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paper describes a contral approach for a robotics manipulator. In this paper. a multilaver feedforward
network is applied to a robot visual servo confrol problem. The model uses new newral network
architecture and a new algorithm for modifving neural connection strength. No a-prior knowledge is
required of robor kinematics and camera calibration. The network s trained using an end-effector
position. After training, performance ix measured by having the network generate joint-angles for
arbitrary end effector trafectories. A 2-degrees-of-freedom (DOF) parallel manipulator was used for the
study, It was discovered that neural networks provide a simple and effective way of controlling robofic
rasks. This paper explores the application of a newral wetwork for approximating nonlinear
transformation relating to the robot's tip-position, from the image coordinates to its joint coordinates.
Real experimental examples are given to illusirate the significance of this method. Experimenial results
are compared with a similar method called the Brovden method, for uncalibrated visual servo-control.
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0 INTRODUCTION

An animal's brain develops accurate
sensory-motor coordination in the face of many
unforeseen changes in body dimensions, strength
of the muscles, and placement of the sensory
organs. This is accomplished, for the most part,
without a teacher [1]. Can this skill be
implemented in to a robot’s control system? This
paper presents some new architecture regarding
artificial neural network for visual servo conirol.

Visual servo algorithms have been
extensively developed in the robotics field over
the last ten years [2]. Vision is a useful robotics
sensor since it mimics an animal’s sense of vision
[3]. Visual control of robots allows for non-
contact measurements of the environment, as
opposed to the traditional encoder and end limit
switches [4]. Owing to the reduction in hardware
costs and the increase in computing power, the
focus of vision research has tumed to introducing
visual data into the control-loop of a robot. Using
visua! data within the control-loop is termed as
*visual servoing” [5]. Visual servoing is the fusion
of many areas such as image processing,
kinematics, dynamics, motion control, and real-
time computing. The task during visual servoing
is to control a robot when moving within its
environment using vision.

The robot controller is required 1w solve
the inverse kinematics problem in order to move
the robot tip to a desired point or along a desired
path. This problem involves the computation of a
sequence of links angles that will position the
robot tip at the desired location,

The computational complexity involved
when numerically solving of the inverse
kinematics problem, and the capability of neural
networks to approximate arbitrary functions, has
attracted many researchers into applying neural
networks to this problem [6]. Most of these
approaches use known solutions for forward
kinematics or inverse kincmatics problems in
order to generate input-output pattemns for the
neural network training process,

A It of authors have presented
uncalibrated visual servoing and several groups
have shown how image Jacobian itself can be
estimated online from the measurements of robot
and image motions. Hosoda and Asada [7]
present an uncalibrated visual servoing for static
targets using a fixed camera. Jagersand [8] takes
the approach of a nonlinear least-squares
optimization method using a trust-region method
and Broyden estimation. Pieprmeier [9] develops
a dynamic Broyden Jacobian estimation for a
moving target, where a steady camera is used
within the workspace.
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Our task is to build a system for robot
control that is completely independent of robot
kinematics, camera calibration, and robust to
external modifications. This paper proposes a
visual servo-control with artificial neural network
serving as a robot kinematics approximator. Our
proposed method is compared with the Broyden
algorithm for visual servoing, as developed by
Jagersand [ 10].

The key attribute of neural networks is
their ability to serve as a general nonlinear model.
Thousands of data points are fed through a black
box until the output of the network converges into
the true system, It has been shown [11] that any
function of practicable interest can be closely
approximated arbitrarily with a neural network
having enough neurons, at least one hidden layer,
and an appropriate set of weights. The
computation high speed and general modelling
capability of neural networks are very atiractive
propertics for nonlinear compensation problems,
as indeed robot control problems are,

This paper proposes a method for IBVS
{Image Based Visual Servoing) based on a neural
network for solving nonlinear (dynamic and
kinematic) systems, which takes control over the
robot's joints in order to position the end effector
into the static point or to track the moving target
along an unknown trajectory. This paper is
organized as follows. Section 2 discusses major
classes of visual systems. Section 3 describes a
manipulator control scheme. Section 4 describes
Broyden's estimation and the definition of the
feature Jacobian. Section 5 describes a visual
servo control algorithm  with artificial neural
network. The  experimental system and
experimental results are shown in section 6.
Finally section 7 summarizes the paper.

1 FUNDAMENTALS OF VISUAL SERVOING

One of the most basic design issues in any
vision-based robotic system is the open or closed
loop control. Many industrial systems use open-
loop control. Open-loop control may be termed as
a “look and move” kind of action, wherein, at
each step, the system halts its action, processes
the visual information and then executes the next
step. Open-loop control may be used in cascs
where the vision processing system is too slow
for real-time control.

Closed-loop control requires the wvisual
data to be used as a feedback signal in the
manipulator  control  and  requires  wvision
processing with acceptable speed and delay
factors for real-time applications. Closed-loop
control also allows visual data to compensale
manipulator positioning inaccuracies and sensor
noise.

Visual servo control systems typically use
one of two camera configurations; end-effector
mounted, or fixed in the workspace [12]. The firsi
one is often called an eye-in-hand configuration.
In this case, often constant relationship between
the pose of the camera and the pose end-effector
exists. The second configuration has the camera
fixed in the workspace. In this case, the camera
image of the target is independent of the robot’s
motion, unless the camera is connected to the
second robot.

Classical approaches to visual servoing are
position-based and image-based systems.

During position-based control, features arc
extracted from the image during iteration of the
contrel loop and evolving of an estimate of the
target's pose with respect to the camera. This
error signal is computed as the difference
berween the current and desired poses. The
advantage of position-based control is that it is
possible to describe tasks in terms of positioning
as Cartesian coordinates and the disadvantage is
that it is often highly calibration-dependent.
Hutchinson, Hager and Corke [3] contend that a
key issue in position-based visual servo is the
estimating of quantitics to parameterize the
feedback. Hence, it follows that position-based
visual servoing is closely related to the problem
of recovering scene geometry from the camera.
Figure 1 shows position-based control.
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Fig. 1. Position based control
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Image-based control consists of specifying
the positioning task directly from the image
without an estimation of the target's pose. Figure
2 shows image based conirol. Feedback is
computed from the image plan, and the error is
compuied as the difference between the desired
feature wvector and the current feamre vector.
Elements of the task are therefore specified in the
image space rather than the world space. i.e in
pixles rather than Cartesian coordinates [3]. The
task of the image-based control is to reduce an
appropriate error function, The error function is
defined within the image parameter space and
input to the robot is in the task space. The feature
Jacobian captures these relationships, and it is a
linear transformation from image feature
parameters to changes in the robot’s position.

The main advantage of image-based
control over position-based control is that no
camera calibration is needed.

2 MANIPULATOR CONTROL SCHEME

The objective is to move the robot tip of
robotic manipulator towards a target point.
Movement of the robot's arm is achieved by
generating the control signals through the use of
visual information and a neural network.

This method is evaluated by experiment
using a 2DOF planar robot manipulator built at
the Institute for Robotics, University of Maribor.
The camera is fixed within the workspace and can
provide positional information of the robot’s tip
and the target in the robot’s workspace. Figure 3
shows the robot and the visual system model.

The robot™s forward kinematics is given by
the following equation:

. L{cos{q,ﬁcos{qz}]‘

sin(g, )+sin(q, ) m

where q,. g, are the robot’s joint angles, and ¥

is a vector of the robot’s tip coordinates in the

Cartesian coordinates. Figure 4 shows the

corresponding manipulator and ils  coordinate
system.

L=0415m is the length of the robot’s
link. The robot has four equal length links, The
control system for our robot visual servoing
experiment consisis of two personal computers.
The image processing node and the robot
controller is interconnected by the 100 Mbit/'s
Ethemnet. UDP (User Datagram Protocol) is used
for exchange data between the PC control nodes.
The robot controller is implemented with a
DSpace D51102 motion controller board which
executes joint servo-control algorithms at 1ms
period. The image processing node acquires the
image from the camera, extracts the image
features and  executes the  visual control
algorithms. We employed a professional CCD
camera. With a full image resolution 640x480,
the AVT PIKE F-032B/C offers up to 202 fps and
is, thus, particularly suited for fast applications in
industrial image processing and  product
automation. The AVT FireGrab library for
grabbing the image and computer vision, and the
Gandalf numerical algorithm library were used as
written in C language [13].

The relationship between the robot’s joint
angles and the robot’s tip coordinates in the
camera image is a non-lincar function. The
following section presents the known Broyden
[8], [10] and [14] method, for uncalibrated visual

servo-control.
Campn
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Fig. 3. Experimental system

Uncalitwated Viswal Serve Comired with Newral Network 621



Strajnidki vestnik - Journal of Mechanical Engincering 54(2008)19, 619-627

-
X
Fig. 4. Planar 2DOF manipulator

3 THE BROYDEN ALGORITHM

The wvisual servoing problem has been
formulated as a nonlinear least-squares problem
[10], [9], and it could be solved using quasi-
MNewton methods, which consider the linear
maodel, at each iteration:

L{x;B)=Fix )+ 8 (x-x). (2)
The model approximates F(x) in the
neighbourhood of x, and computes x,,, as a
solution of the linear system L, (x; 8,1 = 0. Quasi-

Mewton methods can be summarized as methods
based on the equation:

X=X —B;'f"(.tl}. (3)
followed by computation of B, . For the pure
Mewton method B, the Jacobian of F is evaluated
at x, , that is a n x m matnx such that entry (i) i1s
OF, féx, :

B, =J(x)=VF(x,) . (@)

Broyden [14] proposed a class of quasi-
Newton methods based on secant equations,

imposing the linear model L, , 1o exactly match
the nonlinear function at iterates x, and x, .
that 1s

L..(x)=F(x),
L, (%) = Fixg,) (5)

Subtracting these two equations and
defining v, = Fix, ,)-F(x,) and 5, =x,  —x
we obtain the classical secant equation:

B 5=y (1)

If the dimension n is strictly greater than |,
there are an infinite number of matrices B,
satisfying{6). Applving the “least-change secamt
update”, proposed by Broyden, leads to the
following updated formula
(.!'"1 = Brrt )7:

T

¥y 5y ; {?}

i

B.=B+

3.1, The Control Scheme

The relationship between the wvelocity in
the robot's joint space § and velocity of its end-

effector & is called a robot Jacobian [15]:
x=Jyq (%)
Similarly, the relationship between the
velocity of a robot end-effector i and the

velocity in the image feature space f, is called
image Jacobian:
f=dx. (9)
A feature Jacobian J (10) is a compound
of the robot Jacobian J, and the image Jacobian
gy
J=dyd, (10)
The relationship between the velocity in a
robot joint space and velocity in an image feature
space is given by (11):
f=Jdq. (11)
The wisual algorithm determinates the
joint’s velocities ¢ :
g=J"Ke, (12)
where J* is the inverse of the feature Jacobian,
K is a gain, and e= [ - f is the error signal
that is obtained by comparing the desired and
current image features’ parameters. To obtain a
vector norm we have to divide (the vector) by its
length and thus we get a vector of length 1. The
direction of the vector remains unchanged. The
same vector is then multiplied with a gain. We
norm a vector and multiply it with the gain only
in the case where the length of the vector itself
surpasses the given gain.
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If the equation (12} is multiplied by J we
get;
Jg=JI"Ke. (13)

If the equation (13) is combined we get:

f+Kf =K. (14)

The Feature Jacobian J is obtained by the

estimation process. The Broyden algorithm can

be used for on-line estimation of the Feature

Jacobian. The update equation of its estimate J
is given by,

Jio =J, +(8F - J,09) 007 (A7 Aq) (15)

This method has proved to be successful.
Jigersand [8] demonstrates the robust properties
of this type of control and Piepmeier [9] develops
a dynamic Broyden Jacobian estimation for
moving target tracking.

Mext section presents our proposed neural
network method for uncalibrated visual servoing.
MNeural network has the capability to solve non-
linear mapping, like direct and inverse kinematics
and dynamics of the robot mechanism. Details of
the learning and structure of the neural network
will be presented in the next section.

1
a

4 NEURAL NETWORK STRUCTURE
Let us assume the proposed architecture of
the neural network. A four-layered feedforward
neural network is used (Figure 5).
It is described by the following equations:
net_OJ) =3 wi, «in,,
a=|
0l =f(net_01}),
net_QJ; = iw:‘ -0l
=l
0J; =K, -f(net_OJ} ),
3
net_OJ) = wa“ 08,
w=|
0y, =f(net_O17.),
net O =¥ w!, .01,
=l

0J} =K, -f(net_0J}). i

Each layer has a sigmoid function between
0 and 1 for its output. Equation (17) represents
this sigmoid function, as shown in Figure 6:

f(net)=

1+e™ (17)

The network computes all angles between
the links in one step, using the desired and actual
end-effector location as the network input. The
network is trained by the back-propagating of a
two ermors equations (18). K1 and K2 arc the
adjustable output scale factors. K1 is set between
-m/2 and n/2, this being the output limit. K2 is set
between 0 and 640. It presents the range of image
resolution. Initial weights have been set randomly
between 0,004 and -0.004. The leaming rate for
the first il and the second 12 layer has been set
at 0.4 and for the third 13 and the fourth n4 layer
has been set at 0.9:

€, =(%y -%p)s
&y =(%p-%,)- (18)
The first error is the location error which is
calculated from the desired and the actual
position of the robot’s tip. The second error is the

location error that is calculaied from the actual
and the estimated positions of the robot’s tip.

Fig. 5. Neural nerwork

1
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Fig. 6. Sigmoid function
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The back-propagation for error &, and &,
is described by:

n
1 ] 3
Ty = an_m Chas
=]

a; --iwfﬂ, ol
=
awl, =n,-o’ 01 “0J;,
Awl, =, e,,-0J; "0, (19)

B "

a, TZ““ "Caar

nm
o=l

¥ - J_ 3
T =2 W O

w=l
- ot
[ 2
a) =2 Wy, o
[ ]
1 _ | w2
Awj;, =n,-o;-0J;"in;,
Awj, =0, 0] 01" 0J). (20)

It is important, that this algorithm uses a
new neural architecture. The architecture of the
neural network 15 separated into two parts. The
first part estimates the inverse Kinematic while
the sccond estimates the forward kinematic of the
robot and the transformation to the camera image.
Both newral networks are executed within the
same step. It is important to know that this
method also provides the capability of changing
the camera’s position within the executions of the
tasks, Figure 7 shows the depicted architecture.

Unlike the forward kinematic problem, the
inverse kinematic problem usually dogs not have
a unique solution. Several joint positions may
provide an identical end-effector position. In
order to achieve appropriste results, neural
networks  require correct  data  preprocessing,
architecture selection and network training.

Algorithm starts with random weights. The
outputs of TKM NN (inverse kinematic model
neural network) are actual joint coordinates,
which are the result of random weighis. The
outputs of FEM NN (forward kinematic model
neural network) are the estimated values of the
robot tip’s Cartesian coordinates.

We used the error BP (back-propagation)
supervised learning technique. The first error is
the difference between the estimated output
values for the FKM NN and the actual values of
the robot tip’s Cartesian coordinates. The error

BP technique helps to set up the weights for FKM
MNN. Learning for the IKM NN 15 executed within
the same step. The second error is the difference
between the actual values of the robot tip's
Cartesian coordinates in the camera image and
the desired Cartesian coordinates of the robot tip.
The error BP technique helps to set up the
weights through the FKM NN the KM NN,
Figure 8 represents the leaming process while the
figure 9 represenis the execution process. Vecior
q represents the actual joint-angles. Vector ¥,

represents the desired position in the camera
frame, Vector X represents the actual values of

the robot tip in the image frame. Vector X,

represents the actual values of the robot tip’s
Cartesian coordinates.

Fig. 7. Newral neiwork sheme

X
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Fig. 8. Block diagram of the learning process

Fig. 9. Block diagram of the execution process
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5 EXPERIMENTAL RESULTS

The work presented in this paper is based
on a real experiment using neural network and
visual servo-control. The experimental task was
compared with the known Broyden method.

The algorithm starts with random weights
chosen between the limits 0,004 and -0.004, It
could happen that, at the beginming when the
initial weights are chosen, the robot’s tip does not
reach the target, so the algorithm should be
started more often. When the robot’s tip reached
the first target, the first approximation of robot
FEKM was achieved and the weights for FKM NN
had the first good approximation. The FKM NN
weights were set better for each of the following
targets, More targets in the robot's workspace
brought better results, thus better FEKM
approximation. The algorithm was trained with
100 random targets in the robot’s workspace.
Then we froze up the weights for FKM NN. Only
the TKM NN stayed active, which was then used
for controlling the robot's tip and used for
minimizing the distance between the target and
the robot’s tip. Figure 10 shows the trajectory of
the robot’s tip, When the FKM NN is learned and
the weights are set, we could use it for robot
tracking and robot positioning, without any
camera calibration or known robot-kinematics.

The camera resolution was 640x480, the
camera’s frame rate was 200 ffs, thus the
sampling time of the algorithm execution was 3
ms. The camera was positioned | m above the
robot, thus the size of pixle was approximately
1.5 mm.

Figure (10) shows the start of the
algorithm with random weights. This sample
presents appropriately chosen weights. The initial
robot tip’s position is marked with "0" while the
target point is marked with “1”. The dotted line
presents the robot in the goal position. The curve
presents the trajectory of the robot's tip in the
learning phase. The initial weights ware set-up
randomly thus causing the problem that the
robot’s tip during the so-called “virgin” learning
did not always find the target and the IKM
computed by the neural network was badly
approximated by the neural network. However, if
the first approximation of IKM is achieved the
robot’s tip finds the target. Better results are

given using more targets. It can be compared
with teaching a baby to stand on his legs. How
many times do children fall before they can
stand up and walk without assistance? After
crawling for a few weeks they achieve sufficient
balance to stand on legs with the support of a
wall. It is important to know how many senses a
human being has. It all helps to set up the initial
weights, which are used in future life.

Figure 11 shows robot tracking. The
initial robot tip's position is marked with "0"
and the corresponding robot joint-angles have
the following values q; = -30°, q: = 60°. The
initial target-point’s position is marked with "17,
and the consequent positions are marked "2",
"3", and "4". The target points’ positions were
generated in the following order "1"-"2"-"3"-
"3"."1", When the robot’s tip reached the target,
the target-point was moved to another position
in order to provide travelling of the robot’s tip
through the whole robot work-plane. The
position of the target-point determined the
comers of a square in the image plane. The
linear interpolation generated the reference
trajectory within the image. The trajectory
tracking speed was set to the following value (0.1
pixle/sample time. This is the difference
between reference and actual trajectories.

0 0 M W 0 S0 60

Fig. 10. Firgin learning trajectory
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Y Figure 12 shows the experimental results
for robot-tracking obtained by the Brovden
method (ab) and the proposed method (c.d).
Figures 12(b,d) show the experimental results for
u and v feature eror tracking's for both
algorithms,

Both  methods  yield reliable resulis,
Broyden methods needs initial movements 1o
imitialize the first Jacobian approximation. Our
proposed method with neural network necds

it
initial learning to set up weights and to estimale
the system. Tests for both methods were carried
out on the same test-bed under the same
conditions,
450 0
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Fig. 12. Experimental results for robot tracking: a) and b) Broyden method, ¢) and d) proposed method
with neural network
image contour : solid line — robot s tip, dotted line — reference, circle — target point
w-v error feature tracking: solid line — difference between reference and actual trajectories
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6 CONCLUSION

This paper describes a scheme for the
control of robot manipulators based on visual
information. The leaming control approach
discussed is flexible, in that it is easy to apply
within a robot control system and can be modified
to accommodate sysiem changes. Many learning
control approaches involve leaming to perform a
particular movement. Our research focused on the
robot control with two degrees of freedom and
one camera. However, we predicted that the
neural network algorithm would be able 10 be
used on robots with more degrees of freedom and
more Cameras.

Achieving successful results for machine
vision and robotics in unstructured environments,
without using any a-priori camera or kinematic
maodels, has proven hard yet there are many such
environmenits where robots would be useful [8].

A new approach is introduced for the
dynamic control of a parallel manipulator. This
algorithm uses a completely new neural
architecture. The training procedure of the neural
network does not require known solutions for the
inverse or forward kinematic problems. The
neural algorithm can successfully estimate the
robot’s  inverse kinematics and  forward
kinematics without any prior information, while
carrying-out a 2 DOF parallel manipulation task.
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