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ABSTRACT

This paper focuses on the feasibility of online identification of
thermal systems. The transfer function is not looked for, but a
black box model is obtained. In the first part, the principles of
online identification are reminded. This leads 1 the definition
of the regression vector and of the regressors. Then these
principles are applied to neural based techniques which are
sdapted from standard ARX (AutoRegressive structure with
eXira inputs) and OE (Output-Error) models. For the Neural
Network ARX (MMARX) model, only one example is given,
which leads to a not fully satisfactory identification. This
identification is based on the response of the system to random
heat rates during random times. The validation is based on the
response to another set of random heal rates and on the response
of the system to a step function. For Meural Metwork OF
(NNOE) model, the influence of the number of regressors is
presented along with the influence of the number of neurons on
the hidden layer. It is shown that many architectures lead 1o a
good identification, but that some particular models may lead to
@ very poor resull. To make the comparison possible between
the proposed models, a distance enterion is computed. This
leads 1o the choice of the best adapted architechure,

INTRODUCTION

Heat transfer from electronic devices such as rransistors may
be enhanced by inserting them in an aluminum sleeve or by
mounting them on a heat dluip:!:r, The temperature during
steady states is easy 1o delermine, as soon as the thermal
resistance of the dissipater and the convection cocfficient are
known. [t is less casy to determine the temperature during
transient states if the Biot number is higher than 0.1 (Incropera
and de Witt, 1996). This happens when the cooling of the
d'l-lﬂ'pall:r 15 obtained using a fan. As it is not always pnss:iblc o
usé standard offline identification technigues (c.g. response (o 8
step function), other methods must be applied. These methods
will lead to an online identification. Generally speaking, this
will allow detection of drifts in the behavior of a thermal system
(e.g. loss of efficiency of a fan, evolution of the fouling factor in
8 heat exchanger, modification of the thermal resistance
berween two salids, surveying of the aging of electrical heating

elements). This would represent an improvement in the
supervision possibilities.

Az neural bazed technigues are more and more popular and has
proved to be efficient in identification of thermal systems
(Labot, 20000, (Lalot and Lecoeuche, 20000, (Kalogirou, 1999),
(Kalogirou, 2000), two. of them, adapted from the ARX model
and the Cutput Error Model (Ljung, 1999), are tested.

To show the feasibility of online identification, a heat
dissipater is used as thermal system. Figure | shows a schematic
of the system,
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Fig. 1: Schematic of the studied thermal system

As the thermal system is quite slow, the command of the
solid-state relay coming from the IO board does not need to be
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fast. A period of 4 seconds has been chosen. So, it i possible to
make the heat rate vary from 0 to 100% by 0.5% steps (50
cyeles per second in France).

PRINCIPLES OF ONLINE IDENTIFICATION

Usually, the identification of a system is camried out offline,
Mumerous methods may be applied (eg  Streje,
Ziegler-Nichols, ...). But to be offline means that it is necessary
to take the studied system away from its environment. This is
avoided by online identification techniques that take the actual
service parameters as inputs, In order to simulate service duties,
random inputs have been chozen here,

The online identification may be applied to white box models
(i.e. models are perfectly known), to gray box models (i.e.
maodels are parlly known through physics), and to black box
models (i.e. mo physical propertics of the models can help the
identification); it has been chosen here to consider a particular
thermal gystern as a black box.

The identification problem may be described in different ways,
In any case, for given inputs &' = {uf”,u{}),...,uﬂ )], oulpuls
¥ =l 1)yr2)...p1)] are measured. Then two possibilitics
occur, Either a  relationship between past observations
lu"‘_ _p"‘] and furure outputs yfr) is looked for (Eq. 1) or
only previous inputs are takea into account (Eq. 2).

rfu-z{u"'-.v"’.:}ufr}. m
wt)=glu' r)+eft), )

where e1) is a noise that may disturb the system and y isa
vector of parameters (e.g. weights of the connections of a neural
muodel or number of neurons on the hidden layer). It can be scen
that as time increases, the size of the input vector and the size of
the outpul vector increase. So, generally, a mapping is carried
out. This mapping consists in defining a finite dimensional
vector @ () from the past ochservations:

#r)=ptu"™ Y1) o pf1) = pru'™).
For example, @t} may be written as follows:
@t) = luft = L )uft =2 )esafd = 1 )y 50 = D y(0 =10 )].

This wvector is known as the regression wvector, and its
components are Known o5 regressors.

In this case, Eq. 1 or Eq. 2 may be written as follows:

yir)=glotily)+efr). (3)

Some models are based on this equation and may be
represented (Ljung, 1999) by a generalized equation:
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where Xiz)f(t)=x flt)+x; fCi-1)+x; fli=-2)+...

Afz)wfe) =

The Box-Jenkins mode] (BJ model) is characterized by A4
the ARMAX mode] 15 charactenzed by F =/ and D=/
Output-Error model (OE model) is characterized by A
C=/,snd D=/[;the ARX model is characterized by F =/
and D= |,

::f:
; the
T

These models may be implemented using neural techniques.
During the last five years, thanks to research works (Sjdberg,
1996) (Morgaard, 1997) these online identification neural
techniques have been improved by using neural networks
stemming from classical backpropagation neural networks used
for modelling the state-space of the system.

The first step of the identification process is to choose the
madel. The second step consists in the determination of the size
of the regression vector. Then the leaming phase can begin. A
1e51 phase has to be camied out to verify the agreement between
the model and the actual system. [t may be necessary o come
hack to the choice of the model if the tests are not satisfactony.
Finally, a exploitation phase comes during which failures o
drifts may be detected, new service conditions may be
investigated, ... Figure 2 summarizes the identification process:

Determination of the structure |
of the model

!

Determination of the number

of past samples (inputs andfor
oulpuls) used as regressors

Learning phase

{

Test phase

Exploitation phase

Fig. 2: Schematic of the identification process

Each step of the identification process is detailed below for the
identification of heat dissipaters.
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APPLICATION TO HEAT DISSIPATERS

Structure of the model and number of regressors

The guideline is here 1o test mast simple models first. So, it is
recommended (Sjiberg, 1996) to first test the ARX model, and
if the results of the test phase are not satisfactory, io test the OF
model. If none leads to good results, it may be generally
necessary to move to non-lincar models. So, two fypes of
architecture are tested using the Matlab Toolbox "Neural
Wetwork Based System Identification™ (Morgaard, 1997). Figure
3 shows the representation of the general architecture.
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Fig. 3: General architecture of the tested networks

The input vector consists in actual input and, for the NNARX
architecture in actual outputs (J(1) = 3(1)), and for the NNOE
architecture, in estimated outputs (3(#) = 3(1)). The output is
always the estimated value, The n, neurons of the hidden

layer, as well as the output neuron, are characterized by 2
transfer function: 3 linear transfer function and a hyperbolic
tangent transfer function have been tesicd, The number of
neurons on the hidden layer, and the transfer function fypes
influence the quality of the identification and the computing
time. Only experiments lead to the good choice.

There is no rule to determine the efficient number of
regressars, If only input past samples are used as regressors, it
can be considered that the regressors should cover the duration
of a complete swbilization of the system. So, if the time
response of the system (the time that is necessary 1o get close 1o
the asymptote) is #,,,, and if the sampling period that is used to
measure the oulpul is £y , the number of regressors should be

at least n, = J12b Byt this could lead 10 8 too large number of
Vi

regressors. To reduce the number or regressors, it is possible o

introduce output past samples as regressors. But this can lead to

instabilities during the exploitation phase. Nevertheless, this

combination should be tested first.

Learning phase ;
For any neural technique, a leaming phase is necessary. It 15
based on the use of a leaming database. This database cOnsIsts
of known inputs coupled with known outputs. The input vector
is the regression vector @1}, and the corresponding output
vector is the known output y(r) . The aim of the leaming phase

is to adapt the architecture of the network. This is done by the
modification of the connection weights. The calculation of this
modification it based on the differential between the known
outputs and the estimated outputs, It is here necessary to use an
adequate leaming rule. This phase leads to the determination of
the number of necessary learning steps and to the determination
af the adequate number of inputs (i.c. the size of the leaming
database) (Kosko, 1992).

An example of a database consists of random heat rates g that
have been generated during random times in a heat dissipater
and of the corresponding temperature T, of one point of the
heat dissipater. In order fto get significant temperature
variations, the following ranges have been chosen:

10 W < heat rate < 30 W,
120 5 < siabilization time < 600 5.

To present the results in a dimensionless way, 8 maximum heat
rate is determined g =100W , that comesponds to the

maximum temperature Tg, . . This leads to the definition of a

dimensionless lemperature:

&= e

Tirmar ~ T

The heat rate will also be given in & dimensionless way:

it i
Hmax

Figure 4 shows an example of heat rates and of the
corresponding temperatures.
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Fig. 4 Example &1 random heat rates and resulting lemperatures

Test phaso _
The lcaming phase has to be carried out together with a test

Pm.m:mlitbundunummnhmtdmbuf.m“
inputs arc submitted to the network. Obvisusly, these inputs are
different from those of the learning database. The estimated
outputs are compared 10 the known QUTAULS. If there is a good
agreement the architecture may be declared as well adapted. On
the contrary, if there is o large differential, the leaming phase
has to be pursued. If there is no longer a evolution of the

e -
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weights of the connections, cither the architecture of the neural
network has 1o be modified or the model itsell has 1 be
changed.

Exploltation phase

Ag it has already been mentioned, the exploitation phase is the
final goal of the identification process. It is during this phase
that long term evolution such as fouling can be detected.

EXPERIMENTS AND RESULTS

As it has already been mentioned, two models have been
tested. For both cases, numerous configurations have been
tested, The number of regressors has been modified, the number
of neurons in the hidden layer has been changed, ... The
validation of the architecture is based on the comparison of the
model outputs with the test database inputs (referred as test
phase), and on the comparison of the response of the model o 8
step function with the actual response,

To appreciate the quality of the identification, a eriterion has to
be established. This criterion is based on the computation of the
distance between the estimated response and the actual

TESpOMNSE;

nodtis = | 2 [Baoa (1) B (1)) .
To take into aceount short stabilization times (as observed
during the test phase), and long stabilization times (as simulated

in the response to a step funcrion), a global distance is computed
as follows:
B, Fuep

Moy Paep
where o, is the distance calculated during the test phase,
dyyep is the distance for the response 1o a step function, Ry,

and n,,, being the coresponding number of samples.

dosotat

The NNARX modal

The first model structure that has been tested (test #1) is a
HWMARY structure. The number of neurons in the hidden layer
varied from | to 10, the number of outputs used as regressors
varied from 2 to 5, and the number of inputs used as regressors
varied from 2 10 5. The best resulis have been obtained with the
fallowing model:

- § last ousputs as regressors (a, = 5 ),
- 5 last inputs as regressors (a; = 5 ),
= & neurons in the hidden layer having a linear transfer function.

Although  the quite perfect (Fig.  5),

ﬁﬂ'—tﬁ,?fﬂ", the response to a step function is not fully
Miest

lecaming s

satisfactory (Fig. 6), ey _ L9810t
Asrep
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Fig 5: Comparison of the estimated outputs of the first tested
mode] with the actual outputs
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Fig. 6: Comparison of the estimated response to a step function
with the actual response

It can be seen that the estimated response is close to the
response of a first order system,

Tha NNOE modal
The second studied architecture is a NNOE architecture. The
first four models have the following characteristics:

Model n® Test #2 | Test B3 | Test 84 | Test#3
ny 6 6 6 3
o 2 2 1 3
n, 2 1 1 2
Transfer function | Linear | Lincar | Linear | Linear

Figure 7 shows the comparison of the estimated outputs and of
the actual outputs of the test database, for the four architecures,
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Fig. 7: Estimated temperatures for four models

It can be seen that the results are a linle bit less satisfactory
than for the NNARX architecture, but that the agresment is still
good (74107 < i: 5 9.370°"). The study of the response of
these four models to a step function shows that the best

: d
estimated responses are closer (0.97 107 5 —=£ < 2.6107)

n

e
o the experimental one than with the WNARX model
(Figure 8).
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Fig. 8: Response of four models (o a step function

A look a1 the beginning of the curves shows that the response
of the model number 4 is close to the response of a first order
system. This can be explained by the fact that having only one
predicted output used as regressor, the neural network is unable
1@ predict the behavior of systems of order higher than 1.

On the other hand, the response of model number 5 is close to
the response of model number 2. This means that it is not
Necessary, in our case, to increase the number of predicted past
wutputs, [n fact, a system having 12 predicted past outputs used
85 regressors has been tested. No significant difference has

As it has been mentioned, the influence of the number of
neurons. in the hidden layer has to be studied. This is done by
companng the model #3 to a model having only 2 neurons in
the hidden layer (all other characteristics being equal). The
resulis presented in Fig. 9 and Fig. 10 show that a pood
agresment is reached even with a small number of neurons,
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Fig. 9: Influence of the number of neurons in the hidden layer
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Fig. 10; Influcnce of the number of neurons in the hidden layer
on the response to a step function

As mentioned, the transfer function type influences the quality
of the results and the computations] time. To study this
influence, the linear transfer function of the six previous
examples has been changed o a hyperbolic type. Many
architectures has been tested, none of them leading 1o good
results. Figure 11 shows the results for an architecture similar to
the architecture of model #5 (g =d.m, = 3.m = 2).

All results arc summarized in Fig.1Z. This shows that model
number 2 may be considered as the best model for the tested
dissipater, and that a simple two neurons in the hidden layer
architecture (model #6) may lead to good identification. This is
interesting when the computational time is critical; reducing the
namber of neurons decreases the number of weights to be
calculated.

L
I
I
I
I
|
I
|
|
|
|
|
i
!
i
I
I
I
I
l
|
|
I
1
i
I
I
i
I
I
I
[
I
l
I
|
|
I
i
|
|
|
|
I
|
1
|
I
i
I
I
I
i
I
]
[
I
[
I
I
I
i
|
i
1
i
i
1
1
i
|
|
|
|
1
|
|
|
1
1
1
1
1
1
1
1
|
|
|
i
i
|
i



e R

S. Lalot - S. Lecoeuche: Online identification of heat dissipaters using artificisl neural networks
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Fig. 11: Results obtained with a hyperbolic tangent
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Fig. 12: Global distance between the models
and the actual dissipater
COMCLUSIONS

It has been shown that the identification of a thermal system is
possible using the response to random rates during random
times. It has been shown that this identification may be done
using neural based techniques. It has also been shown that,
althowgh it is possible to use many architectures, the neural
model has to be carefully chosen. This leads to the conclusion
that the online identification is efficient.

Future studies will address the survey of the evolution of the
connection weights o detect drifts or failures of the thermal
system.

NOMENCLATURE

polynomial function in equation (4)
polynomial function in equation (4)
polynomial function in equation (4)
palynomial function in equation (4)
distance

noise

polynomial function in equation (4)
number of samples or of regressors

A ARDOW

u':ﬁnn-ﬂ1E

heat rate

dimensionless heat rate

lemperature

discrete time

input

autput

estimated value of ¥

e BTN ey oa |

Greek Symbols

e FEETEsSion Vecior

é dimensionless temperature
¥ vector of parameters

Subscripts

a amineni

dir  dissipater

h in the hidden layer
i in the input layer

max  maximum
mod  model
o in the output layer
step  for the response 1o a step function
fest during the test phase
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