases considerably for small 
changes o f the under-relaxation factors with respect 
to their optimum values.

Fig. 11 shows the convergence histories for 
two methods for a corresponding optimum combina
tion o f under-relaxation factors by using the UDS and 
the CDS. The advantage of the method on the locally 
orthogonal grid is obvious. The effects o f the deferred 
correction approach in the CDS are superimposed on 
the effects o f the grid’s non-orthogonality.

Fig. 11. Convergence histories for the SIMPLE 
algorithm in the FVM and CAFFA codes for the

curved-channel problem (UDS and CDS)

3 CONCLUSIONS

From the comparison o f the two methods in 
the selected test problems, the following conclusions 
can be drawn:
1) The results obtained by the FVM and CAFFA 

codes are nearly the same when both grids are 
orthogonal.

2) The method on a locally orthogonal grid imple
mented in the FVM code requires a smaller 
number o f iterations than the method on a non- 
orthogonal grid implemented in the CAFFA code, 
when using corresponding optimum combina
tions o f under-relaxation factors.



3) The range o f  under-relaxation  factors for 
w hich the m ethod converges is narrowing 
w ith  the  in c rea se  o f  the g r id ’s n o n 
orthogonality. This is a serious drawback, if  
we know that the optimum values o f  the un
der-relaxation factors are not known in ad

vance, and that they take different values from 
problem to problem.

4) The application o f the CDS based on the de
ferred correction approach increases the required 
number of iterations. This effect is superimposed 
on the effects o f the grid’s non-orthogonality.
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