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Artificial Neural Networks Application in Duplex/Triplex 
Elevator Group Control System
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Istanbul Technical University, Turkey

Artificial neural networks can offer the better solution to the passenger call distribution problem 
when compared to the conventional elevator control systems. Therefore, the application o f neural networks 
in elevator group control system is discussed. The significance o f introducing artificial neural networks is 
presented. Elevator group control systems with neural networks can predict the next stopping floors to stop 
by considering what has been learnt by processing the changes in passenger service demand pattern. This 
paper deals with the use o f artificial neural networks for the distribution o f the most suitable cars to the 
floors by considering the passenger service demand. Artificial neural networks are applied in Duplex/ 
Triplex group control systems for improving passenger waiting time. The backpropagation algorithm is 
used for training neural networks. The elevator traffic analysis and simulation results are presented and 
compared to conventional elevator control systems.
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0 INTRODUCTION

The service provided by the elevator system 
of any modem building is necessary for the efficient 
functioning of the building. This service has to be 
not only reliable, but also satisfactory to the 
passengers. Elevator group control systems can be 
utilized to control the cars as a group and convey 
the passengers to their destinations comfortably and 
promptly. It is viewed as a combination of on-line 
scheduling, resource allocation and stochastic 
optimal control problems similar to robotics or 
autom ated m anufacturing system s. However, 
elevator control systems are harder to deal with 
than other systems because the states o f the system 
are dynamically changed in large state space and 
coming events are unpredictable in many cases [1]. 
In offering a solution to elevator control problem, 
the trad itio n a l con tro l system s often  y ield  
u n sa tisfac to ry  resu lts  because they  lack  in 
considering number of technical characteristics and 
possibilities to be taken in to account. They also 
possess lim itations and their flexibility is still 
restricted  even if  they are adapted to u tilize 
computers. The selection and distribution of the 
most suitable cars in the building is a function of 
the call assignment. Landing and car calls are often 
allocated to suitable cars by taking into account of

the m inim um  cost concept that operates by 
performing a trial allocation to all available cars 
and allocating the call to the car giving the lowest 
cost. The criteria for determining a suitable cost 
function depends on either quantity of service and/ 
or quality of service. The quality of service is a 
measure of the elevator capacity consumed to serve 
a specific set o f calls, indicated by total journey 
times of all the cars [2].

Elevator control problem has been studied 
for a long time: in the last two decades artificial 
intelligence techniques such as fuzzy logic, neural 
networks, genetic algorithms and evolutionary 
algorithms were introduced. Although considerable 
research studied has been carried out to explore 
artificial intelligence applications in elevator 
control area [3] to [9], a little work has been done 
in neural network application in elevator group 
control.

Neural networks have been applied to tackle 
the selection and distribution of the most suitable 
cars which is a function of assignment of calls. 
Artificial neural networks which simulate the way 
that human neural networks operate and learn, and 
mimic the hardware structure o f the brain in a 
simplified way consist of artificial neurons that 
perform a simple task and are fully interconnected 
[ 1 ]. A neural network is used to predict the number
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o f landing calls likely to be made and the cars’ 
likely destination for the time of service in order 
to optim ize the car allocation efficiency. The 
prediction is made by combining predictions from 
historic data leamt during corresponding periods 
o f previous days and real time data leamt during a 
short interval. They can be envisaged as a black 
box acting in response to a set o f inputs o f  position, 
direction and calls produces an output representing 
the next stopping floor. Artificial neural networks 
can be placed in the conventional control system 
to improve the elevator performance [11].

In this study, the artificial neural networks 
has been inserted into an elevator group control 
system s for minimizing the average passenger 
waiting time and developed to model the behavior 
o f  the building population and also to adapt the 
algorithm to changes in passenger demand. For 
training the neural networks, the backpropagation 
method was used in the present work. The aim of 
th is  ap p lica tion  is to op tim ize  som e o f  the 
param eters that a contro ller uses in order to 
minimize the average passenger waiting time. The 
data used here are from a sim ulator program  
developed by the author [9], The elevator traffic 
analysis has been carried out using the software 
written in Turbo Pascal version 7.0 by examining 
the simulation results obtained. Simulations are run 
for several levels o f interfloor traffic demand for 
the improved Duplex/Triplex control system (ICS). 
In the simulation an existing building having 3 
elevators with 10 floors was selected as a model 
case. The normalized performance figures, with 
respect to the interfloor demand, are compared to 
other traffic control algorithms which are priority 
timed fixed sectoring algorithm (FSPTS), the fixed 
sectoring common sector system (FSCSS).

1 STRUCTURE OF THE ELEVATOR GROUP 
CONTROL

Building traffic becomes more and more 
diversified and complicated as building has more 
various functions and intelligence. Elevator group 
con tro l a lgorithm , th ere fo re , becom e m ore 
complicated as they become more intelligent. The 
goal o f elevator control is to provide operational 
management o f a group o f elevators, by selecting 
cars to meet landing calls and achieve passengers’ 
destinations pleasantly and promptly. An efficient 
elevator control system has four properties [2]: to

provide even service to every floor in a building, 
to minimize the passenger journey time in the car, 
to minimize the passenger waiting time, and to 
serve as many passengers as possible given time. 
The basic function of elevator control system is to 
assign an appropriate car to occurred landing calls 
to quickly respond them. The car to be assigned 
will be selected with consideration o f many factors 
such as passenger waiting time, passenger journey 
tim e and energy consum ption. Am ong them  
passenger waiting time is the dominant factor in 
elevator group control [8].

In this study, the Duplex/Triplex group 
control system is selected as an example o f the 
conventional elevator group control system. The 
chosen system is suitable for groups of two or three 
cars in low-rise buildings and serves car calls and 
lan d in g  calls accord ing  to  the d irec tio n a l 
distributive control principles by considering the 
current position, distance between landing call floor 
and car position, and the direction o f car travel [2] 
and [9]. In order to perform directional distributive 
control, the nearest car continuously is to be 
searched with the call is allocated. Therefore it 
provides a single control algorithm designed to 
serve interfloor traffic in low-rise buildings.

Initial design of the elevator control system 
in build ing  the m ain concern is to fu lfill its 
requirements in conditions of predominantly up- 
peak traffic. Under up-peak traffic conditions, the 
Duplex/Triplex group control algorithm presents 
poor performance. To investigate improvement of 
this control algorithm, artificial neural networks 
w ere in troduced  into the a lgo rithm  and 
optimization was carried out to many parameters 
such as passenger waiting time and performance 
figure [10] and [11].

Landing calls, car calls and car positions are 
the inputs o f the Duplex/Triplex control system. 
The elevator configuration such as num ber o f 
floors, arrival rates, car capacities etc. is the 
parameters of the control algorithm. The outputs 
of the group control are the car direction and the 
next stopping floors. In this study, the next stopping 
floor problem in elevator traffic control is the 
explicit problems which has been tackled. It is 
stated that a given car system, w ith a known 
position, direction commitment and registered up 
and down landing calls as inputs find the next 
stopping floors as an output o f the network. To solve 
this problem artificial neural network is developed



and applied to the Duplex/Triplex elevator group 
control algorithm.

2 NEURAL NETWORK APPLICATIONS ON
THE NEXT STOPPING FLOOR PROBLEM

The quality  o f  service in m ulti-stores 
building is indicated by the average passenger 
waiting time. Thus, the aim of this study is reduce 
the average waiting time for the different traffic 
pattern. For this reason, it is proposed that neural 
networks learn the likely destinations from one 
floor to another and then use this information to 
allocate cares to calls and have been employed to 
predict elevator demand on a day-to-day basis. This 
study is an exploration in possibilities of the various 
fields in which neural networks can be applied in 
elevator control. Feedforward neural networks 
embedded in the car control and call distribution 
module is shown in Figure 1.

Neural network embedded elevator control 
module is situated in the simulation program and 
allocates the both landing and car calls to suitable 
car according to the control algorithm. Inverse-Stop 
Passenger method was proposed by Al-Sharif [12]. 
This module can continuously learn passenger 
arrival rate patterns throughout the day o f the 
elevator system, and predict the passenger arrival 
rates for each floor and destination in the building. 
In an elevator system, when a landing call is 
registered at a given floor, the information the group 
control system receives is the floor identification 
and desired direction of travel. The next stopping 
flo o r as the destin a tio n  is not know n. The 
information could be used by the elevator control 
algorithm to send the best car to answer the landing

call. Conservative approaches can not provide such 
flexibility and autonomous behavior. As a preferred 
embodiment of this technique, population behavior 
is modeled using neural network approach as 
described by Rumelhart and McClelland [13]. 
A rtific ia l neural netw ork application  in 
identification o f  vertical traffic pattern uses a 
feedforward neural network to perform this task 
[14]. Another neural network application in elevator 
control intends to be a new method using artificial 
neural networks to predict the response time of an 
elevator to a landing call.

2.1 The Structure of Artificial Neural Networks

Artificial neural networks consists several units that 
carry out a simple task and are fully interconnected. 
This layout allows reproducing some features of 
the brain that are not usual on computers [15], A 
typical simulation of the action of a single neuron 
is shown in Figure 2. The strength of each synaptic 
junction is represented by a weight, with a positive 
sign for excitatory connections, and negative 
o therw ise. The output o f  a neuron is easily 
computed by using vector multiplication of the 
input and weights, and adding the trainable bias to 
each neuron for speeding up convergence. A bias 
is included in the neurons to allow the activation 
functions to be offset from zero. This feature can 
be easily incorporated by adding an additional 
w eight connected to +1, to each neuron. The 
add itional b ias term  also determ ines the 
spontaneous activity of the neuron. This can also 
be achieved as setting the threshold values for the 
sudden onset o f a high firing rate, hence the term 
non-linear threshold element.

Car allocation

Fig. 1. Overall diagram o f an elevator control system
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Fig. 2. A typical model o f  a neuron

A fte r an input has been  app lied  as a 
stim ulus, it is propagated through each unit on 
output is generated. This output is then compared 
the desired output, and an error signal is computed 
for each output. The net input vector a to neuron j  
is a non-linear function o f  the inputs x  o f the 
neurons that are connected to j  and the weights w.. 
on these conditions is:

m

aj =  i * j  (i).
1=1

Using sigmoid non-linearity at each node, 
the neuron has a real-valued output y  that is a 
nonlinear function o f the net input is:

1
y j ~  j + e-a(°j-ej) (2)’

where 0 it the threshold value for the artificial
J

neurons. Im proving the perform ance sigm oid 
temperature a  is used and slightly higher than one 
w hich m akes the middle portion o f  the curve 
comparatively flatter. The node characteristics of 
an artificial neuron are thus determined by Equation 
(2).

The presented system can be adapted to do 
this purpose because o f all the input values such as 
number o f floors are defined as parametrically. A 
typical multilayer neural network used consists o f 
input and output layers are configured by number 
o f  floors and two hidden layers as depicted in 
Figure 3. An increase the number o f hidden layers

may improve generalization capacity. In the present 
case, after a few trials with the network with one 
hidden layer, good convergence could not be 
achieved. The network used, therefore, has two 
hidden layers as this guarantees it can leam any 
pattem. There are also no formulae to determine 
the number o f neurons to arrange in hidden layers. 
The m ost used procedure  is to try  several 
configurations. To improve the generalization, the 
number of nodes in hidden layers are double that 
o f the number o f input layer nodes [16] and [17]. 
The development o f  successful neural networks 
requires considerable time and effort.

In fully connected neural networks, the 
inputs o f the network gets in are: number o f car 
calls, number of up landing calls, number o f down 
landing calls and car directions. The hidden layers 
are computational layers and fully connected to 
input layer. There are no direct connections between 
the input and output layers. Case information flows 
forward from the input layer to the output layer 
through the hidden layers. Each layer consists o f 
processing element called neurons [18].

The program  uses the m u ltilay e r 
backpropagation method for determining the next 
stopping floors and calculates the outputs by 
multiplying the input matrix by the weight matrix 
to produce the output vectors. Then it sets the 
highest output to “ 1 ”, while setting all other outputs 
to “0”. It compares this output with the desired 
output, and then adjusts the weights.
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Fig. 3. The architecture o f multilayer neural network
2.2 The Backpropagation Algorithm

Feedforward neural networks in this study 
use the backpropagation algorithm, as it is widely 
used and very popular. It provides predictive 
information and a systematic method for training 
multilayer neural networks that has been applied 
to the control o f  elevator call allocation [1] and 
[19]. It does not have feedback connections, but 
errors are backpropagated during training. Thus, 
data are processed from the input to output layer, 
whereas knowledge is performed by the algorithm 
o f  m inim izing the square error by backw ard 
movement [20] and [21].

B ackpropagation neural netw ork is an 
exampled o f supervised learning and applicable for 
the m ultilayer neural network for it considers 
weight parameter in all layers. There are two layers 
of neural cells between input layer and output layer 
as shown in Figure 3. The Sigmoid non-linear nodal 
function is used when the backpropagation learning 
algorithm is used to train the feedforward network 
which is intended for the next stopping floor 
prediction.

The backpropagation algorithm is also based 
on the generalized delta rule which calculates the 
gradient to find the deepest descent direction, 
searching for a minimum in the error surface. It 
calculates first the error in the output layer, then 
evaluating the contribution o f each hidden neuron 
in that error. Thus, the corresponding weights are 
modified in order to reduce the mean squared error 
between the actual network output and the desired

one. The learning algorithm  is an iterative 
algorithm, intending to reduce the error at the 
output. The sequence o f  steps involved is as 
follows.

Step 1 : Initialize all of the weights to small 
random values. This breaks the network symmetry 
and ensures that the network does not become 
saturated by large values of weights.

Step 2: Apply an input vector to the input 
layer and specify the desired network outputs. The 
inputs can be new on each trial or samples from a 
training set can be presented cyclically until 
weights stabilize.

Step 3: Calculate the network outputs by 
performing a forward through the layers, using Eqs. 
(1) and (2) to calculate the outputs o f individual 
neurons. The outputs of the input layer neurons are 
made equal to the corresponding component of the 
input vector.

Step 4: Adjust the weights of the network 
in a way that minimizes the error using recursive 
algorithm at the output nodes by:

W-. (t +1) =  Wy (?) +  g  y j  E j + e AWj (t + 1) (3),

where w is the weight from i-th node to y-th node, 
g  is a learning rate which is normally sets less than 
1 to prevent to oscillation of weight values, e is a 
momentum coefficient and is normally set to 
around 0.9 and where:

Aw., (t + 1) =  Wy {t + 1) -  w. (?) (4),



and E  is the error aty'-th node:

Ej = - y j ( x~ y j ) ( y j - dj )  (5)>

for an output layer, and:

E, = - y J{ i - y J)JJEkwJk (6)>
i

for an intermediate layer neuron.
Step 5: Repeat by going to Step 2.
The major disadvantages o f this algorithm 

are its slow convergence, the possibility o f being 
stuck at a local minimum instead o f a global and 
the memorization instead of generalization. Various 
m eth o d s have been suggested  to  speed  up 
convergence tim e. Two o f  these involve the 
inclusion o f a momentum term and a learning rate 
term in the weight adjustment equations. Using this 
method, the network tends to follow the bottom of 
narrow  gullies in the error surface rather than 
oscillating from side to side.

There are also problems if the number of 
training pattem is small because this patterns using 
a big network in order to avoid the over fitting of 
the training data. Some modifications to the original 
algorithm  tend to overcome these difficulties. 
Increasing the number of hidden layers can also 
improve the generalized capacity.

2.3 Modification Parameters

Modification parameters can be made to the 
backpropagation algorithm which may improve its

performance and scale the adjustments to weights. 
They involve change stop the w eight update 
procedure, a variation to improve computational 
pow er and an ex p lic it sta tem ent o f  the 
backpropagation algorithm for two hidden layers. 
A simple change to training law that sometimes 
results in much faster training is the addition o f a 
momentum term. It is an attempt to try to keep the 
weight change in process and maintains the same 
direction the weight variation, ensuring stability 
in the learning. For constant learning rate, the 
number o f epochs with respect to momentum can 
be seen in Figure 4. A momentum term is added to 
speed up the learning stage and takes value o f 0.9 
in this study.

L earning rate as another m odification  
parameter can be used to control the amount which 
weights are changed during the training and be used 
as one o f convergence. This convergence is drawn 
according to epoch w ith constant m om entum  
parameter as shown in Figure 4. Therefore, the 
learning rate is set at 0.5 for training the network. 
As can be seen from Figure 4, care has to be taken 
in choosing the learning rate and the momentum, 
in order to ensure convergence. Higher learning 
rate values make convergence faster, but learning 
rate values higher than 0.5 must be avoided, as well 
as momentum values higher than 0.9.

2.4 Training the Network

The process of learning is known as training. There 
are th ree phases o f  tra in ing . In first phase,

(a) (b)
Fig. 4. Modification parameters: (a) Momentum with constant learning rate (b) Learning rate with

constant momentum



Table 1. Parameters o f neural networks training

Number o f floors n
Number of layers 4 Neural model backpropagation

Input layer 3n + 3 Topology Feedforward

Number of neurons 1st Hidden 2(3«+ 3) Supervision Supervised
2nd Hidden 2(3«+ 3) Learning mie Generalized delta mie
Output layer n I/O information Binary
Input layer Linear Momentum 0.9

Transfer function 1st Hidden Sigmoid Learning rate 0.5
2nd Hidden 
Output layer

Sigmoid
Linear

Sigmoid temperature 0.5

supervised learning is used to train the network to 
predict the next stopping floor. The training set is 
first presented to the network, until it learns the 
internal representation of training pairs and then 
the error at the output node is reduces along the 
steepest descent direction. The initial weights and 
the thresholds are random ly generated at the 
beginning. At the end of the first phase o f training, 
weights from the input layer to the hidden layer of 
the network are fixed. In phase two, the output layer 
of the network is retrained to emulate the existing 
controller. In phase three, single weights in the 
output layer o f the network are perturbed, and the 
resulting performance is measured. The weights are 
then  m odified  in the d irec tion  o f  im proved 
perform ance. N eural netw orks to be trained 
wherein the parameters specified in Table 1 were 
employed.

Because of the size of the training pattem, 
it is kept a separate file produced by the training 
pattern program. A training pattem  consists of 
training pairs o f inputs and outputs. The inputs are

car calls, up and landing calls and car direction. 
All the inputs were introduced for several epochs. 
The outputs are the next stopping floors. A 
schematic diagram of an elevator system of a group 
of cars is illustrated in Figure 5. A group of cars 
has to handle a group of passengers in a building 
with a given number of floors. In this figure, the 
elevator cars are represented as boxes in the 
diagram. In addition, a black circle indicates a car 
call, a black triangle indicates a landing call 
assigned to an elevator, and a white triangle 
indicates an unassigned landing calls.

When considering even small number of 
stops, the size o f the training pattern becomes 
extremely large to be calculated manually. Thus it 
decodes the direction and the position linearly, and 
the calls in binary [12]. The module is used to 
classify the input vectors and to convert them in 
binary information as shown in Figure 5, by a 
processing module active code/binary code. Thus, 
the neural network receives only binary data that 
represent a favorable situation for applications in

Car calls Car direction
Up landing 

calls
Down landing 

calls
Next stopping 

floor
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Fig. 5. Elevator system schematic diagram



large systems. This represents a reduction on the 
com putational effort necessary to realize the 
training and an improvement on the quality o f the 
analysis . This form  perm its to rep resen t the 
contingences by a binary code and reduce the 
quantity that is an adequate way o f providing a 
faster training and the analysis more reliable [9] 
and [12].

In order to train the neural network to be 
able to calculate the next stopping floors, the set o f 
possible patterns has to be evaluated in advance, 
and stored in a file to be used later by the training 
program. While calculating the situations, it finds 
the next stopping floor corresponding to each 
simulation, and then writes all these variables to a 
file. In the sample file record given is Fig. 5, “0” 
represents no call and “ 1” represents a call to be 
registered. The length of record lines depends on 
the number of floors. The first 7 digits represent 
the car calls, the next 3 represents the direction (001 
for down and 100 for up), the next 7 represents the 
up landing calls (each digit represents one call), 
and the next 7 represents the down landing calls 
and the last 7 digits represents the calculated next 
stopp ing  floors. This form at is used  to give 
flexibility in order to changing the number o f floors 
during input stage.

Each training pattem was randomly selected 
to be fed into the network, continuing until all the 
patterns were done with. This constitutes one epoch 
o f  learning. The network was trained for 1000 
epochs, until the mean squared error dipped below 
0.01 then the program  stops [9]. A fter 1000 
iterations the minimum reached which corresponds 
to the model that minimizes the fit for the validation 
data. Further iterations give an increasing criterion 
and the model becomes worse. Once the training 
stage is successfully finished and the trained 
network is tested, the network is employed in the 
p red ic tio n  o f  the nex t sto p p in g  floors by 
considering  w hat has been lea rn t in norm al 
operation mode.

2.5 Overtraining the Network

In neural networks, one o f  the major pitfalls 
is overtraining, analogous to curve fitting for mie 
based trading systems. Overtraining refers to the 
reduction in generalization ability that can occur 
as networks are trained, and may be avoided by 
early stopping the training stage in time, before an

adaptation to the noise starts. It is difficult to detect 
an optional stopping moment without the use o f a 
test set, pruning, reducing the size o f a network 
after it is trained [12], [15] and [17].

Overtraining occurs when a network has 
learned not only the basic mapping associated with 
input and output data, but also the subtile nuances 
and even the error specific to the training set. 
Overtraining can be detected during the training 
stage by the use o f a test set. Once the data set has 
been selected, it is separated into training and 
testing subsets. In the testing mode, the network is 
fed new inputs and utilizes the representation it had 
previously learned to generate associated outputs 
without changing its weights.

Overtraining is reduced by limiting the 
num ber o f  neuron  to m inim um  necessary , 
increasing the train ing set size, using cross- 
validation training to identify and stop training 
before over fitting occurs. The cross-validation set 
was used to monitor generalization during training.

3 THE ELEVATOR CONTROL SIMULATION

In th is sec tion  the e levato r con tro l 
simulation example is considered. A widely used 
method for elevator system performance prediction 
is the use o f simulation. This can usually produce 
a set of curves, which describe the behavior o f a 
certain variable against the change in system  
loading. One o f the most useful curves which are 
used to study elevator system performance is the 
average w aiting tim e curve versus in terfloor 
demand. Interfloor demand as percentage can be 
found by dividing the passenger arrival rate by the 
handling capacity of the system [2], Simulations 
are run for several levels o f  interfloor demand for 
the improved control system. At the end o f each 
simulation, the average waiting time is recorded 
and the performance figure calculated by dividing 
the average w aiting  tim e by the in te rva l to 
normalize it.

3.1 The Structure of Software

The simulation program is executed on a 
pseudo building with various numbers o f elevator 
cars. The simulator was written by the author. A 
modular construction has been used as shown in 
F ig .6 as th is  a llow s ease o f  p rogram m ing , 
extension, m odification and defined interfaces



between modules and databases. Conversational 
programming techniques have been used to take 
advantage of an interactive digital computer. All 
inputs are checked for validity and where an error 
is detected the user is prompted as to the correct 
reply. The principal features of the simulator are 
that it can simulate up to 3 cars and 10 floors.

The lift configura tion  m odule is an 
interactive conversational program which allows 
the setting up of all the data defining the system to 
be simulated. Three cars with various contract 
capacities are used to service the whole building. 
In this program interfloor distance, contract speed, 
time for opening and closing the door, passenger 
transfer time are chosen by users. After that the 
training module is executed to be able to calculate 
the next stopping floors, the set of possible patterns 
has to be evaluated in advance, and stored in a file 
to be used in neural networks module. In this 
program, feedforward neural network is used to 
allocate the calls to the best cars during day period 
by means o f weight matrix. The software uses the 
backpropagation learning algorithm to training the 
network.

Fig. 6. The flow chart o f simulation program

The traffic analysis and control module 
which is embedded in the simulation program 
assigns the landing calls to the convenient cars. This 
module decides which car to be dispatched to which 
floor. In the traffic analysis and control module, 
the executive is the simplest part in the module and 
is used to control which sub-module is to mn. After 
each sub-module has been used, the executive is 
re-en tered  to determ ine the next phase in a 
simulation. The executive also controls the access 
to the traffic analysis and control module. It 
generates landing and car calls. The car capacity 
is selected by users. The goal of the module is to 
obtain the next stopping floor, which is important 
in the allocation o f the cars. In the first step, the 
landing calls and car calls, next arrival floors and 
next destination floors are determined. The number 
of passengers in the car, which one of the factors 
in selecting the next arrival floor is determined by 
means o f  Inverse-Stop Passenger method [12]. 
After two steps the next stopping floors can be 
determined using feedforward neural networks.

The output o f simulation is the distribution 
of calls to the most suitable cars and car direction. 
The results are kept a separate file and saved in a 
file to be used later by the training program. 
Performance calculations have been arranged to 
present graphs to the user. They include round trip 
time, average waiting time and the normalized 
system performance figure which are used for a 
perform ance com parison o f elevator control 
systems.

The flow chart o f simulation program which 
employs both conventional Duplex/Triplex control 
and the neural network algorithm is depicted in 
Figure 6 [9],

3.2 Performance Criteria and Calculations

The performance objectives of an elevator 
system can be defined in many ways. One possible 
objective is to minimize the average waiting time, 
which is the time between a passenger’s arrival and 
entry into a car. The passenger waiting time would 
be the fiest indicator of the quality of service that 
an installed elevator system could provide. To 
calculate the average waiting time according to car 
loads, one can find:

CC
(7),

AWT=
2Htv + (S + l)?s + 2Pt

0.4 +



where P is the number of passengers enter the car 
at the main terminal, CC is the contract or rated 
capacity o f  car, H  is the highest reversal floor, S  is 
the expected number of stops, tv is the single floor 
transit time, ts is stopping time and t passenger 
transfer time and L is the number of cars within a 
elevator group. The highest reversal floor and the 
expected number of stops are determined by means 
o f simulation program. The number o f passengers 
in the car is calculated by means of Inverse-Stop 
Passenger method.

The normalized system performance figure 
is defined  as the percentage o f  the sim ulated 
av e rag e  p assen g er w aiting  tim e d iv ided  by 
calculated up-peak interval. The interfloor demand 
is defined as the interfloor arrival rate divided by 
calculated up peak handling capacity.

4 SIMULATION RESULTS

To investigate the improvement obtained 
by using the group control where neural network 
are em bedded into the D uplex/Triplex control 
algorithm, simulations are run for several levels 
o f  interfloor traffic demand level for the improved 
D u p le x /T rip le x  co n tro l sy stem  (IC S ). The 
sim ulation program  is executed for a building 
which population 1000 with 10 floors, three cars 
w ith contract capacity equal to each is used to 
service the whole building. Interfloor distance is 
fixed  at 3.3 m, contract speed 1.0 m/s. Door 
operating time is 20 seconds while closing time
2.6 secs and passenger transfer time is 1.2 secs. 
Sim ulations output file keeps the record o f the 
round  trip  tim e, the interval and the average 
passenger waiting time. The program runs on a 
486P C  w ith  8 MB RAM , 256M B hard disk 
co n fig u ra tio n . The no rm alized  perform ance

figures, with respect to the interfloor demand are 
compared with other traffic control algorithms 
which are the fixed sectoring priority timed system 
(FSPTS) and the fixed sectoring common sector 
system  (FSC SS) co n tro l a lgo rithm . For a 
perform ance com parison, the results o f  each 
simulation performed under the same conditions 
have been tabled. Table 2 gives the comparison 
o f the performance figure o f the traffic control 
algorithms in a normalized form. Existing control 
algorithms as standards are used for comparison
[9] and [10].

The simulation results showed the proposed 
method could provide a considerable improvement 
of the call assignment, if  the method is implemented 
to an elevator control system for low-rise buildings 
in up peak traffic conditions. The ICS shows an 
improvement over the fixed sectoring priority timed 
system (FSPTS) and the fixed sectoring common 
sector system (FSCSS) control algorithm, when the 
interfloor demand exceeds 55%.

5 EXPANSIONS IN MATERIALS HANDLING 
SYSTEMS

Automated Guided Vehicle (AGV), one of 
the materials handling systems, is widely used in 
flex ib le  m anufac tu ring  system s. D ue to the 
increasin g  com plex ity  o f  m anufac tu ring  
environments coupled with the need for increased 
flex ib ility  in AGV system s. The design  and 
evaluation o f AGV systems are highly complex 
because o f the randomness and the large number 
o f  variables involved. Typically the design o f 
material handling systems using AG Vs includes 
determination o f the vehicle guidepath layout, the 
traffic flow pattern, the number o f vehicles required 
[22],

Table 2. Comparison o f the system performance

Interfloor demand Performance figure [%]
[%] FSPTS FSCSS ICS
10 25.7 28.5 42.5
20 31.4 37.1 51.3
30 45.6 51.3 64.1
40 64.6 66.9 78.8
50 86.6 82.8 93.1
60 114.0 106.8 112.4
70 143.9 133.4 134.1
80 174.9 163.8 151.6
90 209.5 195.2 168.2
100 238.8 226.6 190.8



The problem of AGV consists o f the operational 
control strategies o f dispatching and routing of a 
set o f AG Vs and can be solved by using a lot of 
heuristic algorithms as Petri nets, fuzzy logic and 
neural networks. Hao and Lai [23] have described 
a neural network approach for the AGV problem 
and proposed neural network models to perform 
dispatching and routing tasks for the AGV under 
conditions of single or multiple vehicles which are 
based on Kohonen’s self-organizing feature maps. 
Bostel et.al. have proposed a new navigation 
technique for AGV’s based on neural networks [24],

The desired path along which the vehicle 
should move may be a fixed route, semi fixed route 
or an arbitrary route. Fixed route implies the 
installation of a fixed active guide like an energized 
cable or a passive one like a reflecting strip painted 
on the p lan t floor, ft is essen tia lly  AGV 
program m ed to convey m aterials or w ork in 
progress through a predefined route in horizontal 
environment. It is similar with elevator which 
carries the passengers and loads th rough a 
predefined route in vertical environment.

Vehicle travel time of AGV is a fundamental 
p aram eter for so lv ing  various flex ib le  
m anufacturing system  design problem s. The 
feedforward neural networks embedded system 
presented in this paper possesses generality for 
transportation systems. It is mostly used in elevator 
engineering, but it could be used for single vehicle 
or multi vehicle AGV’s control up to 3 vehicles in 
flexible manufacturing systems, if  it is adapted and 
generalized for fixed route path problem using 
average waiting tim e and average travel time 
concepts as described in elevator traffic calculation. 
This control system could be applied the static 
production environment where the product mix or 
machine routings are assumed to be stable over 
time. It can also be used to determine and estimate 
the vehicle waiting times of AGV. It is believed 
that the models can be applied to a number of call- 
a-ride cases, such as AGV travel.

6 CONCLUSIONS

In this paper the outline o f  a program 
preparing feedforward neural networks has been 
introduced. It has been seen that the average waiting 
time which defines elevator performance goes 
down satisfactorily thanks to the neural network 
applied to elevator control systems and that it gives

better results compared to conventional methods. 
It could effectively support the conventional group 
control system and shorten the average waiting time 
by fo recasting  car position  and using  call 
distribution laws. The system results are shown in 
Table 2 com pared to those obtained from 
conventional control algorithms. A 15 to 20% 
improvement in performance has been achieved by 
using this technique. It can be concluded that better 
results are reached when neural networks are 
combined with conventional techniques. On the 
other hand, the main drawback of the method is 
that it mainly applies to up-peak traffic. More 
research is also needed for down-peak, as it depends 
on building occupancy. This control system may 
be expanded to the other materials handling systems 
such as A G V ’s control problem  w ith a few 
necessary arrangements.
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