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Dynamic Analysis of the Load Lifting Mechanisms

Jovan Vladić* - Petar M alešev - Rastislav Šostakov - N ikola Brkljač 
University o f  Novi Sad, Faculty o f  Technical Sciences, Serbia

This p a p er deals with the problem  o f  dynamic behaviour o f  load lifting mechanism (such as 
elevators). In the case o f  considerable lifting heights, high velocity devices are applied, with the purpose  
o f  shortening cycle duration and  increasing the capacity. In such case, the standard procedure o f  
dynamic analysis is not applicable. In the paper, the procedure o f  establishing the appropriate dynamic 
model and  corresponding equations is proposed. It enables the analysis o f  the relevant influences, such as 
variation o f  the rope fr e e  length, slipping o f  the elastic rope over the drum or pu lley  and  damping due to 
the rope internal friction.
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0 INTROD UCTION

In the m ost types o f  load lifting 
m echanism s w ith considerable lifting heights 
operating under usual conditions, the steel wire- 
rope and the driving drum  (in cranes) or the 
driving pulley (in elevators) are applied.

The paper deals w ith the influence o f  these 
com ponents upon the dynam ic behaviour o f  the 
lifting m echanism , while other influences were 
left out o f  the scope o f  the research. These 
influences have already been investigated in 
details, e.g. dynam ic phenom ena in the gear box, 
in [5], the dynam ic characteristics o f  the driving 
electrom otor, in [12], etc. The research is based 
on the system  w ith m any degrees o f  freedom , also 
used in [13], The analysis o f  the lifting 
m echanism  w ith relatively low  lifting velocity is 
usually  perform ed by using dynam ic m odels 
based on the longitudinal vibrations o f  elastic, 
hom ogeneous bar o f  a constant length, w ith or 
w ithout mass, corresponding to certain boundary 
conditions, e.g. in [10]. The stability o f  beam  
acceleration and the effect o f  various stiffness 
values have been analysed in [6] and [11].

Boundary condition at the lower rope end 
is defined by  the load m ass and at the upper rope 
end by the m om ent o f  inertia o f  all driving 
m echanism  com ponents and by the excitation 
force corresponding to the m echanical 
characteristic o f  the driving electrom otor, both 
reduced to the shaft o f  the driving drum or pulley. 
But, in the case o f  higher lifting velocity, (e.g. in 
the case o f  fast passenger elevator, m ine shaft 
w inding system , harbour crane, etc.) the

num erous influences upon the dynam ic behaviour 
o f  the lifting m echanism  are also to be taken into 
account, such as:
• rope length variation during load lifting and 

lowering,
•  steel w ire-rope slipping over the driving 

pulley or drum,
• m echanical properties o f  the rope (such as 

elasticity modulus, rope internal friction, rope 
design, etc.),

•  influence o f  dynam ic processes on the 
incom ing rope side upon the dynamic 
processes on the outgoing rope side in the 
system s with driving pulley,

•  m echanical characteristic o f  the driving motor,
•  influence o f  friction processes between the 

elevator car guiding shoes and rails.
Basic influence o f  the rope length 

variation appears directly through the variation o f 
the basic dynamic param eter -  stiffness o f  the 
rope free length. There is a considerable 
possibility that in the case o f realistic devices 
with higher velocities and m inor energy losses 
due to internal friction in elastic elements, the 
variable stiffness o f the rope free length could 
induce the occurrence o f  param etric vibrations.

1 EQUA TION S OF LOAD LIFTING SYSTEM

A load lifting system  with the driving 
pulley is presented in Fig. 1. It represents a more 
com plex system  for dynam ic analysis in 
com parison w ith the system  which contains a 
drum  as a driving element.
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Fig. 1. Elevator driving mechanism

The influence o f the elasticity o f  shafts, 
gears, etc. can be neglected in comparison with 
the steel wire-rope elasticity. This enables the 
establishment o f a simplified dynamic model of 
the driving mechanism, as shown in Fig. 2. The 
model takes into account the influence o f the rope 
free length variations on both the incoming and 
outgoing pulley sides.

Fig.2. Dynamic model

The variations in rope free length (shortening or 
lengthening) directly affect the rope stiffness, and 
therefore also the dynamic behaviour o f  the rope, 
which is o f significant importance in the systems 
with high lifting velocities. The influence of 
elastic rope slipping over the driving pulley is 
considered through the adequate boundary 
conditions.

According to [9] and Fig. 2, on the basis o f 
the equilibrium conditions for the elementary 
rope length and for the driving pulley, the 
following system o f equations can be established:
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with:
U \, «2 - rope elastic deformations, m
E - elasticity modulus, Pa
A - rope cross-section, m2
a - driving mechanism acceleration, ms“2
Mm - driving motor torque, Nm
i - gear ratio,
V - driving mechanism efficiency,
Jr - moment o f  inertia o f rotating masses,

reduced to the pulley shaft, kgm2
R - driving pulley radius, m
q - rope weight per meter, Nm"1
g - gravity acceleration, ms“2

In the presented Equations (1) to (3), the
wire-rope is considered to be a viscous-elastic 
body (Kelvin’s model), so the internal force can 
be defined as:
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According to [2], dependence of the 
damping coefficient upon the rope stress can be 
adopted as:

b  =
2300 

350 + cr J •IO“4 s

with:
a  - rope stress, MPa

In the course o f solving the Equation 
system (1) to (3), it is necessary to define the 
electro-mechanical model of the driving motor, or 
its mechanical characteristic in the form Mm=f(v).

Fig. 3. Diagram o f velocity and acceleration for  
the elevator with double-speed motor

For the passenger elevators, the parameters 
defining the “driving comfort” are specified, 
limiting the values of maximum acceleration to: 
a = 1.4 ms'2 and its time derivate to: (da/dt)max = 
1.0 ms"3, [7]. This makes it possible to simplify 
the analysis by excluding the Equation (3) from 
the previous system. Diagram of velocity and 
acceleration for the elevator with double-speed 
motor is presented in Fig. 3.

When considering the whole driving, the 
analysis becomes very complex. Therefore, the 
paper presents only the analysis o f dynamic 
behaviour concerning the rope incoming side of 
the driving pulley. In this case, the further 
analysis is to be carried out only with respect to 
the Equation (1).

2 BOUNDARY CONDITIONS FOR THE ROPE 
INCOMING SIDE OF THE DRIVING PULLEY

In Fig. 4, the characteristic parameters 
satisfying the boundary conditions for the rope

incoming side on the driving pulley or drum are 
presented.

Boundary conditions at point C, where the 
rope makes the first contact with the pulley, are 
dependent on whether the winding is with or 
without rope slipping.

The change of force in the wound rope 
part can be maintained only if  this change is 
smaller than the adhesive force making it 
possible. Fig. 4.d shows different cases of force 
distribution over the wound rope length as a 
function of elevator velocity, [8].

Fig. 4. Boundary conditions for: 
a) the pulley without slipping, 

b) the pulley with slipping, 
c) the elevator car (or counterweight), 

d) the distribution o f forces and slipping over the 
wound rope length V;>V2>Vj

The limiting value of the rope winding 
velocity is determined from the condition:
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On the basis o f the previous expressions, 
the limit slipping velocity is:

R e o  ,

with:
co - vibration frequency of rope incoming side, s"1 
k  - dynamic factor for elevators, k « 0.1 to 0.3 
/u - friction coefficient between rope and pulley, 
Sst - rope static load at the incoming point C, N 
T - period of vibration cycle, s"1

If  the elevator speed v exceeds the limit 
value vs (the case vj), Fig. 4.d, there occurs no 
rope slipping in the point C, so the force 
distribution over wound rope part remains the 
same. If  the winding velocity is lower than vgr, the 
force distribution over wound rope section has the 
form according to the dashed line v2. For very low 
lifting velocities, the force over the wound rope 
part is practically equal to the static load (line v3).

Average values for rope slipping 
displacement and velocity on the pulley incoming 
side are as follows:

Boundary condition for the connection 
point o f the rope with the elevator car or 
counterweight, when the friction forces between 
the sliding shoes and guiding rails are neglected, 
Fig. 4.C, is given as:
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with:
Q - weight o f the car with load passengers, N

The non-integral boundary condition (8) or
(9) makes it impossible to solve partial 
differential Equation (1). Hence, the solution can 
be sought through by establishing the integral 
equations, which comprise both the differential 
equations and the appropriate boundary 
conditions.

3 THE INTEGRAL EQUATIONS AND 
ESTIMATION OF CRITICAL VELOCITY
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Boundary condition for rope incoming 
point on the pulley without slipping, Fig. 4.a 
(point C), is given in the form:
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with:

/j - wound rope length, m

dii / dt = v - winding velocity, ms"1
If  the rope slipping is taken into account 

too, Fig. 4.b, the boundary condition is given in 
the form:
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A weightless string loaded at point M with 
the force F, is shown in Fig. 5. The magnitude of 
rope point displacement (without slipping over 
the driving pulley) within the range y  < x  shows 
linear growth from zero to the boundary value 
w(y), while the displacement beneath the point M 
is o f a steady value and equals to the boundary 
value u(y).



According to this, for an elementary force (Ff =1 ), 
deformation can be defined, e.g. [3], as:
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and displacement as u(x) =K (x, y, l)-F;.
In case of several forces acting in points at 

X  =  y t , the displacement has the following form:
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For the load case with evenly distributed 
rope load mass, the expression takes the form:

L
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After applying this procedure to the 
differential Equation (1), replacing floating 
argument with (y), multiplying it with the 
function K  (x, y, l\) = K  and performing necessary 
mathematical transformations, e.g. [1] and [4], the 
rope deformation becomes as follows:
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Applying the method of particular 
integrals, e.g. [10], given as:

Ul {x,t) = X l (x)-Tl (t)

and considering only the first mode of vibrations, 
form o f which - in the case o f a rope with the 
weight at its lower end - can be adopted as the 
straight line, i.e. X y ( x )  = x  — \ ,  the simple
differential equation in the following form is 
obtained:
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Differential Equation (12) describes 
nonlinear vibrations with viscous friction when 
the parameters are "slow-time functions", with the 
solution, according to [10], in the form:
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whereby, after some mathematical 
transformations, the obtained values are:
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After substituting previously mentioned 
values into Equation (9), and after performing 
mathematical transformations, the equation 
obtaines the form:
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On the basis o f Equations (4) and (13), the 
force in the rope is expressed as:
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Analyzing Equation (14), it can be 

concluded that, during the rope free length 
decreasing phase (load lifting), under certain 
conditions, its deformation can be increased, 
causing a permanent growth o f rope dynamic 
load. Such phenomenon, usually described as 
unstable lifting, appears in the case that

> o . On the basis o f this condition, the 
dt

critical lifting velocity can be determined as:
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If  the elevator velocity exceeds vc in the 

lifting phase, the dynamic load will increase 
(unstable movement). Under these conditions two 
cases are possible:
— If  the rope slipping at the incoming point is 

prevented (pulleys with special clamps for 
rope gripping), the unprevented increase of the 
dynamic load appears in the lifting phase,

— At standard pulleys, the increased dynamic 
load also appears in the lifting phase, but only 
until the moment when the slipping begins in 
the rope incoming point, v < v s . During the
rest of the lifting process, the load decreases, 
i.e. the stable movement occurs.

The value o f critical velocity depends on 
the rope damping characteristics (due to internal 
friction), slipping conditions in the rope incoming 
point (C) and the basic characteristics of the 
elevator. When elevators with high load capacity, 
high velocity and lifting height (fast passenger 
elevators and mine elevators) are concerned, the 
lifting velocity can exceed the critical velocity, 
making it necessary to check the stability of the 
lifting process already in the design phase.

4 CONCLUSION

The critical lifting velocity in the case 
without rope slipping over the pulley at the 
incoming point C is:
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Limit slipping velocity, according to (5),

: ( M  =
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For driving mechanisms used for vertical 
load lifting (elevators and cranes), it is necessary 
to provide adequate conditions for the correct 
dynamic analysis of their parts’ behavior and 
especially for the rope as the basic element, 
already in the design phase. Due to a significant 
influence of rope free length changes, due to its 
slipping over the driving pulley and for the reason 
o f its mechanical characteristics, it is impossible 
to apply a classical dynamic model of 
longitudinal oscillations for homogenous stick of 
a constant length, especially by the elevators with 
large velocities and large lifting heights (express 
and mine elevators). The introduced dynamic 
model for elevator driving mechanism provides 
the analysis o f relevant parameters and a base for 
the assessment o f lifting process stability through 
the critical velocity level, defined with the help of 
expressions (15) to (19).
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