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Control charts are widely used in industry fo r  monitoring and controlling manufacturing 
processes. They should be designed economically in order to achieve minimum quality control costs. In 
this paper, an economic design o f  Shewhart control charts for process mean is proposed that takes into 
account various parameters. Standards fo r  sample size within statistical process control do not exist due 
to high diversity o f  modern production. In the proposed economic model process-mean shift is assumed 
as random variable. This is a better approximation o f the real world, than the models that assume 
process-mean shift as a constant value. Probability density function is used for description o f process- 
mean shift. The optimum sample size is computed on base o f  loss function, regarding to constraints o f  
particular production process. The comparison o f  optimum sample sizes assuming process-mean shift as 
a constant value versus random variable is presented.
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0 INTRODUCTION

A quality o f a product is usually 
understood as a capability o f fulfilling needs o f a 
customer. A manufacturer desires to produce such 
products that match the desired specification and 
also fulfil customer needs. Hence, quality control 
is an essential part o f the manufacturing process. 
In modem production the product’s specifications 
are not controlled directly. The quality control is 
carried out by controlling the manufacturing 
process. A process quality is usually deducted 
from the manufactured products. In this case, not 
all of the products can be inspected directly, but 
only statistically. The quality control is therefore 
called Statistical Process Control (SPC). A 
control chart is a primary tool for SPC. A purpose 
of the control chart is to detect possible changes 
of the process, and inform the process operator 
about it. Many types o f control charts have been 
developed in the past. Shewhart control charts, 
Cumulative sum (Cusum) control chart, 
Exponential weighted moving average (EWMA) 
control chart, and others are presented elsewhere 
for instance in [1], Control chart is a quality 
control technique. Some quality improvement 
techniques are discussed in [2],

Shewhart control charts are widely used in 
industry. The design o f the control charts has 
economic consequences since the cost of 
sampling and testing, the investigating out-of
control signals and possibly correcting probable

causes, as well as costs o f allowing 
nonconforming products to reach the customer 
are all affected by choice o f the control charts 
parameters [3]. The most important parameter 
that affects the cost o f quality control and 
indirectly the cost o f production is sample size. In 
literature, description o f standards that deal with 
sample size for acceptance sampling can be found 
in [3]. Due to their generality o f use, these 
standards are very robust. The standards for SPC, 
which deal with sample size, do not exist. The 
reason is a standard’s uselessness due to its 
generality and high diversity of modem 
production. It is not the same if  low- or high- 
priced products are manufactured. Due to 
diversity o f quality control costs, optimum 
sample size should be calculated for every 
production process respectively. In industrial 
environment, no statistical expertise is available. 
Normally, a sample size is defined by a rule of 
thumb, lacking the optimality in economical 
sense. Due to fierce competition on the global 
market, an economic control charts design can be 
a critical issue for a manufacturing enterprise.

Some approaches to the economic control 
charts design are given in literature [4] to [7], In 
all o f these approaches, the process-mean shift 
(PMS) is assumed constant. In [4], Duncan’s loss- 
cost function is used, which is originally proposed 
in [8]. In [5], simplified theoretical backgrounds 
and directions o f economic design o f control 
charts are proposed. In [6], economic design of
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control charts of cumulative count o f conforming 
products is presented. In [7], an economic design 
o f control charts is presented for variable 
sampling size and sampling interval. In 
approaches [4] to [7], a PMS parameter is 
supposed to occupy an exact constant value. PMS 
is actually not known in advance. If constant 
value for PMS is assumed, the economic model is 
valid only for that PMS. PMS directly affects the 
optimum sample size calculation.

In this paper, an economic design of 
Shewhart control chart for the mean value of the 
process ( X chart) is discussed. The approach 
does not assume an exact value for PMS. We 
show that by finding its probability density 
function o f PMS, we can compute the optimum 
sample size («*).

In Section 1, some theoretical backgrounds 
and parameters o f the Shewhart control chart are 
discussed. In Section 2, the sampling policy and 
the economic model are proposed. In Section 3, 
the optimisation is presented in form of optimum 
sample size as a function o f the PMS parameter. 
These curves are created for different economic 
parameters (costs). In Section 4, discussion and 
conclusions are presented.

1 BACKGROUNDS OF SHEWHART 
CONTROL CHART

Shewhart control chart method is about 80 
years old. It is a method for statistical process 
control, in sense o f process-mean and process 
variability supervision. The statistical parameters 
are deduced from a statistical sample. The 
accuracy depends on the sample size (n). In this 
paper, we are concentrating on X control chart 
for PMS detection. The control chart is a kind of 
hypothesis testing hence the process is in a state 
of statistical control. The hypothesis testing is 
done with sample statistics. The sample statistics 
is assumed to follow a normal distribution with 
mean (m) and sample standard deviation (o<x>). A 
sample standard deviation depends on standard 
deviation o f population (a) and sample size (n). 
The null hypothesis states that the mean o f a 
measured process variable has a desired value. 
The alternative hypothesis is that this mean value 
may be changed by ka. That means that the new 
mean value is /j+ka.

The centre line o f the control chart is kept 
at the mean o f the process (ju). The upper control 
limit (UCL) and the lower control limit (LCL) are:

UCL = /u + L a /  yfn 0 )

LCL = /u -  L <j / \ fn (2)

where L is the control limit coefficient (usually 3 
is used).

The interval of normal distribution 
between n~2a and //+3a covers 99.73% o f the 
entire population. Statistically, this means that 
99.73% o f sample values are supposed to fall 
between the control limits. In spite o f no change 
in a process, 0.27% o f the sample values are to 
exceed the control limits. This is treated as type I 
error (false-positive). The probability o f type 1 
error (a) is defined as:

a  = 2 0 (-L )  (3)

where 0 (.) is a cumulative distribution function 
o f a standard normal random variable. Type I 
error, which means a false alarm, has a geometric 
probability distribution. Its expected value is 
ARL0. A type I error, therefore, appears after 
every ARL0 samples on average. ARL„ is 
calculated as follows:

ARLg = -  • (4)
a

When L  = 3, a false alarm appears about 
every 370 samples on average.

The type II error denotes a false-negative 
detection (process change was not detected). The 
probability o f type II error (ß) is defined as:

ß(k ,n ,L )  =

= 0 ( L - k / y f n ) - 0 ( - L - k / J n )  . ^

The probability o f type II error (ß) 
depends on the shift o f  the process mean value, 
denoted by ka. It also depends on L and n. When 
the process-mean changes, it is not detected 
immediately. The shift is detected on average 
after a number o f  samples, which is denoted by 
ARL\ (Average Run Length). ARL\ is the mean 
value o f geometric distribution o f shift detection,



when the process is out of control and it is 
calculated as follows:

ARL,(k,n,L )
1

1 -  ß (k ,n ,L ) (6)

The chart o f ß  and ARLt can be found 
elsewhere, for instance in [9]. From these charts 
one can conclude that sample size («) has a 
significant impact on the efficiency o f PMS 
detection. Greater n enables faster detection of 
PMS. Process capability ratio (Cp) is defined 
elsewhere [3] as:

C„
U SL-LSL

6(7
(7)

USL and LSL are specification limits. The 
control limits are allowed values for quality 
characteristic. Cp will be used in the following 
sections.

2 PRESENTATION OF SAMPLING POLICY 
AND ECONOMIC MODEL

2.1 Background of Economic Model

Economic model is a framework for the 
economic design o f control charts. It is closely 
linked to a sampling policy, which determines a 
method o f sampling. A sampling policy depends 
on the production type. Economic design of 
control charts is carried out on the basis o f  a loss- 
cost function optimisation. When the sampling 
policy changes, the results of optimisation are not 
valid anymore.

The issue o f quality control prevents to 
produce nonconforming products. A fraction of 
nonconforming products, which are manufactured 
on a particular work system, has a very important 
impact on design. The average fraction of 
nonconforming products is described with 
probability o f nonconforming product (PBC), 
which depends on specification limits (USL, 
LSL), ft, a and PMS. PMS is expressed by the 
multiplier o f standard deviation (k). A normal 
probability density function for a process nature

is assumed. The average fraction of 
nonconforming products can be expressed as 
follows:

P„c(U S L ,L S L , f i ,a ,k )  = ̂  +

~ L S L - ( / j  + k) + —-<2> U S L - ( f j  + k)~
(7 2 <J

The value o f Eq.(8) defines also the 
probability o f product’s nonconformity. The same 
value can be used for the fraction of 
nonconforming products in population. The value 
of this expression is always greater than 0. That 
follows from the assumed normal nature o f the 
observed production process. The expression is 
minimum, when the process mean is in the 
middle o f the tolerance interval. When the 
process mean changes, P  increases.

2.2 Sampling Policy

For the proposed economic model, the 
following sampling policy is assumed.

Suppose we have a discrete production 
process* which is not self-correcting. The 
production process is assumed as a series of 
independent cycles over time. Each cycle begins 
with the production process in the in-control state 
and continues until the process changes and its 
change is detected and identified. A statistical 
process control is carried out periodically lot-by
lot, where N\ is a lot size. From every lot a sample 
o f size n is taken, so that the last n products o f the 
lot form a sample (Fig. 1). When a false alarm 
appears, the production is halted until the alarm 
identification is done. After a false alarm 
identification, the production continues. When an 
alarm is identified as a real alarm, which means 
that the process has been changed, a process 
adjustment is needed. Meanwhile, the process is 
out o f control and an increased fraction of 
nonconforming products is manufactured. After 
the adjustment, during which the process is 
returned to the in-control state, the new cycle 
begins. One cycle of the production run in sense of 
the assumed sampling policy is presented in Fig. 1.

The sampling policy is determined by its 
lot size, sample size and inspection strategy. The 
lot size indirectly defines the sampling frequency 
(Vj), which means how often a statistical sample is 
taken.
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Fig. 1. Diagram o f production run in sense o f the assumed sampling policy

A sampling frequency is calculated using 
expression:

The economic model of control chart is 
related to the sampling policy. It represents a 
framework for the mathematical formulation of 
total quality costs. Using our economic model, an 
optimum sampling size and sampling frequency 
for a specific production can be found. When a 
process changes, this change is located after ARL] 
lots o f manufactured products. Due to different 
batch sizes, variable processing times and 
appearance o f different technical-organisational 
malfunctions in an industrial environment, 
economic design o f control charts is not based on 
time, i.e., on the number o f manufactured 
products.

From every lot, a sample is formed that is 
located at the end o f the lot. In our economic 
model the most inconvenient case o f a process 
change is assumed. We assume that the process 
changes immediately after the statistical sample 
has been formed. This would produce the 
maximum possible fraction o f nonconforming 
products.

The economic designs reported in 
literature assume PMS to be a constant value. In 
our approach, PMS is assumed to be a random 
value, described by probability density function 
(PDFk). The shape o f probability function PDFk

depends on the nature o f PMS. PMS is expressed 
by k in units o f o.

If  we assume PDFk to be a symmetric 
bimodal probability density function with mode at 
(±Mk) and standard deviation (ok), PDFk is 
described with the following function:

PDFk = PDFk(k I Mk ,crk) =

1  1

2 Č2jtcrk
e

( k - M k ) 2

w +

1  1

2  V & ,
■e

(k+Mk )2

W

( 10)

The states of the process, where k = 0 
(process in statistical control), are not assumed as 
PMSs.

2.3 Economic Model

The goal of economic design o f control 
charts is to obtain the minimum costs o f the 
production process. With quality control we want 
to achieve that only conforming products reach 
customers. Within the proposed model, the costs 
related to quality control should be minimized. In 
the proposed economic model, the following 
costs are included: (1) costs of quality inspection,
(2) costs o f false alann, (3) costs of 
manufacturing nonconforming products and (4) 
costs o f location and repairing an assignable 
cause o f the process. The economic model is the



Fig. 3. Interpretation o f  the loss functions

framework for a loss-cost function derivation. 
Loss-cost function is a powerful tool, due to its 
simplicity of problem representation in the 
engineering area. Loss-cost functions are 
presented in [10]. For the case o f simplicity of 
notation the loss-cost function will be named 
loss function.

In the statistical process control, the 
following states are possible (Fig. 3). These

states are linked with partial loss functions (Z01, 
Lo2, L lu I 12), which are grouped in 2 of 
separated sub-total loss functions (L\ and Lf). 
The sub-total loss functions define 2 states: 
process is under control and process is out of 
control.

For the loss function derivation, the 
following cost constants are needed:



Q i cost per unit (product) controlled,
Cnc cost per nonconforming unit,
Cfa cost per false alarm,
Crac cost to locate and repair an assignable

cause of the process malfunction.
Loss function design is presented in Fig.

3. Loss function is designed regarding 1 cycle of 
production run, presented in Fig. 1. In 1 cycle of 
production run the losses of two states are 
considered. The states are named Process under 
control and Process out o f control. Their 
contributions are weighted with Ap/N, and 1 
respectively. The sub-total and partial loss 
functions are carried out analogously.

Partial loss functions are as follows:
1. If  the process is under control (k=0) and a 
sample mean value is between the control 
limits, we have

L0I(n,k,U SL,LSL,ju ,< j,N ,,L) = nCCI 
+N,Pnc{U S L ,L S L ,^ ,a ,k )C nc . (H )

The partial loss function L0j assumes the 
state of the process under control and a sample 
mean between the control limits. That means 
that PMS is 0. L0i defines a loss of production 
and the cost o f control per lot. The first 
summation term defines a loss due to control 
costs and the second one defines a loss due to 
the fraction of nonconforming parts.
2. If  the process is under control (k=0) and a 
sample mean value exceeds the control limits 
(Type I error - false alarm), we have

L Jn ,k ,USL,LSL, u,a,N,,L) = n C , +
( 12)

+N,P^USL,LSL,ju,(j,k)Cnc+Cfa . K ’

The partial loss function L02 assumes the 
state of the process that is under control and a 
sample mean falls beyond the control limits. In 
this case, a false alarm appears. Cfa defines costs 
o f false alarm identification.
3. If the process is out o f control (k£0) and a 
sample mean value falls between the control 
limits (Type II error) then

Ln (n, k, USL, LSL, n , a , N ,,L) =

= nCCI + (13)

+N,P„C (USL, LSL, /u,a,k)Cnc .

The partial loss function Ln  assumes the 
state o f the process, which is out o f control and 
a sample mean lies between the control limits. 
PMS, which is greater than 0, has not been 
detected yet. In this state, the fraction of 
nonconforming parts is increased. This situation 
contributes the most to the overall loss.

4. If  the process is out o f control (fc^O) and a 
sample mean value is beyond the control limits, 
we have

Ln (n,k, USL, LSL, /u, a , N , , L) =

= nCcl+Cmc+ (H )

+N,P„C (USL, LSL, n , a , k)Cnc .

The partial loss function L 12 assumes the 
state of the process that is out of control and a 
sample mean beyond the control limits. A real 
alarm is detected. Crac defines costs due to PMS 
identification of the assignable cause o f PMS 
and its removal.

From two aforementioned process states 
and belonging partial loss functions, two sub
total loss functions are formed. First o f them is 
used for lots when a process is under control. 
The second is used for lots when a process is 
assumed out o f control. From ARL/ it is possible 
to calculate how many samples have to be 
inspected until a change in the process is 
identified (if k^O).

The first sub-total loss function is:

L, («, k, USL, LSL, ju, a, N„L) =

— nC,., + -
ARL„ (15)

+NlPnc (USL, LSL, fi,a , k)Cnc .

The second sub-total loss function is:

Ln (n, k, USL, LSL, fi, a, N,,L) =
= ARL, (k, n,L)[nCcI+ (16)
+N,Pnc(USL,LSL,M,a,k)Cnc] + Crac .

The sub-total loss functions correspond 
to the assumed process states, described in Fig. 1. 
The first sub-total loss function expresses costs 
per inspected lot. The second sub-total loss 
function expresses cost per out-of control 
process state, considering quality inspection and 
a fraction o f nonconforming products that are



manufactured in this state. The total loss 
function can be deducted from Fig. 3. For PMS 
the probability density function PDFk is used. 
The total loss function is computed per 
manufactured product. This offers a possibility 
to compare losses o f different lot sizes. There is 
additional information that is needed for the 
economic design o f control charts. It is the 
process failure rate (Ap) that denotes after how 
many products, manufactured by the observed 
work system, the process changes on the 
average. Xp should be found by a long-term 
observation o f the process.

A total loss function Eq.(17) consists o f 
numerator and denominator. A numerator is a 
total loss during one cycle o f  the production run 
(Fig. 1)- A denominator is a number of 
manufactured products in one cycle o f the 
production run.

considered as PMS, there are two integrals 
needed. Due to symmetry, (17) can be 
simplified to

Lr (Ap, n, USL, LSL, ju,cr,Nl,L ,pk,<Tk) =
À °°
TT ' L, Q  + 2 • \L„ (.) ■ PDFk (k,M k,crk)-dk 

_ ___]__________ 0________________ (lo)

+ 2-\ARL 1(.)-PDFt (k,Mk,a k)-dk ■N,

Since the loss is expressed per 
manufactured product, it is possible to compare 
losses o f different lot sizes and for each of them 
it is possible to find the optimum sample size 
(«*). By changing the lot-size, within the 
proposed sampling policy, the sampling 
frequency is changed as well.

3 SIMULATION STUDY

L T(Ap,n,USL,LSL,M,<?,Nl , L , i ik,<Tk) =

^■ L,(.)+  (.) • PD Fk (.) • dfc+] l ;; (•) ' PD Fk Q -d k
N,_____ —co_____________ 0______________ (1

i t  + jU /u ,  (.)• PDFk (.) • dk+  JTÄZ, (.) • PDFk (.)• c f tj  • N,

Eq. (17) does not have k  among its 
arguments. EMS-multiplier (k) is handled by 
PDFk. Since the zero case (k=0) is not

The optimum sample size is the sample 
size that minimizes LT. All o f the discussed 
parameters have impact on the optimum sample 
size. In Fig. 4 we can see loss function (L T) as a 
function o f the sample size for different modes 
(M/J. The following constants were assumed: 
c cf= 10, C„c=100, Cfa=Crac=200, V=500, Cp=\ 
(process capability), 7V/=100, a=0.2.

—A-
Mk = 0.25 
Mk = 0.5 

Mk= 1.0 

• A - 1-5 
Mk = 2.0

Fig. 4. Loss function (Lr)  vs. the sample size (n), where CcI=l0, C„c=100, Cfa=Cmc=200, Ap=500, Cp=l, 
Ni=l 0 0 , ok=0 .2 ; the ordinate is in a logarithmic scale



F rom  these  curves the op tim um  sam ple 
size fo r a  chosen  m ode Mk can  be found. The 
curve {Mk=0.25) is m ono ton ica lly  increasing . In 
th is case, w e can conclude tha t con tro l o f  the 
p rocess is econom ically  unaccep tab le  since the 
optim um  sam ple size is 0. T he curve (Mk=0.5) 
has the m in im um  at approx im ate ly  n =  1, bu t it is 
no t exp licitly  significant. I f  grea ter sam ple size is 
chosen, erro r gets sm aller. C urves, w ith  larger Mk, 
have a sign ifican tly  expressed  op tim um  sam ple 
size. U sing  expression  L T, th e  curves fo r the 
op tim um  sam ple size in  dependency  o f  Mk w ere 
p lo tted  for various param eters. T he op tim um  
sam ple size and  lot size can be ca lcu lated  
num erically , using  L T-

T he lot size defines the sam pling 
frequency . In  th e  p resen ted  case, the sam pling 
frequency  is 1 sam ple p e r 100 m anufactu red  
p roducts, w h ich  m eans v,=0.01. T he optim um  
sam ple size, w here lo t size is 100, can  seen  from  
d iag ram s, p resen ted  in  F igs. 5a, b  and  5c. By 
chang ing  Cfa and  Crac, th e  op tim um  sam ple size 
curves change. W hen  Cfa and  Crac increase , the 
op tim um  sam ple sizes low ers and  peaks o f  the 
op tim um  sam ple size curves m ove to  the right. 
Cfa and  Crac h av e  im pact on  the op tim um  sam ple 
size, w here  Mk is sm all. F o r large values o f  Mk the 
co st constan ts C/a and  Crac have  no  significant 
im pact.

Fig. 5a. Optimum sample size (n*) v.s. mode Mkfo r  different Cci, 
where, C„c=100, Cfa=Crac=100, ).p=500, Cp=l, N/=100, ok=0.2

M k

Fig. 5b. Optimum sample size (n*) vs. mode Mkfo r  different Cck, 
where, C„c=100, C/a= Crac=200, Xp=500, Cp=l, Ni=100, ok=0.2
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Fig. 5c. Optimum sample size (n*) vs. mode Mkfo r  different Cci, 
where, Cnc=100, Cfa=Crac=500, Xp=500, Cp—1, N/=100, ok=0.2

In Figs. 5a, b  and  c th e  op tim um  sam ple 
size in  dependency  o f  the abso lu te  value o f  
m ode (Mk) are p resen ted . In  som e ca se s  w hen  
the optim um  sam ple size is 0, tha t m eans SPC  is 
not recom m ended , b ecause  it is too  expensive. 
In those cases, the to ta l loss function  L T is 
m onotonically  increasing , as w e can see in  Fig. 
4 (Mk =  0.25).

4  D IS C U S SIO N  A N D  C O N C L U SIO N S

In  th is paper, a  n ew  app roach  for the 
econom ic design  o f  X  charts  is g iven . O p tim um  
intensity  o f  quality  in spection , th a t m eans 
sam ple size and  sam pling  frequency , can  be 
found by the op tim isa tion  o f  the p ro p o sed  loss 
function. A  sam pling  frequency  is d efined  b y  lot 
size. The m ajo rity  o f  the overa ll lo ses in  quality  
control are con tribu ted  b y  the state, w here  the 
process is ou t o f  contro l and  the p rocess-m ean  
shift is no t detected . T he d u ra tion  o f  th is state, 
w hich is es tim ated  b y  ARLh depends on  the 
sam ple size, PM S  and  the con tro l lim its. D ue to 
d ifferent PMS  values appearing  in  p rac tice , w e 
describe PMS  in  te rm s o f  p robab ility . In  ou r 
approach PMS is n o t assu m ed  to  b e  a co nstan t 
value, bu t it is d escribed  b y  th e  p rob ab ility  
density  function  PDFk. T he p ro p o sed  case  study  
is ob tained  w ith  b im odal p rob ab ility  density  
function w ith in  the p ro p o sed  econom ic  m odel. 
The curves for the op tim um  sam ple size  for 
different cost constan ts are  p resen ted . In  o ther 
approaches, p roposed  in [4] to  [7], a  co nstan t

value  fo r PM S  is used , w hich  m ay be 
ques tionab le  in  real production .

T he advan tage  o f  ou r approach  is that 
PMS, e s tim a ted  w ith  PDFk, is c lo ser to  reality . 
In real w orld , PM S  varies w ith  tim e. O ur 
app roach  takes th is fact in to  accoun t and 
describes PMS  as a  random  variable. F o r PDFk 
an arb itra ry  p robab ility  density  function  can be 
used. Z ero  case (&=0), tha t m eans PM S is 0, is 
exc luded  from  th e  in teg ral area  in  E xpressions
(17) and  (18). I f  there  are  any  constra in ts for 
sam ple size or lo t size, g iven  by  the observed  
p roduction  p rocess, the op tim um  sam ple size 
(«*) and  th e  op tim um  lot size can  be  found  
ite rative ly . F o r the loss functions in F ig. 4 and  
op tim um  sam ple  size in F igs. 5a, b  and  c the 
value  o f  Cp is 1. I f  the p rocess capab ility  ra tio  is 
g rea te r (CP>1), the  op tim um  sam ple  sizes 
low ers and  peaks o f  th e ir  cu rves m ove to  the 
righ t. F o r g rea ter Mk (Mk>4) no  sign ifican t 
d iffe rence  o f  op tim um  sam ple size  fo r d iffe ren t 
Cci w as observed .

In ou r case  study, ak =  0 .2 , b u t no rm ally  
it depends on  the  n atu re  o f  the process shift. In 
F ig . 6, the curves o f  the op tim um  sam ple size 
fo r various ak v a lues are p resen ted . P roposed  
PDFk is taken  in to  consideration . W hen  a 
varian ce  o f  PDFk approaches 0 (ok ->  0), Mk 
a p p ro a c h e s  a c o n s ta n t v a lu e . D u e  to  th is  fac t, 
th e  c u rv e  o f  th e  o p tim u m  sa m p le  s iz e  ta k in g  
in to  a c c o u n t PD Fk d if f e r s  f ro m  th e  c u rv e  o f  
th e  o p tim u m  sa m p le  s iz e ,  w h e re  P M S  is



--------- CJk= 0.2

— ■—  Ork =  0 .6

Fig. 6. Comparison o f  optimum sample sizes (n*) fo r  different (o/J, where Ccl=2, Cnc=100, 
Cfa=Crac=200, Xp=500, Cp=l, N,=100

supposed  to be a constan t value. T he d ifference 
is sign ifican t fo r sm all values o f  Mk, (Mk< 1.5). 
I f  the ok increases (ak=0.6), th e  op tim um  sam ple 
size approaches a constan t value. In spite o f  
that, the  op tim um  sam ple size canno t be 
generalised . In Fig. 6 com parison  o f  op tim um  
sam ple size curves for d iffe ren t ak is presen ted . 
T he op tim um  sam ple sizes, ca lcu lated  w ith  the 
p roposed  econom ic m odel (w here <jk=0.2 and  
ak=0.6) are  com pared  w ith  the op tim um  sam ple 
sizes, w here P M S  is assum ed  as a constan t 
value.

In  th is paper, the econom ic m odel for 
Shew hart con tro l charts fo r p rocess  m ean  design  
w as proposed . A n  econom ic design  o f  contro l 
charts is a  com plex  opera tion . In  industria l 
env ironm ent, a  sta tistica l and  quality  contro l 
expertise  is n o t availab le . W ith  in ten tion  to 
support th is  expertise , a w eb  se rv ice  b ased  
opera tion  support w ill be  ava ilab le  soon  and  
p roposed  in  [11], T he w eb  serv ice fo r this k ind  
o f  opera tion  suppo rt w ill help  opera to rs in  the 
industria l en v ironm en t n o t on ly  to  con tro l the 
quality  o f  p ro cesses , bu t also  to  design  the 
op tim um  lo t sizes and  sam ple sizes. E conom ic  
design  o f  con tro l charts  is a  k ey  opera tions 
support fo r th e  m an u fac tu rin g  en terp rises in  
o rder to  ach ieve  a co m petitive  p o sitio n  on  the 
g lobal m arket.
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6 G L O S S A R Y  A N D  N O T A T IO N

ARL0 A verage  R un  L eng th  o f  false 
a larm s

ARLi A verage  R un  L eng th  o f  p rocess- 
o u t-o f-con tro l d e tec tion

Cd C o st p e r u n it (p roduct) 
co n tro lled

Cfa C o st p e r fa lse  a larm

Cnc C o st p e r n o ncon fo rm ing  un it

cP P rocess capab ility  ra tio

r rac C ost to  locate  and  rep a ir an 
assignab le  cause  o f  the process

Cusum C um ulative  sum

EWMA E xponen tia l w eig h ted  m oving  
average

k M u ltip lie r  o f  a  p ro cess  standard  
dev ia tion

ko S hift o f  th e  p rocess  m ean  value



L C ontro l lim its coeffic ien t

LCL L ow er con tro l lim it

LSI L ow er specification  lim it

Lt
T otal loss function

Lxx L oss function

m S am ple sta tistic  m ean

Mk M ode o f  P D F k

n S am ple size

n* O ptim um  sam ple  size

N, L ot size

PDFk P robab ility  density  function  o f  k

PMS P rocess-m ean  shift

Pnc F raction  o f  nonconfo rm ing  
p roducts

SPC Statistical P rocess C ontrol

UCL U pper con tro l lim it

USL U pper specifica tion  lim it

a P robab ility  o f  type  I erro r

ß P robab ility  o f  type II erro r

K P rocess fa ilu re  rate

R P rocess m ean

Vs S am pling  frequency

G P rocess standard  dev ia tion

Ok Standard  d ev ia tion  o f  P D F k

G<x> Sam ple s tandard  dev ia tion

0 ( ) C um ulative d is tribu tion  function  
o f  a standard  n o rm al random  
variab le
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