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Uncalibrated Visual Servo Control with Neural Network
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Research into robotics visual servo systems is an important content in the robotics field. This 
paper describes a control approach fo r  a robotics manipulator. In this paper, a multilayer feedforward 
network is applied to a robot visual servo control problem. The model uses new neural network 
architecture and a new algorithm for modifying neural connection strength. No a-prior knowledge is 
required o f robot kinematics and camera calibration. The network is trained using an end-effector 
position. After training, performance is measured by having the network generate joint-angles fo r  
arbitrary end effector trajectories. A 2-degrees-of-freedom (DOF) parallel manipulator was used for the 
study. It was discovered that neural networks provide a simple and effective way o f controlling robotic 
tasks. This paper explores the application o f a neural network for approximating nonlinear 
transformation relating to the robot ’s tip-position, from the image coordinates to its joint coordinates. 
Real experimental examples are given to illustrate the significance o f  this method. Experimental results 
are compared with a similar method called the Broyden method, fo r  uncalibrated visual servo-control.
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0 INTRODUCTION

A n animal’s brain develops accurate 
sensory-motor coordination in the face of many 
unforeseen changes in body dimensions, strength 
o f  the muscles, and placement of the sensory 
organs. This is accomplished, for the most part, 
w ithout a teacher [1]. Can this skill be 
implemented in to a robot’s control system? This 
paper presents some new architecture regarding 
artificial neural network for visual servo control.

Visual servo algorithms have been 
extensively developed in the robotics field over 
the last ten years [2], Vision is a useful robotics 
sensor since it mimics an animal’s sense o f vision 
[3]. Visual control o f robots allows for non- 
contact measurements o f the environment, as 
opposed to the traditional encoder and end limit 
sw itches [4]. Owing to the reduction in hardware 
costs and the increase in computing power, the 
focus o f  vision research has turned to introducing 
visual data into the control-loop o f a robot. Using 
visual data within the control-loop is termed as 
‘visual servoing’ [5]. Visual servoing is the fusion 
o f  many areas such as image processing, 
kinem atics, dynamics, motion control, and real­
tim e computing. The task during visual servoing 
is to control a robot when moving within its 
environment using vision.

The robot controller is required to solve 
the inverse kinematics problem in order to move 
the robot tip to a desired point or along a desired 
path. This problem involves the computation o f a 
sequence of links angles that will position the 
robot tip at the desired location.

The computational complexity involved 
when numerically solving of the inverse 
kinematics problem, and the capability of neural 
networks to approximate arbitrary functions, has 
attracted many researchers into applying neural 
networks to this problem [6]. Most o f these 
approaches use known solutions for forward 
kinematics or inverse kinematics problems in 
order to generate input-output patterns for the 
neural network training process.

A lot of authors have presented 
uncalibrated visual servoing and several groups 
have shown how image Jacobian itself can be 
estimated online from the measurements of robot 
and image motions. Hosoda and Asada [7] 
present an uncalibrated visual servoing for static 
targets using a fixed camera. Jägersand [8] takes 
the approach of a nonlinear least-squares 
optimization method using a trust-region method 
and Broyden estimation. Pieprmeier [9] develops 
a dynamic Broyden Jacobian estimation for a 
moving target, where a steady camera is used 
within the workspace.
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Our task is to build a system for robot 
control that is completely independent o f robot 
kinematics, camera calibration, and robust to 
external modifications. This paper proposes a 
visual servo-control with artificial neural network 
serving as a robot kinematics approximator. Our 
proposed method is compared with the Broyden 
algorithm for visual servoing, as developed by 
Jagersand [10].

The key attribute o f neural networks is 
their ability to serve as a general nonlinear model. 
Thousands o f data points are fed through a black 
box until the output o f the network converges into 
the true system. It has been shown [11] that any 
function o f practicable interest can be closely 
approximated arbitrarily with a neural network 
having enough neurons, at least one hidden layer, 
and an appropriate set of weights. The 
computation high speed and general modelling 
capability o f neural networks are very attractive 
properties for nonlinear compensation problems, 
as indeed robot control problems are.

This paper proposes a method for IB VS 
(Image Based Visual Servoing) based on a neural 
network for solving nonlinear (dynamic and 
kinematic) systems, which takes control over the 
robot’s joints in order to position the end effector 
into the static point or to track the moving target 
along an unknown trajectory. This paper is 
organized as follows. Section 2 discusses major 
classes o f visual systems. Section 3 describes a 
manipulator control scheme. Section 4 describes 
Broyden’s estimation and the definition o f the 
feature Jacobian. Section 5 describes a visual 
servo control algorithm with artificial neural 
network. The experimental system and 
experimental results are shown in section 6. 
Finally section 7 summarizes the paper.

Closed-loop control requires the visual 
data to be used as a feedback signal in the 
manipulator control and requires vision 
processing with acceptable speed and delay 
factors for real-time applications. Closed-loop 
control also allows visual data to compensate 
manipulator positioning inaccuracies and sensor 
noise.

Visual servo control systems typically use 
one of two camera configurations: end-effector 
mounted, or fixed in the workspace [12]. The first 
one is often called an eye-in-hand configuration. 
In this case, often constant relationship between 
the pose of the camera and the pose end-effector 
exists. The second configuration has the camera 
fixed in the workspace. In this case, the camera 
image of the target is independent of the robot’s 
motion, unless the camera is connected to the 
second robot.

Classical approaches to visual servoing are 
position-based and image-based systems.

During position-based control, features are 
extracted from the image during iteration o f the 
control loop and evolving o f an estimate o f the 
target’s pose with respect to the camera. This 
error signal is computed as the difference 
between the current and desired poses. The 
advantage o f position-based control is that it is 
possible to describe tasks in terms of positioning 
as Cartesian coordinates and the disadvantage is 
that it is often highly calibration-dependent. 
Hutchinson, Hager and Corke [3] contend that a 
key issue in position-based visual servo is the 
estimating of quantities to parameterize the 
feedback. Hence, it follows that position-based 
visual servoing is closely related to the problem 
o f recovering scene geometry from the camera. 
Figure 1 shows position-based control.

1 FUNDAMENTALS OF VISUAL SERVOING

One o f the most basic design issues in any 
vision-based robotic system is the open or closed 
loop control. Many industrial systems use open- 
loop control. Open-loop control may be termed as 
a “look and move” kind o f action, wherein, at 
each step, the system halts its action, processes 
the visual information and then executes the next 
step. Open-loop control may be used in cases 
where the vision processing system is too slow 
for real-time control.



Fig. 2. Image based control

Image-based control consists of specifying 
the positioning task directly from the image 
without an estimation of the target’s pose. Figure 
2 shows image based control. Feedback is 
computed from the image plan, and the error is 
computed as the difference between the desired 
feature vector and the current feature vector. 
Elements of the task are therefore specified in the 
image space rather than the world space, i.e in 
pixies rather than Cartesian coordinates [5]. The 
task o f  the image-based control is to reduce an 
appropriate error function. The error function is 
defined within the image parameter space and 
input to the robot is in the task space. The feature 
Jacobian captures these relationships, and it is a 
linear transformation from image feature 
parameters to changes in the robot’s position.

The main advantage o f image-based 
control over position-based control is that no 
camera calibration is needed.

2 MANIPULATOR CONTROL SCHEME

The objective is to move the robot tip of 
robotic manipulator towards a target point. 
M ovement o f the robot’s arm is achieved by 
generating the control signals through the use of 
visual information and a neural network.

This method is evaluated by experiment 
using a 2DOF planar robot manipulator built at 
the Institute for Robotics, University o f Maribor. 
The camera is fixed within the workspace and can 
provide positional information o f the robot’s tip 
and the target in the robot’s workspace. Figure 3 
shows the robot and the visual system model.

The robot’s forward kinematics is given by 
the following equation:

x  =  L - c o s ( ? i )  +  c o s ( ^ )

Lsin(<3r1) + sin(gr2) J ’ (1)

where qA , q2 are the robot’s joint angles, and x  
is a vector of the robot’s tip coordinates in the 
Cartesian coordinates. Figure 4 shows the 
corresponding manipulator and its coordinate 
system.

L = 0.415m is the length of the robot’s 
link. The robot has four equal length links. The 
control system for our robot visual servoing 
experiment consists o f two personal computers. 
The image processing node and the robot 
controller is interconnected by the 100 Mbit/s 
Ethernet. UDP (User Datagram Protocol) is used 
for exchange data between the PC control nodes. 
The robot controller is implemented with a 
DSpace DS1102 motion controller board which 
executes joint servo-control algorithms at 1ms 
period. The image processing node acquires the 
image from the camera, extracts the image 
features and executes the visual control 
algorithms. We employed a professional CCD 
camera. With a full image resolution 640x480, 
the AVT PIKE F-032B/C offers up to 202 fps and 
is, thus, particularly suited for fast applications in 
industrial image processing and product 
automation. The AVT FireGrab library for 
grabbing the image and computer vision, and the 
Gandalf numerical algorithm library were used as 
written in C language [13].

The relationship between the robot’s joint 
angles and the robot’s tip coordinates in the 
camera image is a non-linear function. The 
following section presents the known Broyden
[8], [10] and [14] method, for uncalibrated visual 
servo-control.



Subtracting these two equations and 
defining y k = F (x k+l) - F ( x k ) and sk = x M - x k 
w e obtain the classical secant equation:

B k+\S k =  y k  • ( 6 )

I f  the dim ension n is strictly greater than  1, 
there are an infinite num ber o f  m atrices Bt l

satisfying(6). A pplying the “ least-change secant 
update” , proposed by Broyden, leads to the 
follow ing updated form ula

Bk+i -  Bk + O'* ~ Bksk)sl
s , s t (7)

3.1. The Control Scheme

Fig. 4. P lanar 2D O F  manipulator

3 THE B R O Y D E N  A LG O RITH M

The visual servoing problem  has been 
form ulated as a  nonlinear least-squares problem
[10], [9], and it could be solved using quasi- 
N ew ton m ethods, w hich consider the linear 
m odel, at each iteration:

Lk(x-,Bk ) = F (x k ) + BkX x - xk ) .  (2 )
The m odel approxim ates F(x) in the 

neighbourhood o f  xk and com putes xk+x as a 
solution o f  the linear system  Lk (x; Bk ) = 0 . Quasi- 
N ew ton m ethods can be sum m arized as m ethods 
based on the equation:

xk+, = x k ~ B ; lF (x k ) ,  (3)
follow ed by com putation  o f  Bk+t. For the pure 
N ew ton m ethod Bk the Jacobian o f  F is evaluated 
at xk , that is a n  X  m m atrix  such that entry (i,j) is
dF,/dXj :

Bk = J ( x k) = V F (x k)T . (4)
B royden [14] proposed a class o f  quasi- 

N ew ton m ethods based on secant equations, 
im posing the linear m odel Lk+l to exactly m atch 
the nonlinear function at iterates xk and x t+i, 

that is

B k + 1 ( X k )  =  F ( x k  ) ,

Bk+ 1 (x k+ 1 ) = F (x k+l ). (5)

The relationship betw een the velocity  in 
the robo t’s jo in t space q and velocity  o f  its end- 
effector X is called a robot Jacobian [15]:

x  = J Rq (8)
Sim ilarly, the relationship betw een the 

velocity o f  a robot end-effector x and the
velocity  in the im age feature space / ,  is called 
im age Jacobian:

/  =  J ,x  ■ (9)
A  feature Jacobian  J  (10) is a com pound

o f  the robot Jacobian J R and the im age Jacobian

J,-
J  = J RJ i (10)

The relationship betw een the velocity in a 
robot jo in t space and velocity  in an im age feature 
space is given by (11):

f  = Jq -  ( l i )
The visual a lgorithm  determ inates the 

jo in t’s velocities q  :
q = , (12)

where J + is the inverse o f  the feature Jacobian, 
K  is a gain, and e = f d -  f  is the error signal 
that is obtained by  com paring the desired and 
current im age features’ param eters. To obtain a 
vector norm  we have to divide (the vector) by its 
length and thus w e get a vector o f  length 1. The 
direction o f  the vector rem ains unchanged. The 
same vector is then  m ultiplied w ith  a gain. W e 
norm  a vector and m ultiply  it w ith  the gain only 
in the case w here the length o f  the vector itself 
surpasses the given gain.



get:
I f  the equation (12) is m ultiplied by J  we

Jq  = JJ + K e . (13)
I f  the equation (13) is com bined we get:

f  + K f  = K f d . (14)
T he  Feature Jacobian J  is obtained by  the 

e s tim a tio n  process. The Broyden algorithm  can 
be u se d  for on-line estim ation o f  the Feature 
Ja c o b ia n . The update equation o f  its estim ate J  
is g iv en  by,

J k+i = À + ( a/ - ^ ^ ) a / ( a / a ^t) ( 15)

T his m ethod has proved to be successful. 
J ä g e rsa n d  [8] dem onstrates the robust properties 
o f  th is  type  o f  control and Piepm eier [9] develops 
a dy n am ic  Broyden Jacobian estim ation for 
m o v in g  target tracking.

N e x t section presents our proposed neural 
n e tw o rk  m ethod for uncalibrated visual servoing. 
N e u ra l netw ork  has the capability to solve non­
lin e a r  m apping, like direct and inverse kinem atics 
and  dynam ics o f  the robot m echanism . Details o f  
th e  lea rn in g  and structure o f  the neural netw ork 
w ill b e  presented in the next section.

Each layer has a sigm oid function betw een 
0 and 1 for its output. Equation (17) represents 
this sigm oid function, as show n in Figure 6:

1
1 + e"net (17)

The netw ork com putes all angles between 
the links in one step, using the desired and actual 
end-effector location as the network input. The 
netw ork is trained by the back-propagating o f  a 
two errors equations (18). K1 and K2 are the 
adjustable output scale factors. K1 is set betw een 
-ti/2 and n il ,  this being the output limit. K2 is set 
betw een 0 and 640. It presents the range o f  image 
resolution. Initial weights have been set randomly 
betw een 0.004 and -0.004. The learning rate for 
the first r| 1 and the second r\2 layer has been set 
at 0.4 and for the third r|3 and the fourth r\4 layer 
has been set at 0.9:

= ( * r -X D).
= ( * d " X0 )- (18)

The first error is the location error which is 
calculated from the desired and the actual 
position o f  the robot’s tip. The second error is the 
location error that is calculated from  the actual 
and the estim ated positions o f  the robot’s tip.

4 N E U R A L  N ETW O R K  STRUCTURE

L et us assum e the proposed architecture o f  
th e  n eu ra l netw ork. A  four-layered feedforward 
n eu ra l netw ork  is used (Figure 5).

It is described by the follow ing equations:

ne t_O J‘ = X w ‘a -ina,
a=l

O J‘ = f (n e t_ O J ‘),

net_O J^=IX a-O Jl,
a=l

OJ* = K , - f  (net O J^),

n e t _ O J L = Ì X a O J’ ,
a=l

O J L = f ( n e t_ O J i ) ,
m

n e t_ O J : = X w : ,a -OJ^,
a=l

OJ* = K , - f  (net O J ') ." 2 V -  11

OJ\ OJ3,



The back-propagation for error e A and e B 
is described by:

n

= X Wn,m-eB,„>
a=l
m

a=l

AwL,k = r13 - ^ O J 3m’ O J ^v m,k 
4A w ;m =Ti4 -eB.n -O J: 'O J ;

n

= Z Wn,m-eA,n,

(19)

m

a=l

Awli = T ii-c r]-OJ' ' i n i;
Awkd = n 2 -o j  ̂ '-o j ‘. (20)

It is im portant, that this algorithm  uses a 
new  neural architecture. The architecture o f  the 
neural netw ork is separated into tw o parts. The 
first part estim ates the inverse kinem atic while 
the second estim ates the forw ard kinem atic o f  the 
robot and the transform ation to the cam era image. 
Both neural netw orks are executed w ithin the 
same step. It is im portant to know  that this 
m ethod also provides the capability o f  changing 
the cam era’s position w ithin the executions o f  the 
tasks. Figure 7 shows the depicted architecture.

U nlike the forward kinem atic problem , the 
inverse k inem atic problem  usually  does not have 
a unique solution. Several jo in t positions m ay 
provide an identical end-effector position. In 
order to achieve appropriate results, neural 
netw orks require correct data preprocessing, 
architecture selection and netw ork training.

A lgorithm  starts w ith  random  w eights. The 
outputs o f  IK M  N N  (inverse kinem atic m odel 
neural netw ork) are actual jo in t coordinates, 
w hich are the result o f  random  w eights. The 
outputs o f  FK M  N N  (forw ard kinem atic m odel 
neural netw ork) are the estim ated values o f  the 
robot tip ’s Cartesian coordinates.

W e used the error BP (back-propagation) 
supervised learning technique. The first error is 
the difference betw een the estim ated output 
values for the FK M  N N  and the actual values o f  
the robot tip ’s Cartesian coordinates. The error

BP technique helps to set up the w eights for FK M  
NN. Learning for the IK M  N N  is executed w ithin 
the same step. The second error is the difference 
betw een the actual values o f  the robot tip ’s 
Cartesian coordinates in the cam era im age and 
the desired Cartesian coordinates o f  the robot tip. 
The error BP technique helps to set up the 
weights through the FK M  N N  the IK M  NN. 
Figure 8 represents the learning process w hile the 
figure 9 represents the execution process. V ector 
q represents the actual jo int-angles. V ector x RC 
represents the desired position in the cam era 
frame. V ector x DC represents the actual values o f  
the robot tip in the im age fram e. V ector x D 
represents the actual values o f  the robot tip ’s 
Cartesian coordinates.

Fig. 8. Block diagram  o f  the learning process



5 EX PERIM EN TA L RESULTS

T he w ork presented in this paper is based 
on  a  real experim ent using neural netw ork and 
v isua l servo-control. The experim ental task was 
com pared  w ith the know n B royden method.

T he algorithm  starts w ith random  weights 
chosen  betw een the limits 0.004 and -0.004. It 
cou ld  happen that, at the beginning w hen the 
in itia l w eights are chosen, the robot’s tip does not 
reach  the target, so the algorithm  should be 
s ta rted  m ore often. W hen the robo t’s tip reached 
the  first target, the first approxim ation o f  robot 
F K M  w as achieved and the weights for FK M  N N  
h ad  the first good approxim ation. The FKM  NN 
w eigh ts w ere set better for each o f  the follow ing 
targets. M ore targets in the robot’s workspace 
b ro u g h t better results, thus better FKM  
approxim ation. The algorithm  w as trained w ith 
100 random  targets in the robo t’s workspace. 
T hen  w e froze up the w eights for FKM  NN. Only 
the  IK M  N N  stayed active, w hich was then used 
fo r controlling the robot’s tip and used for 
m in im iz ing  the distance betw een the target and 
the  ro b o t’s tip. Figure 10 shows the trajectory o f 
the ro b o t’s tip. W hen the FKM  N N  is learned and 
the  w eigh ts are set, w e could use it for robot 
track ing  and robot positioning, w ithout any 
cam era  calibration or know n robot-kinem atics.

The cam era resolution w as 640x480, the 
c am era ’s frame rate was 200 f/s, thus the 
sam pling  time o f  the algorithm  execution w as 5 
m s. T he cam era w as positioned 1 m  above the 
robot, thus the size o f  pixie w as approxim ately
1.5 m m .

Figure (10) shows the start o f  the 
algo rithm  w ith random  weights. This sam ple 
p resen ts appropriately chosen weights. The initial 
robo t tip ’s position is m arked w ith  "0" w hile the 
targe t point is m arked w ith “ 1” . The dotted line 
p resen ts the robot in the goal position. The curve 
p resen ts the trajectory o f  the robot’s tip in the 
learn ing  phase. The initial weights w are set-up 
random ly  thus causing the problem  that the 
ro b o t’s tip during the so-called “virgin” learning 
d id  no t always find the target and the IKM 
com puted  by the neural netw ork w as badly 
approxim ated  by the neural network. How ever, if  
the first approxim ation o f  IK M  is achieved the 
ro b o t’s tip finds the target. Better results are

given using  m ore targets. It can be com pared 
w ith  teaching a  baby to stand on his legs. How  
m any tim es do children fall before they can 
stand up and w alk w ithout assistance? A fter 
craw ling for a few  w eeks they achieve sufficient 
balance to stand on legs w ith the support o f  a 
w all. It is im portant to know  how  m any senses a 
hum an being has. It all helps to set up the initial 
w eights, w hich are used in future life.

Figure 11 show s robot tracking. The 
initial robot tip ’s position is m arked w ith "0" 
and the corresponding robot jo in t-ang les have 
the follow ing values qi =  -30°, q2 = 60°. The 
initial target-po in t’s position is m arked with "1", 
and the consequent positions are m arked "2", 
"3", and "4". The target po in ts’ positions were 
generated in the follow ing order "l"-"2"-"3"- 
"4 "-" l" . W hen the robo t’s tip reached the target, 
the target-point w as m oved to another position 
in order to provide travelling o f  the robo t’s tip 
through the w hole robot w ork-plane. The 
position o f  the target-point determ ined the 
com ers o f  a square in the im age plane. The 
linear interpolation generated the reference 
trajectory w ithin the image. The trajectory 
tracking speed w as set to the follow ing value 0.1 
pixle/sam ple time. This is the difference 
betw een reference and actual trajectories.

Fig. 10. Virgin learning trajectory



Figure 12 show s the experim ental results 
for robot-tracking obtained by the Broyden 
m ethod (a,b) and the proposed m ethod (c,d). 
Figures 12(b,d) show  the experim ental results for 
u  and v feature error track ing’s for both 
algorithm s.

Both m ethods yield reliable results. 
Broyden m ethods needs initial m ovem ents to 
initialize the first Jacobian approxim ation. Our 
proposed m ethod w ith neural netw ork needs 
initial learning to set up weights and to estim ate 
the system . Tests for both m ethods were carried 
out on the same test-bed under the same 
conditions.

c)
u (p ix ie)

du
(p ix ie )

dv
(p ix ie)

b)

du

dv
(p ix ie )

tim e  (sec)

tim e (sec)

d)

Fig. 12. Experim ental results fo r  robot tracking: a) and  b) Broyden method, c) and  d) p roposed  m ethod
with neural netw ork

im age contour : so lid  line -  robot ’s  tip, do tted  line  — reference, circle  — target p o in t 
u-v error fea tu re  tracking: so lid  line -  d ifference betw een reference and  actual trajectories



6 CON CLU SION

T his paper describes a scheme for the 
co n tro l o f  robot m anipulators based on visual 
inform ation . The learning control approach 
d iscussed  is flexible, in that it is easy to apply 
w ith in  a robot control system  and can be m odified 
to  accom m odate system  changes. M any learning 
con tro l approaches involve learning to perform  a 
p a rticu la r m ovem ent. Our research focused on the 
ro b o t contro l w ith two degrees o f  freedom  and 
one  cam era. How ever, we predicted that the 
n eu ra l netw ork algorithm  w ould be able to be 
u se d  on  robots w ith  m ore degrees o f  freedom  and 
m ore  cam eras.

A chieving successful results for m achine 
v ision  and robotics in unstructured environm ents, 
w ith o u t using  any a-priori cam era or kinem atic 
m odels, has proven hard yet there are m any such 
environm ents where robots w ould be useful [8].

A  new  approach is introduced for the 
dynam ic  control o f  a parallel m anipulator. This 
a lgo rithm  uses a com pletely new  neural 
a rch itec ture . The training procedure o f  the neural 
n e tw o rk  does not require known solutions for the 
inverse  or forw ard kinem atic problem s. The 
neu ral algorithm  can successfully estim ate the 
ro b o t’s inverse kinem atics and forward 
k inem atics w ithout any prior inform ation, while 
carry ing-ou t a 2 DOF parallel m anipulation task.
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