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Hyper-Chaotic Mapping Newton Iterative Method to 
Mechanism Synthesis
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The synthesis and approximate synthesis problems for planar mechanism can be transformed into a 
system o f multivariable polynomial equations or general nonlinear equations. Newton iterative method is an 
important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive 
dependence on initial guess point. Based on utilizing multi-start point technique and hyper-chaotic mapping 
(Hénon hyper-chaotic system) as initial points o f Newton iterative method, an innovative new method to find  
all solutions ofgeneral nonlinear equations in kinematics quickly and effectively was proposed. The computing 
step and method was given. The numerical examples in linkage synthesis and approximate synthesis show 
that the method is correct and effective.
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0 INTRODUCTION

Kinematic motion analysis and design of 
mechanical systems lead naturally to system of 
n o n lin ear a lgebra ic  and /o r transcenden tal 
equations. One of the most frequently occurring 
problems in kinematics is to find solutions to this 
system of equations [1] and [2]. The research of 
analysis and synthesis for planar mechanisms refers 
the solution of nonlinear equations and this has not 
commendably resolved [3]. How to find out all 
solutions o f  nonlinear equations quickly and 
effectively is important to mechanisms analysis & 
synthesis and engineering fields, so mathematics 
worker and engineering expert have paid attention 
to it. The solution approaches for such equations 
can be broadly divided into two classes: closed- 
form  (an a ly tica l) techn iques and num erical 
(iterative) methods.

A nalytical or closed-form  solutions to 
kinematics equations can be obtained by using 
elim ination  theories based on resu ltan ts [4], 
Gröbner-Sylvester hybrid method [ 1 ] and [5] to [7] 
or Wu elim ination [6] and [7] and so on. The 
analytical solution approaches entail successive 
elim ination of problem  unknowns to reduce a 
multivariable system into a single variable equation 
or triangular equations. These can find all solutions.

In elimination process with resultant, it may be 
possible to express the resultant as a quotient of 
one determinant divided by another. The divisor is 
the extraneous factor. Since it is difficult to identify 
w hether or not extraneous factors exist, it is 
impossible to insure that a resultant is devoid of 
extraneous solutions. For homogeneous systems, 
extraneous factors can be identified and eliminated 
as dem onstrated by M acaulay [8], However, 
problem s arising in synthesis and analysis of 
m echanism  often resu lt in a system  of non- 
homogeneous polynomials. Hence, M acaulay’s 
approach is not suitable for such problems because 
the system of equations has extraneous solutions 
including solutions at infin ity , and thus the 
eliminant matrix is degenerate [1]. For kinematics 
problems of “reasonable” complexity [1], Wu 
elimination method, Gröbnerbase method are quite 
inefficient because of their excessive computation 
times and exploding intermediate results [1] and
[8] . For a comprehensive contents of Gröbner base 
method and Wu elimination method see [6] to [8]. 
Specially, in general, analytical or closed-form 
solutions are effective to polynomial equations.

The numerical (iterative) methods mainly 
include Newton method and its improved methods
[9] and [10], continuation iteration method [9] to
[11], interval analysis method [12], universal gray
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analysis method [13] to [15], optimum method [10] 
and [16] and so on. These numerical methods are 
adaptive to polynomials equations as well as non­
polynom ials equations in kinem atics. Using 
num erical methods, a kinem atics problem  is 
considered solved if a tight upper bound on the 
number of solutions can be established, and an 
efficient algorithm for computing all solutions can 
be implemented. The commonly used iterative 
methods are variants of the Newton, conjugate 
gradient methods or optimum methods. These 
methods require an initial guess to the solution. If 
the initial guess is not close enough to a solution, 
the iterations may converge slowly, converge to an 
unacceptable solution or may diverge altogether, 
and, in general, these methods can only find a 
solution. However, Newton’s method is a valuable 
tool and is used as the building block for numerical 
continuous methods, interval iterative method or 
universal gray method. Interval method can find 
all solutions, but some algebraic nature of interval 
mathematics cannot be extended and compiling 
program is very complicated [14] and [17], so that 
this limits its application. The universal gray 
analysis method also can find all solutions of 
kinematics problem [14] in which, algebraic nature 
of universal mathematics can be extended like 
general algebra and overcome the disadvantages 
of interval analysis, but the universal number 
operator is also complicated [13], so the efficiency 
of solution-finding is not very high. Numerical 
continuation (homotopy) methods have been used 
in solving kinematics equations of motion for 
planar as well as spatial mechanisms. If the system 
o f equations to be solved can be cast in a 
polynomial form, numerical continuous methods 
are capable of finding all possible solutions and 
eliminating the need for a good initial estimate to 
the solution. But computing efficiency is not high, 
and it is difficult to deal with non-polynomial 
equations in kinematics [10].

To overcome the difficulties of the above 
approaches, it is necessary to explore innovate 
approaches to find out all solutions quickly and 
effectively . The N ew ton iteration  technique 
possesses tw o-order convergence speed, its 
computing speed is fast, its iteration function is 
clearly understood, and its dynamics specific 
property is relatively easy to be hold, so that it is 
widely used in engineering and science research. 
But it is comparatively sensitive to initial value,

its calculation capacity is great, and it can only get 
one solution. All the improved work on Newton 
methods put the emphases on computing arithmetic 
and the researchers do not notice that these 
numerical iteration system are discrete dynamical 
system resulted from numerical iteration process. 
Recently, the finding-solution methods based on 
chaos have made some progress. Xie and Chen [18] 
had proposed an innovative chaos method for the 
all solutions of nonlinear equations and Luo [19] 
had proposed an improved method for enhancing 
its efficiency by rough and accurate iteration. 
However, the chaos method related in [18] and [19] 
assumed the lumped Julia points of Newton 
iteration method to appear in the neighborhood 
where the Jacobian matrix of resolved equation set 
is zero. Nevertheless, it has not been tested and its 
resolving procedure is com plex. Recently, 
Jovanonic et al. [20] proposed an innovative 
Newton chaos iteration method to obtain all 
resolutions of nonlinear equation set to mechanism 
synthesis. The method assumes Newton iteration 
method be a nonlinear discrete dynamic system to 
obtain the chaos fractal sensitive region of the 
Newton iteration method with the exclusive two- 
cycle point to make inverse image iteration to find 
Julia points and then take initial points in the 
neighborhood of Julia points. But Luo [21] found 
that its efficiency is to be further enhanced when 
the Julia points are researched by using the 
exclusive two-cycle point to operate inverse image 
iteration . And thus, Luo [22] proposed an 
innovative three-cycle chaos orbit method to find 
the Julia  points of non-linear equations in 
kinematics, but its validity and adaptability to find 
Julia points with three-cycle inverse image iteration 
method are valuable to be researched ulteriorly. On 
the other hand, multi-start technique is a sort of 
technique in global optimization. The biggest 
difficulty of Newton iterative method is how to 
define initial value. To take chaos sequences as 
initial points of Newton iterative method, it can 
find all solutions of nonlinear equations. Liao et 
al. [23] proposed two dimension chaos mapping 
Newton iterative method which is applied to found 
all solutions of linkage accurate points movement 
synthesis.

To overcome the difficulties of approaches, 
this paper presents a new method for solving 
algebraic system of equations in kinematics, which 
utilizes Hénon hyper-chaotic mapping system to



produce sensitive initial points of Newton iterative 
m ethod and find  all so lu tions o f nonlinear 
equations. A fter analyzing hyper-chaotic the 
characteristic of Hénon hyper-chaotic mapping 
system, the simulation is done with MATLAB 
software, and the step and methods of finding 
equations in kinematics are also given. Numerical 
examples for linkage synthesis & approximate 
synthesis are presented. At last, the comparison 
with other methods to find all solutions of non­
linear equations in kinem atics is given. The 
examples show the new method is verified to be 
correct and effective.

1 HÉNON HYPER-CHAOTIC SYSTEM

Lyapunov exponent is one of effective 
method depicting the Chaos specific property of 
nonlinear system, and the number of Lyapunov 
exponents is identical with the dimension n  of 
system  state  space. I f  one o f the Lyapunov 
exponents is positive, system is chaotic. If system 
has two or more positive Lyapunov exponents, 
system is hyper-chaotic. The more positive number 
of Lyapunov exponents, the higher in-stability has 
the system [24], In general, if the systematic state 
variable num ber is more (for high dimension 
system, e.g. the discrete system, n  > 2), it probably 
appeares the unsteady level is higher.

The Ref. [25] designed a general Hénon 
mapping:

j x i,*+i I _ | a -  x n-\,k - b x n k 
[•»Yt+lJ }  x i-l,k

where, i —2,3,---,n express the dim ension of 
system; k is discrete time; a and b are adjustable 
parameters. When i = 2, the above mapping is called 
as famous Hénon mapping. When fixed parameters 
a = 1.76, b = 0.1 and the dimensions vary from 2 to 
10, after computing, the ref. [25] found that with 
increasing n ,  the simple relation of the number N  of 
positive Lyapunov exponents with the system 
dimension n is N = n - 1 ,  namely, when the system 
dimension is larger of two, system is hyper-chaotic. 
For n > 10 situation, we also have done simulating 
study and we also obtained the same results N = n - 1 .

For example, « = 5, we compiled program 
MATLAB with time series method [24] and we 
obtain four positive Lyapunov exponents, shown 
in Figure 1. When n = 13, the simulating result is 
that the system has twelve positive Lyapunov 
exponents with lesser values, shown in Figure 2.

2 NEWTON ITERATION FUNCTION

To find solution of nonlinear equations:

/ ( * )  = 0 (2).

Newton iterative method can be described 
as follows roughly:
(1) To select initial value xf)
(2) To take iteration by formation

**+!=** “ £ 4  * =  0 ,1 ,2 ,-  (3),

where f ( x k) is the function value of/ ( x )  at the point 
x k, f ’( x k), is one-order derivative of / ( x )  at the 
point x k, also called as Jacobian matrix of / ( x k)



Fig.2. Lyapunov exponent of Hénon maps with n = 13

and it is denoted by J. /(x ) is Newton iteration 
function  value. W hen some cond itions are 
satisfied, Newton iterative method is two-order 
convergent [9]. We must note that when using 
Newton iterative method, we want to a v o id /’(xt) 
= 0, otherwise singularity will be produced. To 
improve the performance of Newton iterative 
method, there have some improved methods, but 
the improved methods pay attention to arithmetic 
study and not mechanism study. In other words, 
these methods avoid singularity and do not make 
use of singularity.

3 NEWTON ITERATIVE METHOD BASED 
ON HÉNON HYPER-CHAOTIC MAPPING

Based on hyper-chaotic m apping, the 
process of the finding all solutions of nonlinear 
equations is as follows:
(1) By formulation (1), to construct hyper-chaotic 

set * 0(1 + l , j )  (i= 1,2,..., n ,  n  + 1 is the variable 
num ber of hyper-chaotic system, n  is the 
positive number of Lyapunov exponents, n is 
also the number of variables, j  = 1 , 2 , ..., N ,  N  

is the length of hyper-chaotic sequences) and 
obtain x 0 ( i , j ) ;

(2) Suppose the interval of x ( i )  is [a(i), b(i) ] , to map 
hyper-chaotic sequences to variable interval with 
x(i, j)  = (b(i) -  a(i)) /2  + xO(i, j)(b(i) + a(i)) / 2 
and produce j th x ( i , j )  of x ( i ) .

(3) To take j th x ( i ,  j )  of x ( i )  as initial value of 
Newton iterative method, and implement j time 
operations of Newton iterative method with 
formulation (3) to find all solutions x*. Note

that: in computing process, X is used to save 
all solutions, when some solution x* is in X, x ' 
is abandoned, otherwise, x* is saved in X.

4 APPLICATION TO MECHANISM 
SYNTHESIS

For four-linkage function m echanism  
synthesis, in general, it’s input angles 01( and the 
output angles ( f \ j  satisfy some function relation, 
we construct orthogonal system (shown in Fig. 3) 
and take the coordinate of C point is (1,0). Suppose 
the coordinates Ax, Ay, Bx, B of pin-joined points A 
and B are design variables, denoted by x {,  x 2, x 3,  x 4 

respectively.
According to constrained condition of the 

invariable length of linkage and displacement 
matrix, we can deduce the synthesis equation as 
follows:

f j  (X) = P\jX,x3 + P2jX 1*4 + P}jx2*3 + ( 4 )

+  P4 j x 2x 4 +  P j  j x 1 +  Pf, j x 2 +  P j j x lP z  j x 4 +  P9 j

where j  = 2,3 ,... m, mis point number of synthesis. 
f j  = 1— cos(0, j -< th j) \P 2j  = -s in  {6Xj - < h j )

Pjj =  sin(0i; -< h j );P4;- = l - c o s ( 0 u  - 0 , ; )

P5j =cos(0U - 0 , ; )-co s(0 1; )

P6j =  sin(0 , j  - 0 ,y )  +  sin(01; )

Py  =cos(<t\j)-l\PSj = -sin(0, j)

P9 j  =  1 — COS(0, j  )
There have "four design variables m-1 and 

design equations in formulation (4), the most 
accurate point synthesis number is five points.



In  m ost situa tions, the problem  of 
mechanism synthesis and approximate synthesis 
can be transformed into an unconstrained optimum 
problem, namely:

m
min F (x) = ( f j  (x))2 (5).

J=i
And the essential condition of min objective 

function is the grads d F (\) /d \  = 0 , namely:
m - \

X 1 ( p i j x i +  p 2 j x 4 +  P5 j )  =  0
j =2
m - 1

X f j - 1 ( / 3yX3 +  P4 j x 4 +  P6j  ) =  0

' T-l <6>’
X  f H  ^  j Xl + P 3 j X2 +  P ] j )  =  Q
7=2

m
X / / - I  (P27X1 +  P4 ,x 2 +  ^8 j  ) =  0

.7 = 2

where m is synthesis point number.
For exam ple, given plane four-linkage 

mechanism synthesis problem, the data of input 
01; and output <pl;- are shown in Table 1. Using 
Newton iteration method based on Hénon hyper- 
chao tic  sequences, we transfo rm  non linear 
equations (4) into iterative form of formulation (3), 
take variable intervals all [-20, 20]T, and produce 
initial point of hyper-chaotic sequences with 
random num ber method and for example, xQ =

Fig.3. The diagram o f linkage mechanism

Table 1. Five group data o f input and output

j 1 2 3 4 5

ö l / 0) 0 60 130 200 280

< M °) 0 17 44 61 50

[0.37948, 0.8318, 0.50281, 0.70947,0.42889]T. To 
take n = 5 for general Hénon hyper-chaos system 
expressed by formulation (1), and, with initial value 
xQ o f hyper-chaotic sequences, produce hyper- 
chaotic sequences with four positive Lyapunov 
exponents (to take the length N  = 20), then map 
variable intervals and obtain initial values of 
Newton iterative method and obtain all solutions, 
the first to fourth solution (Table 2). The solutions 
are accordant w ith m ethods in [ 10], but it 
dissipative time is 0.16 second less that time 0.4 
second with Logistic chaos mapping Newton 
iterative method (only initial points of Newton 
iterative method produced by Logistic chaos 
mapping). If we produce initial point x0 of hyper- 
chaotic sequences with random number method and 
for example, xQ = [0.28973, 0.34119, 0.53408,
0.72711, 0.30929]7, the length of hyper-chaotic 
sequences is N  = 200, the accurate synthesis 
problem  is dealt with approxim ate synthesis 
method in formulation (6), and results are shown 
in Table 2, besides the first to fourth solution, there 
have other approximate solutions. Notes that with 
different initial point of hyper-chaotic sequences 
and the length  o f hyper-chao tic  sequences, 
approximate solutions may be different.

5 CONCLUSIONS

In this paper, using Hénon hyper-chaos 
sequences and mapping sequences into variable 
intervals as initial values of Newton iterative 
method, an innovative new method to find all 
solutions of nonlinear equations in kinematics is 
proposed. The computing steps are presented. 
Numerical examples of mechanism synthesis and 
approximate synthesis are given. It shows that this 
m ethod is effective and correct. This method 
overcom es the shortcom ings o f the existing  
methods, namely, extraneous solutions of resultant 
method, low computing efficiency of existing 
analytical solutions, and, low computing efficiency 
to find  all solutions w ith existing num erical 
methods or only finding a solution with Newton 
method & optimum method. Newton method is 
adaptive to polynomials nonlinear equations as well 
as the general non-po lynom ial non -linear 
equations, so, the proposed method is also adaptive 
to the general non-polynomial non-linear equations. 
The hyper-chaos iterative m ethod effectively 
resolves the dependent on initial guess of Newton



Table 2. The results of synthesis

\V ariables 
SeriaTx 
number \ x

Xl x 2 x 3 x 4 Notes

1 0.34688351864093 0.15532289223008 2.37621431901423 1.07108276520215
Satisfy

request

2 0.33802375122182 0.35284403147775 1.52301342502732 1.46008672456456
Satisfy

request

3 0.00876050327329 0.19878954898663 0.24358820102367 0.42972805218513
Satisfy

request

4 0.00000000000000 0.00000000000000 1.00000000000000 0.00000000000000
Degenerate

solution

5 0.24810590331448 0.09742519788478 0.62411520956186 0.49721188127604
Approximate

solution

6 0.35261614308389 0.17452815063814 2.35195172736808 1.14692673024341
Approximate

solution

7 0.36183730535318 0.25046832860287 2.06025448656341 1.35405078472152
Approximate

solution

8 0.35262221231194 0.17455139128299 2.35192171459211 1.14701706830115
Approximate

solution

9 -0.05656808459818 0.10789498343339 0.45524276496406 0.22173945773667
Approximate

solution

10 0.26879875742049 0.34866142549433 0.37945885805080 0.74548350193159
Approximate

solution

11 0.33698078149853 0.35516826106660 1.51946559173426 1.46634536242020
Approximate

solution

12 0.36143253460429 0.26070352447913 2.00210092194291 1.36915944896681
Approximate

solution

ite ra tive  m ethod based  on m ulti-start point 
technique and hyper-chaos sequences. This method 
also overcomes the deficiency of existing chaos 
iterative method. Besides, compared with chaos 
Newton iterative method, hyper-chaos Newton 
iterative method has high computing speed and can 
obtain all solutions of nonlinear equations. It can 
quickly and effectively find out all solutions of 
nonlinear equations in kinematics, set up basis for 
other engineering application and optimization, and 
provide beneficial idea for chaos characteristic 
study of other iterative method.

Acknowledgement

This research is supported by the grant of 
the 11th Five-Year Plan for the construct program 
of the key discipline (Mechanical Design and 
Theory) in Hunan province (XJT2006180), Hunan 
Provincial Natural Science Foundation of China 
(07JJ3093), Hunan Province Foundation Research 
Program  (2007FJ3030.2007G K 3058) and 
Scientific Research Fund of Ministry of Education 
of China (02108).



6 REFERENCES

[1 ] Dhingra, A.K., Almadi, A.N., et al. A Gröbner- 
Sylvester hybrid method for closed-form  
displacement analysis of mechanisms. ASME 
J. Mech. Des., 122(4), 2000, p. 431-438.

[2] Norton, L.R. An introduction to the synthesis 
and analysis o f mechanisms and machines. 
McGraw-Hill Companies, Inc., Asia, 2001.

[3] Waldron, K.J., Sreenivasan, S.V. A study of 
the solvability of the position problem for 
multi-circuit mechanisms by way of example 
of the double butterfly linkage. ASME J. Mech. 
Des., 118(3), 2996, p. 390-395.

[4] Dhingra, A.K., Almadi, A.N., et al. A closed- 
form approach to coupler-curves of multi-loop 
mechanisms. ASME J. Mech. Des., 122(4), 
2000, p.464-471.

[5] Bhubaneswar M. Algorithmic algebra. New 
York: Springer-Verlag Inc., 1993.

[6] Wang D.M. Elimination method and its 
application. Beijing: Chinese Science Press,
2002. (in Chinese).

[7] Wu, W. T. Mathematics mechanization. 
London: Kluwer Academic Publishers, 2000.

[8] M acaulay, F.S. The algebraic theory o f 
modular systems. New York: Cam bridge 
University Press, 1994.

[9] Burden, L.R., Faires D.J. Numerical analysis, 
8th Ed. Brooks-Cole Publishing, USA, 2004.

[10] Yang, T.L. The basic theory o f mechanical 
system. Beijing: Chinese Machine Press, 1996.

[11] Liu A.X., Yang T.L. Finding all solutions to 
unconstrained nonlinear optim ization for 
approximate synthesis of planar linkages using 
continuation method. ASME J. Mech. Des., 
121(3), 1999, p. 368-374.

[12] Moore, R.E. Interval analysis. Englewood 
Cliffs: Prentice-Hall, 1966.

[13] Luo, Y.X. Universal grey mathematics and its 
application to interval analysis of uncertain 
structural systems. Advances in Systems Science 
and Applications, 3(4), 2003, p. 522-530.

[14] Luo, Y.X., Guo, H.X., Zhang, L.T. The application 
of universal grey mathematics to the analysis of 
mechanism errors. Journal of Machine Design, 
19(2), 2002, p. 11-14. (in Chinese).

[15] Luo, Y.X., Huang, H.Z., Fan, X.F. Universal 
grey transfer matrix method and its application 
to natural frequencies calculation of systems. 
ASMEJ. Mech. Eng., 52(9), 2006, p. 592-598.

[16] N okleby, B .S., Podhorodeski, R.P. 
O ptim ization-based synthesis of G rashof 
geared five-bar mechanisms. ASME J. Mech. 
Des., 123(4), 2001, p. 529-534.

[17] E ldonhansen, G ., W alster, W. Global 
optimization using interval analysis, 2nd Ed. 
Monticello, NewYork: Marcel Dekker, Inc.,
2004.

[18] Xie, J., Chen, Y. Application of chaos theory 
to synthesis o f p lane rig id  guidance. 
Mechanical science and technology, 19(4), 
2002, p. 524-526. (in Chinese).

[ 19] Luo, Y.X. Chaos method for function synthesis 
of planar crank— slider mechanism. Journal 
of machine design, 20(7), 2003, p. 27-30. (in 
Chinese).

[20] Jovanonic, V. T., Kazerounian, K. Using chaos 
to obtain global solutions in computational 
kinematics. ASME J. Mech. Des., 120(7), 
1998, p. 299-304.

[21] Luo, Y.X. The research of Newton chaos 
iteration solution method and its application 
to mechanism synthesis. Machine design and 
research, 21(5), 2005, p. 19-22.

[22] Luo, Y.X. A new 3-cycle Newton chaos 
iteration solution method and its application 
to mechanism synthesis. The International 
Conference on Mechanical Transmissions, 
Chongqing, China, 2006, p. 102-105.

[23] Liao, D.G., Luo, Y.X. Two dimension chaos 
mapping Newton iterative method and its 
application to function analysis of planar 
linkage mechanism. Journal o f Mechanical 
Transmission, 30(3), 2006, p. 21-23. (in 
Chinese).

[24] Wolf, A., Swift, J.B., Swinney, H.L., et al. 
Determining Lyapunov exponents from a time 
series. Physica D: Nonlinear Phenomena, 
16(3), 1985, p. 285-317.

[25] Richter H. The generalized Hénon maps: 
exam ples for h igher-dim ensional chaos. 
International Journal o f  Bifurcation and 
Chaos, 12, 2002, p. 1371-1381.


