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A method fo r  stress analysis in cylindrical pressure vessels with ellipsoidal heads, based on the 
axisymmetric shell theory, was proposed. The starting point were the approximate solutions o f the 
differential equation system that were used to get mathematical expressions for determining internal 
forces, moments and displacements in the vessel walls.

Final expressions that can be applied were acquired by joining the membrane and moment theory 
and by setting and solving equations o f boundary conditions. Diagrams that show distribution o f internal 
forces and moments are in dimensionless form which enables their use regardless o f dimensions and 
load. These expressions were used to develop a method for testing strength o f pressure vessels with 
ellipsoidal heads in the design phase. Application o f the method was shown , on a selected numerical 
example, while a special computer programme was created for calculation purposes.
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0 INTRODUCTION

Because of the increasing use o f pressure 
vessels in all types o f industry (e.g. oil-refining 
industry, gas-processing industry, power plant 
industry, etc.), in transportation, and other 
processing facilities, and because of their many 
side effects on the environment, there is a need 
for accurate analysis of the shells in the design 
phase. The designer must know the real 
distribution o f stresses, i.e. he must make 
calculations and analysis o f stress in all critical 
parts o f the vessel in order to make an adequate 
pressure vessel design. Stress is highest at the 
points of geometry parameter change, e.g. the 
transition from the shell o f the vessel to the head, 
where higher wall bending usually occurs.

Simple empirical forms determined by 
norms are used for making calculations o f stress 
in the walls o f pressure vessels. This type of 
calculation does not give the real distribution of 
stress, the highest values or places where stress 
occurs. More accurate stress analysis can be done 
by using finite element method (FEM) or 
analytical method.

Analytical method for calculating strength 
o f the thin-walled pressure vessels is based on the 
theory o f axisymmetric shells. This theory has a 
system o f the fourth order differential equation 
with internal forces, moments and displacements 
as unknown functions. The shell theory was 
established by famous researchers (Lourye 1947,

Goldenveiser 1953, Novozhilov 1962 and others) 
who developed analytical methods for 
determining general solutions o f the system. 
Accurate solutions of the system can be acquired 
in general form only for pressure vessels of 
simple geometry (e.g. cylindrical, conical and 
spherical). In order to apply those solutions in the 
process of designing, we must calculate numerous 
complex functions and infinite orders with 
complex variables, and we must also set and 
solve an equation of boundary conditions. These 
solutions can be used to make calculations on a 
computer, but the calculation procedure and the 
algorithm structure are very complex.

Far simpler analytical procedure for 
calculating pressure vessel strength can be 
developed on the basis of approximate solutions 
of axisymmetric shell theory equation system [1], 
It is o f vital importance because the approximate 
solutions contain an error of the same order of 
magnitude as do the correct solutions. Relative 
error o f those solutions is o f the order h/R (ratio 
of the wall thickness and the curvature radius), 
which is less than 1/20 at thin-walled pressure 
vessels, i.e. 5%, which can be neglected in 
engineering calculations.

Approximate solutions of the shell theory 
can be applied to pressure vessels with more 
complex shells.

This paper presents solutions for a 
cylindrical vessel with ellipsoidal heads. Final 
mathematical expressions for calculating internal
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forces, moments and displacements in the walls 
of head and cylindrical part were derived from 
approximate solutions. By using those 
expressions, and by connecting membrane and 
moment theory, a method for determining 
strength of pressure vessels with ellipsoidal 
heads, which is suitable for designing, was 
developed. A special computer programme was 
created for the application o f this method. 
Computer calculation was done on a selected 
numerical example, and the analysis results were 
shown in a diagram.

1 MEMBRANE FORCES IN ELLIPSOIDAL 
HEAD

Stresses in the walls o f pressure vessels 
occur due to different types o f loads, depending 
on the purpose of the vessel and on different 
influences that a vessel is subjected to during 
exploitation. Internal pressure has the biggest 
influence on the amount of stress, so all other 
types of loads are considered to be less important.

Solutions o f the shell theory equation 
show that internal forces which occur in the walls 
of the vessel can be, under certain conditions, 
determined by superimposing o f two kinds o f 
loads, membrane and moment. These conditions 
given in [2] are true for curvature radius 
derivations o f vessel meridian R\ and surface load qn.

At membrane stress state, it is assumed 
that only normal forces occur in the wall, while 
shear forces and bending moments are not 
considered. In the design phase, pressure vessels 
should be formed so that the real stress is 
approximately the same as the membrane state in 
order to avoid bending o f the walls and high 
stresses due to bending.

Cylindrical pressure vessels usually have 
semi-spherical, toroidal-spherical or ellipsoidal 
heads. Stress is best distributed in ellipsoidal 
heads. The middle plane of ellipsoidal head is 
shaped like a half o f the ellipsoid of revolution 
which is the result o f ellipse arc rotation around 
its minor axis. A major ellipsoid semi-axis is 
equal to cylindrical part radius (a = R), and a 
minor semi-axis is equal to the head height (b = 
H). A parameter determining ellipse form is
y  = a 2 lb 2 - 1 ,  and R0 = a ■ \ + y  is curvature

radius o f head vertex. Figure 1 shows the basic 
measures o f cylindrical pressure vessels, closed 
by heads shaped like revolution ellipsoid half.

Internal forces in the head walls are 
determined according to the membrane theory [2] 
by using the following expressions:

N, (o), =  pR_ 
2

1 + y
l + T'sin2 9

n/2

(1)

a / 0)' = ( l - y s i n 2 * ) ^ ^  (2)

Membrane component of circular force 
has (in places of shell connection) tensile 
character on the cylinder, and compressive 
character on the head, which leads to difference 
in radial displacements according to [3]:

p R 2
2 E h (  1 + r ) >

(3)

where:

N s - meridian normal force in the head wall, 

n } 0'1' - circular normal force in the head wall, 

ur^ '  - radial displacement o f the wall (at the 

head),

ur^ ” - radial displacement o f the wall (at the 

cylindrical part),
E - modulus of elasticity of the pressure vessel 
wall,
h - thickness o f the wall, 
p  - pressure in the vessel,
9 - meridian angle,
R - radius of cylindrical part o f the vessel.



Superscrip t^ denotes values pertaining to 
a membrane stress condition. Corresponding 
boundary condition values will be denoted by the
superscrip t^ , and those without the superscript 
refer to total solutions.

As can be seen from the expression (1), 
meridian normal force of ellipsoidal head changes 
without interruption in the points o f transition 
from the ellipsoid to the cylinder, which is very 
important for achieving the membrane state of 
stress. Both normal forces (meridian and circular) 
reach their maximum value in the head vertex. 
Value y  = 3 should be chosen for ellipse 
parameter, because maximum values o f internal 
forces in the head are the same as values of 
circular force in the cylindrical part o f the vessel.

There is a discontinuity o f the membrane 
component of circular force in the places where 
head and the cylinder are connected. Since total 
displacements o f the vessel walls should stay 
intact, additional forces and moments occur in the 
vessel walls, which lead to bending of the walls. 
Expressions for determining their values can be 
acquired from general solutions o f shell theory 
differential equation system.

2 FORCES AND MOMENTS OF BOUNDARY
EFFECT

Fig.2. Boundary load o f the long axisymmetric 
shell

With those conditions, general solutions of 
axisymmetric shell theory differential equation 
system, acquired by approximate solutions o f the 
system by [4] can be reduced to:

u}^ = -----sin2 Or,-e~x cosx
2Dß03

MO . —V / • \--------sin Oo • e cos x -  sin x ),
2Dß02 (5)

#(*) = -----— - sin#n -e-x (cosx + sinx)
2 D ß 2

M r  - X------ — • e cos X ,
Dßo (6)

Thin-walled axisymmetric shells can be 
divided according to the moment theory into short 
and long. The shells are considered long if:

*1
A = \ ß d s > 3 ,  ß =  --------  .

o f  Ri ' h (4)

With long shells we can disregard the 
influence o f the load of one end o f the shell on 
the internal forces and displacements on the other 
end. Each end o f the shell can be observed 
independently (i.e. without considering the 
conditions at the opposite end). Bending o f the 
shell occurs due to radial forces F() and bending 
moments M0 at the boundary o f the shell, which 
is called boundary load. Boundary load o f the 
long axisymmetric shell is shown in Figure 2.

The condition (4) is regularly achieved for 
the heads and cylindrical parts o f thin-walled 
pressure vessels.

V 3 ( 1 — v2)

Fr̂ = F 0 -e x (c o sx -s in x )

2Mq ß 0 
sin#0

e x sin X

p
M q = —  sin ■ e~x sin x

S ßo
M 0 -e~x (cosx + sinx) >

M, = v - M s 7V,(1)= —  
’ r

W (1) = F r(1)- cost?

where:

S

X = ^ ß  d s , D = 
o

E h 3
12 ( l - v 2)

(7 )

( 8)

(9 )

( 10)



I n  e x p r e s s i o n s  ( 4 )  t o  ( 1 0 )  t h e  f o l l o w i n g  

w a s  u s e d :

F r(l) - r a d i a l  f o r c e  i n  t h e  w a l l  a t  b o u n d a r y  l o a d ,  

N ^ 1'  - m e r i d i a n  n o r m a l  f o r c e  i n  t h e  w a l l ,

-  c i r c u l a r  n o r m a l  f o r c e  i n  t h e  w a l l ,

-  r a d i a l  d i s p l a c e m e n t  o f  t h e  w a l l ,  

i 9 ^  -  w a l l  t w i s t  a n g l e ,

-  m e r i d i a n  m o m e n t  o f  b e n d i n g ,

- c i r c u l a r  m o m e n t  o f  b e n d i n g ,  

v  -  P o i s s o n ’s  r a t i o ,

5 - m e r i d i a n  a r c  l e n g t h  f r o m  t h e  s h e l l  b o u n d a r y  t o  

a  c e r t a i n  p o i n t ,

S i - t o t a l  s h e l l  l e n g t h ,

r  -  r a d i u s  o f  t h e  m i d d l e  p l a n e  i n  a  c e r t a i n  p o i n t  o f  

t h e  w a l l ,

R -  c i r c u l a r  r a d i u s  o f  w a l l  c u r v a t u r e .

A l l  e x p r e s s i o n s  w i t h  a  s u b s c r i p t  0 a r e  

v a l u e s  f o r  t h e  s h e l l  b o u n d a r y .  F o r  e x a m p l e ,  9 0 

a n d  ß 0 a r e  v a l u e s  o f  0  a n d  ß ' m  p o i n t s  x  =  0 ,  a t  t h e  

s h e l l  b o u n d a r y .

I n  o r d e r  t o  a p p l y  e x p r e s s i o n s  ( 5 )  t o  ( 8 )  i t  i s  

n e c e s s a r y  t o  d e t e r m i n e  t h e  v a l u e s  o f  t h e  f o r c e  F 0  

a n d  m o m e n t  M 0  o f  b o u n d a r y  l o a d .  T h e y  a r e ,  b y  

t h e i r  n a t u r e ,  i n t e r n a l  f o r c e s  o f  m o m e n t  t h e o r y  a t  

t h e  j o i n t  o f  t w o  d i f f e r e n t  s h e l l s  t h a t  

s u p e r i m p o s e  f o r c e s  o f  m e m b r a n e  t h e o r y ,  i n  o r d e r  

t o  a c h i e v e  i n n e r  m e c h a n i c a l  b a l a n c e .

F ig .3. Forces and moments o f  boundary effect

T h eir  values fo r the exam ple u nder consideration  
(cy lind rica l p a rt o f  the vessel w ith  ellipsoidal 
heads) in  F igu re  3 w ill be  determ ined  b y  setting 
equa tions o f  b o u n d ary  conditions.

S train  con tinu ity  at the jo in t  (i.e. p lace 
w here cy linder and  e llip so id  are  connected) 
depends on  equal to ta l d isp lacem en ts and  tw ist 
ang les o f  jo in e d  parts, w h ich  is exp ressed  by  the 
fo llow ing  equations:

» r (0)' +  i v V  -  M 0 -Sn ' =

=  » , (0)"  -  F0 Sn " -  M0 -Sn ", 0 0

Fo-S2X' +  A f0 • S22' —

= - F 0 - V - M 0 - J 22"  • (12)

M em brane com ponents o f  th e  w all tw ist 
angle, b o th  fo r e llip so idal and  cy lind rica l shell, 
equal null at the  angle 9= n l2 , w hich  can be 
show n by  u sin g  m em brane theo ry  [5]. C oeffic ien t 
va lu es o f  gen e ra lized  fo rces in fluence (F0 and  M0) 
on  gen era lized  stra in  (ur and  <9 ), w ith  long  shells, 
acco rd ing  to  [4] are:

v = v =
s in 2 90 „ . „ .. sin/9n

2D ß0
3 ’ ° \ 2  -  ° U  -

2 D ß02 9

A ’—A M—- ° 2 2  -  °2 2  -

D ßo (13)

w here:

V 3 ( 1 v 2 ) 
i~ R h

B y so lv ing  equations system  (11) and  (12), 
and  b y  considering  values (3) w e get:

M 0 = 0 , Fo =
8ßo

( 1  + 7 ).
(14)

B y  substitu ting  so lu tion  (14) into 
exp ressions (5) to  (10), w e get fo rm ulas fo r 
in te rnal fo rces and  d isp lacem en ts th a t o ccu r due 
to  b o u ndary  effec t in the w alls  o f  e llip so idal (') 
an d  cy lind rica l (") part o f  th e  vessel:



- (1). = P Ä _
4 E h

( 7  + y) e c o s x
(15) w here: X = p  ( ' - s )

j i p h

p  R ,  \  -X
--------- ( 1 + r )  e c o sx  ,
4 E h  y n  (16)

M „ — ( 1 + v) e x s in x ,
M o 2 (17)

M„ P r- ( l + x )  e x s i n x ,
8 A 2 (18)

n ;(o. ( 1 + y )  e x c o s x ,
4  V ’ (19)

N, O) » ( l  +  f )  e x cos X ,
4  V '  (20)

D istribu tion  o f  in ternal forces and 
m om ents a long  the m erid ian  length  o f  the 
pressure vessel w all, accord ing  to  expressions 
(15) to  (22), is show n in the d iagram s (F igures 4, 
5, and 6).

A ccord ing  to  the d iagram , circu lar force 

N (F ig .4) and m erid ian  bend ing  m om ent M s  

(Fig. 5) have the b iggest influence on  stress. 
C ircu lar m om ent M , , accord ing  to  (9), has 

sm aller values, and com ponents o f  radial force 

F r ^  are  o f  low er order o f  m agnitude so that they 

can be  d isregarded  in  stress calculation.

4 M E T H O D  F O R  T E ST IN G  STR E N G T H

T otal values o f  in ternal forces in the 
p ressu re vesse l w alls can  be  acquired  by  adding 
com ponents o f  m em brane and  m om ent theory:

N ,  =  A , ( o )  +  N , ®  ,  N s  =  A s ( o )  +  N S {1) .  ( 2 4 )

=  _  £^2 +  ^  e  X ^  +

8 $> (21)

=  f ^ - ( l  +  r )  e  x c o s (x  +  V 4 ) ,
8 flo (22)

I f  w e  analyse expressions (17) to (22), 
the fo llow ing  can be concluded. F o r designing 
purposes values o f  in ternal forces and  m om ents 
can be  observed  as d im ensionless m agnitudes, 
e.g. N s/ ( p - R ) and M s/ ( p - R - h ) . B eside the

position  o f  the po in t on the vessel w all, they 
depend  also  on  design param eters, i.e. on the head 
shape y  and  ratio  R/h.



F ig .6 .  D i s t r i b u t i o n  o f  r a d i a l  f o r c e s  a l o n g  t h e  v e s s e l  w a l l  d e t e r m i n e d  b y  m o m e n t  t h e o r y

T herefo re , b y  ch o o s in g  va lu es o f  these  
param eters w e can  te st streng th  b efo re  
determ in ing  final d im ensions o f  th e  vessel.

In  o rd er to  perfo rm  th is  p rocedu re  
successfu lly , a  specia l com pu ter p rog ram m e (in  
Fortran  77) [6], b ased  on  m a them atica l
expressions, w as created .

T his p ro g ram m e can  be  u sed  to  ca lcu la te  
in ternal fo rces and  m om en ts  by  u s in g  expressions 
(1) and  (2), (15) to  (24) in a  n u m b er o f  p o in ts  
d is tribu ted  a long  the  m erid ian  o f  th e  vessel. It can

be also  u sed  to  determ ine  values o f  m a in  stresses 
on the inner and  ou te r su rface o f  the  w a ll and  to  
ca lcu la te  eq u ivalen t stresses.

T he p rog ram m e is m ade in  such  a w ay  that 
ca lcu la tio n  is p erfo rm ed  for the chosen  ra tio  R / h  

and  fac to r o f  head  shape y .  It w as carried  ou t on 
the exam ple  R / h  = 87 and  y =  3, an d  ca lcu la ted  
va lu es o f  in te rnal forces and  m om en ts are  show n 
in T ab le  1 o n ly  fo r a lim ited  n u m b er o f  points. 
D istribu tion  o f  to ta l c ircu lar force, acco rd ing  to 
ca lcu la ted  values, is show n in Fig. 7.



Fig.7 . D i s t r i b u t i o n  o f  t o t a l  c i r c u l a r  f o r c e s  o f  t h e  c y l i n d r i c a l  v e s s e l  w i t h  e l l i p s o i d a l  h e a d s

I E qu iva len t stress accord ing  to  H M H  
theory  o f  streng th  [7] w as chosen  as a  criterion  
for tes ting  streng th  o f  p ressu re  vessel. This 
p rogram m e can  be u sed  to  ca lcu late equivalen t 
stresses at d iffe ren t points o f  the w all and  to  find 
critica l points. M ax im um  value o f  equivalent 
stress w as determ ined  for the above m entioned  
exam ple:

v e / m a x  h  (25)

w h ich  occurs in  th e  po in ts a t the  inne r w all 
su rface a t m erid ian  angle 6 = 69 .61° (w h ich  is 
equal to  p o la r ang le  (p  = 5 .31°). O n th e  outer 
su rface o f  the w all, m ax im um  stress occurs at the 
head  vertex , and  it is m uch  low er in  the 
m en tio n ed  exam ple.

S tress determ ined  b y  the expression  (25) 
is the  basis fo r the choice o f  p ressu re  vessel 
m ateria l (concern ing  the necessary  strength), after 
the shape and  d im ensions o f  the p ressu re vessel 
have  been  determ ined . T hese tw o steps in the 
d es ign  phase can  be  done ite rative ly , i.e. by 
vary in g  design R / h  and  y , as input data, w e can

get va lues o f  m axim um  equivalen t stresses for 
d ifferen t d im ension  ratia.

5 C O N C L U SIO N

A pprox im ate solu tions o f  axisym m etric 
shell theo ry  used  for expressions (15) to (22) are 
valid  fo r steep  shells, i.e. those w ith  b ig  8 angle. 
This cond ition  is found in the v icin ity  o f  the p lace 
w here the head  and  the cy linder are jo in ed  (i.e. 
w here ang le  9  slightly  d iffers from  90°). It is 
b e tter to  use these expressions instead  o f  exact 
so lu tions because they consist o f  sim ple 
m athem atical functions, so tha t there  is no need  to 
consider boundary  conditions, since they are 
already  inc luded  in  final expressions.

T hese  expressions clearly  show  the law  
o f  d is tribu tion  o f  internal forces and  m om ents in 
the w alls  by  u sing  diagram s, w h ich  w as done for 
e llip so idal heads w ith  R / H =  2 ratio , since they  are 
com m only  u sed  in praxis. T hese diagram s can be 
used  for analysis o f  stress and  for choosing 
d im ensions during  the design  phase o f  such 
heads. C om pu ter p rogram m e enables quick 
acqu isition  o f  data  and  rep resen tation  o f  such 
d iagram s fo r o ther R / H  ratia.



Table 1. V a l u e s  o f  i n t e r n a l  f o r c e s  a n d  m o m e n t s  i n  t h e  e l l i p s o i d a l  h e a d  o f  c y l i n d r i c a l  p r e s s u r e  v e s s e l

C y l i n d r i c a l  v e s s e l  w i t h  e l l i p s o i d a l  h e a d s ,  y  = 3 ,  R / h  = 87

è X
K M t K

p - R p - R p - R - h p - R - h

0 11.59 1.00 1.00 0 0
jt/3 2 9.950 0 .9574 0 .9859 0 .0 0 0 0 . 0 0 0

tt/16 8.417 0.8391 0 .9474 0 .0 0 0 0 . 0 0 0

3zr/32 7.063 0 .6682 0 .8934 0 . 0 0 0 0 . 0 0 0

5.910 0 .4699 0.8335 0 . 0 0 0 0 . 0 0 0

5zr/32 4.947 0 .2599 0.7746 0 . 0 0 0 0.0021

37Z-/16 4.145 0 .0448 0 .7206 0.0012 0 .0040

1 7 1 / 3 2 3.472 -0 .1689 0.6731 0.0009 0.0031

n /  4 2.901 -0 .3696 0.6325 -0 .0012 -0 .0040

9 ;r/3 2 2.408 -0 .5412 0.5984 -0.0055 -0 .0182

5zr/16 1.975 -0 .6672 0.5704 -0 .0116 -0 .0386

1 Itt/3 2 1.588 -0 .7338 0.5477 -0 .0186 -0 .0618

3tt/S 1.234 -0 .7309 0 .530 -0 .0249 -0.0831

\ 3 n / 3 2 0.9056 -0.6531 0.5166 -0 .0289 -0 .0963

I ti/16 0.5946 -0 .4996 0.5073 -0.0281 -0 .0935

15zr/32 0.2946 -0 .2764 0.5018 -0 .0196 -0 .0654

71/2 0 0 0.5 0 0

T he described  m ethod  fo r ca lcu la tin g  
strength , perfo rm ed  b y  a com pu ter p rog ram m e, 
g ives data  on  critica l stress in  the fo rm  (25), in  a  
sho rt p e rio d  o f  tim e, fo r arb itra rily  chosen  
geom etry  p aram eters  o f  e llip so idal head , w h ich  
m akes th is  m e th o d  v ery  su itab le  fo r desig n in g  
purposes.
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