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ABSTRAC T
This paper focuses on the feasibility of online identification of 

thermal systems. The transfer function is not looked for, but a 
black box model is obtained. In the first part, the principles of 
online identification are reminded. This leads to the definition 
of the regression vector and of the regressors. Then these 
principles are applied to neural based techniques which are 
adapted from standard ARX (AutoRegressive structure with 
eXtra inputs) and OE (Output-Error) models. For the Neural 
Network ARX (NNARX) model, only one example is given, 
which leads to a not fully satisfactory identification. This 
identification is based on the response of the system to random 
heat rates during random times. The validation is based on the 
response to another set of random heat rates and on the response 
of the system to a step function. For Neural Network OE 
(NNOE) model, the influence o f the number of regressors is 
presented along with the influence of the number of neurons on 
the hidden layer. It is shown that many architectures lead to a 
good identification, but that some particular models may lead to 
a very poor result. To make the comparison possible between 
the proposed models, a distance criterion is computed. This 
leads to the choice o f the best adapted architecture.

INTRODUCTION
Heat transfer from electronic devices such as transistors may 

be enhanced by inserting them in an aluminum sleeve or by 
mounting them on a heat dissipater. The temperature during 
steady states is easy to determine, as soon as the thermal 
resistance of the dissipater and the convection coefficient are 
known. It is less easy to determine the temperature during 
transient states if the Biot number is higher than 0.1 (Incropera 
and de Witt, 1996). This happens when the cooling of the 
dissipater is obtained using a fan. As it is not always possible to 
use standard offline identification techniques (e.g. response to a 
step function), other methods must be applied. These methods 
will lead to an online identification. Generally speaking, this 
will allow detection of drifts in the behavior of a thermal system 
(e.g. loss of efficiency of a fan, evolution of the fouling factor in 
a heat exchanger, modification of the thermal resistance 
between two solids, surveying of the aging o f electrical heating

elements). This would represent an improvement in the 
supervision possibilities.
As neural based techniques are more and more popular and has 

proved to be efficient in identification of thermal systems 
(Lalot, 2000), (Lalot and Lecoeuche, 2000), (Kalogirou, 1999), 
(Kalogirou, 2000), two of them, adapted from the ARX model 
and the Output Error Model (Ljung, 1999), are tested.
To show the feasibility of online identification, a heat 

dissipater is used as thermal system. Figure 1 shows a schematic 
of the system.

Heat dissipater 
(anodized aluminum)

Temperature sensors 
(thermistors)

To main line
Fig. 1 : Schematic of the studied thermal system

As the thermal system is quite slow, the command of the 
solid-state relay coming from the I/O board does not need to be
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fast. A period of 4 seconds has been chosen. So, it is possible to 
make the heat rate vary from 0 to 100% by 0.5% steps (50 
cycles per second in France).

PR INC IPLES OF ONLINE IDENTIFICATION
Usually, the identification of a system is carried out offline. 

Numerous methods may be applied (e.g. Strejc, 
Ziegler-Nichols, ...). But to be offline means that it is necessary 
to take the studied system away from its environment. This is 
avoided by online identification techniques that take the actual 
service parameters as inputs. In order to simulate service duties, 
random inputs have been chosen here.

The online identification may be applied to white box models 
(i.e. models are perfectly known), to gray box models (i.e. 
models are partly known through physics), and to black box 
models (i.e. no physical properties o f the models can help the 
identification); it has been chosen here to consider a particular 
thermal system as a black box.

The identification problem may be described in different ways. 
In any case, for given inputs u' = [u( 1 ),u(2),...,u(t)], outputs

y  = [y (/) ,y (2 ).... y(l)]  are measured. Then two possibilities
occur. Either a relationship between past observations 
[ u '- ' .y - 'j  and future outputs y ( t )  is looked for (Eq. 1) or 
only previous inputs are taken into account (Eq. 2).

y(<) = g{('l~l .yl~ ' . z ) + e ( 0 ,  (•)

y ( t )  = g(u‘~'.Z) + e(‘) ,  (2)

where e(t)  is a noise that may disturb the system and ^  is a 
vector of parameters (e.g. weights of the connections of a neural 
model or number of neurons on the hidden layer). It can be seen 
that as time increases, the size o f the input vector and the size of 
the output vector increase. So, generally, a mapping is carried 
out. This mapping consists in defining a finite dimensional 
vector <p(t)  from the past observations:

<P(t) = <p(u'~, .y ‘~ ')  or (p(t) = <p(u'~i )  .

For example, <p(t ) may be written as follows:

<p(t) = [ u ( t - l ) .u ( t - 2 ) .... u ( t -  rij), y ( t - l ) ..... y ( l~ n 0)].

This vector is known as the regression vector, and its 
components are known as regressors.

In this case, Eq. 1 or Eq. 2 may be written as follows:

y ( t )  = g(<P(O.Z) + e(‘) ■ (3)

Some models are based on this equation and may be 
represented (Ljung, 1999) by a generalized equation:

A ( z ) y ( t )  = - ^ - u ( t ) + ^ ^ - e ( t ) ,  (4)
F (z )  D (z)

where X ( z ) f ( t )  = x0 f ( t )  + x , f ( t - l ) + x 2 f ( t - 2 )  + ....

The Box-Jenkins model (BJ model) is characterized by A = /  ; 
the ARMAX model is characterized by F  = I  and D = /  ; the 
Output-Error model (OE model) is characterized by A = 1, 
C = /  , and D = I ; the ARX model is characterized by F = 1 
and D = /  .

These models may be implemented using neural techniques. 
During the last five years, thanks to research works (Sjoberg, 
1996) (Norgaard, 1997) these online identification neural 
techniques have been improved by using neural networks 
stemming from classical backpropagation neural networks used 
for modelling the state-space of the system.

The first step of the identification process is to choose the 
model. The second step consists in the determination of the size 
of the regression vector. Then the learning phase can begin. A 
test phase has to be carried out to verify the agreement between 
the model and the actual system. It may be necessary to come 
back to the choice of the model if the tests are not satisfactory. 
Finally, a exploitation phase comes during which failures or 
drifts may be detected, new service conditions may be 
investigated, ... Figure 2 summarizes the identification process:

Fig. 2: Schematic of the identification process

Each step of the identification process is detailed below for the 
identification of heat dissipaters.
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APPLICATION TO HEAT D ISS IPA TERS

Structure of the model and number of regressors
The guideline is here to test most simple models first. So, it is 

recommended (Sjöberg, 1996) to first test the ARX model, and 
if the results of the test phase are not satisfactory, to test the OE 
model. If none leads to good results, it may be generally 
necessary to move to non-linear models. So, two types of 
architecture are tested using the Matlab Toolbox "Neural 
Network Based System Identification" (Norgaard, 1997). Figure 
3 shows the representation of the general architecture.

The input vector consists in actual input and, for the NNARX 
architecture in actual outputs (y ( t)  = y ( t ) ) ,  and for the NNOE 
architecture, in estimated outputs (y ( t) = y(t ))• The output is 
always the estimated value. The nb neurons of the hidden 
layer, as well as the output neuron, are characterized by a 
transfer function; a linear transfer function and a hyperbolic 
tangent transfer function have been tested. The number of 
neurons on th,e hidden layer, and the transfer function types 
influence the quality o f the identification and the computing 
time. Only experiments lead to the good choice.
There is no rule to determine the efficient number of 

regressors. If only input past samples are used as regressors, it 
can be considered that the regressors should cover the duration 
of a complete stabilization of the system. So, if the time 
response of the system (the time that is necessary to get close to 
the asymptote) is tslab and if the sampling period that is used to 
measure the output is lsamp, the number of regressors should be

at least nr = ts,ab . But this could lead to a too large number of
^ s a m p

regressors. To reduce the number or regressors, it is possible to 
introduce output past samples as regressors. But this can lead to 
instabilities during the exploitation phase. Nevertheless, this 
combination should be tested first.

Learning phase
For any neural technique, a learning phase is necessary. It is 

based on the use of a learning database. This database consists 
of known inputs coupled with known outputs. The input vector 
is the regression vector <p(t) , and the corresponding output 
vector is the known output y ( t ) . The aim of the learning phase

is to adapt the architecture of the network. This is done by the i 
modification of the connection weights. The calculation of this 1 
modification is based on the differential between the known 
outputs and the estimated outputs. It is here necessary to use an , 
adequate learning rule. This phase leads to the determination of i 
the number of necessary learning steps and to the determination i 
of the adequate number of inputs (i.e. the size of the learning 
database) (Kosko, 1992). i

An example of a database consists of random heat rates q that |
have been generated during random times in a heat dissipater 
and of the corresponding temperature Tdis of one point of the 
heat dissipater. In order to get significant temperature 
variations, the following ranges have been chosen:

10 W < heat rate < 90 W,
120 s < stabilization time < 600 s.

To present the results in a dimensionless way, a maximum heat 
rate is determined qmax = 100W , that corresponds to the 
maximum temperature TdiSmax . This leads to the definition of a 

dimensionless temperature:
„ Tdis ~ Ta
&~T I F '‘dismax “
The heat rate will also be given in a dimensionless way:

Qmax
Figure 4 shows an example of heat rates and of the 

corresponding temperatures.

Fig. 4: Example of random heat rates and resulting temperatures

Test phase i
The learning phase has to be carried out together with a test , 

phase The test is based on the use of a test database. Known 
inputs are submitted to the network. Obviously, these inputs are j 
different from those of the learning database. The estimated , 
outputs are compared to the known outputs. If there is a good , 
agreement the architecture may be declared as well adapted. On 
the contrary, if there is a large differential, the learning phase ( 
has to be pursued. If there is no longer a evolution of the ,
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weights of the connections, either the architecture of the neural 
network has to be modified or the model itself has to be 
changed.

Exploitation phase
As it has already been mentioned, the exploitation phase is the 

final goal of the identification process. It is during this phase 
that long term evolution such as fouling can be detected.

EXPER IM EN TS AND  R E SU LTS
As it has already been mentioned, two models have been 

tested. For both cases, numerous configurations have been 
tested. The number of regressors has been modified, the number 
of neurons in the hidden layer has been changed, ... The 
validation of the architecture is based on the comparison of the 
model outputs with the test database inputs (referred as test 
phase), and on the comparison of the response of the model to a 
step function with the actual response.
To appreciate the quality o f the identification, a criterion has to 

be established. This criterion is based on the computation of the 
distance between the estimated response and the actual 
response:

dmod.dis ~ J j^ l& m o d (0  ~  @ d ii(0 \  ■

To take into account short stabilization times (as observed 
during the test phase), and long stabilization times (as simulated 
in the response to a step function), a global distance is computed 
as follows:

d global diesi , dstep 
nlesl nslep

where dlesl is the distance calculated during the test phase, 
dslep is the distance for the response to a step function, nlesl 

and n tiep being the corresponding number of samples.

The NNARX model
The first model structure that has been tested (test #1) is a 
NNARX structure. The number of neurons in the hidden layer 
varied from l to 10, the number of outputs used as regressors 
varied from 2 to 5, and the number of inputs used as regressors 
varied from 2 to 5. The best results have been obtained with the 
following model:

Fig 5: Comparison of the estimated outputs of the first tested 
model with the actual outputs

Fig. 6: Comparison of the estimated response to a step function 
with the actual response

It can be seen that the estimated response is close to the 
response of a first order system.

The NNOE model
The second studied architecture is a NNOE architecture. The 

first four models have the following characteristics:

- 5 last outputs as regressors ( n0 = 5),
- 5 last inputs as regressors ( n, = 5 ),
- 6 neurons in the hidden layer having a linear transfer function.

Although the learning is quite perfect (Fig. 5), 

= 6.710'* , the response to a step function is not fully
niest

satisfactory (Fig. 6), -p- = 1.9810'3 .
nstep

Model n° Test #2 Test #3 Test #4 Test #5
nh 6 6 6 6

no 2 2 I 3

ni 2 I I 2

Transfer function Linear Linear Linear Linear

Figure 7 shows the comparison of the estimated outputs and of 
the actual outputs of the test database, for the four architectures.

gftn̂ (g)gJ)(?tllDŽC€D I 
s t r a n  4 1 4
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Fig. 7: Estimated temperatures for four models

It can be seen that the results are a little bit less satisfactory 
than for the NNARX architecture, but that the agreement is still

good (7.7 l O'4 < -  ,esl < 9 .310'4 ). The study of the response of
"lest

these four models to a step function shows that the best 

estimated responses are closer (0.97 10'3 < < 2.6 10'3 )
nstep

to the experimental one than with the NNARX model 
(Figure 8).

Fig. 8: Response of four models to a step function

A look at the beginning of the curves shows that the response 
of the model number 4 is close to the response of a first order 
system. This can be explained by the fact that having only one 
predicted output used as regressor, the neural network is unable 
to predict the behavior of systems of order higher than 1.
On the other hand, the response of model number 5 is close to 

the response of model number 2. This means that it is not 
necessary, in our case, to increase the number of predicted past 
outputs. In fact, a system having 12 predicted past outputs used 
as regressors has been tested. No significant difference has 
appeared.

As it has been mentioned, the influence of the number of 
neurons in the hidden layer has to be studied. This is done by 
comparing the model #5 to a model having only 2 neurons in 
the hidden layer (all other characteristics being equal). The 
results presented in Fig. 9 and Fig. 10 show that a good 
agreement is reached even with a small number of neurons.

Fig. 9: Influence of the number of neurons in the hidden layer

Fig. 10: Influence of the number of neurons in the hidden layer 
on the response to a step function

As mentioned, the transfer function type influences the quality 
of the results and the computational time. To study this 
influence, the linear transfer function of the six previous 
examples has been changed to a hyperbolic type. Many 
architectures has been tested, none of them leading to good 
results. Figure 11 shows the results for an architecture similar to 
the architecture of model #5 ( nh = 6.n0 = 3, /i( = 2 ).
All results are summarized in Fig. 12. This shows that model 

number 2 may be considered as the best model for the tested 
dissipater, and that a simple two neurons in the hidden layer 
architecture (mode! #6) may lead to good identification. This is 
interesting when the computational time is critical; reducing the 
number of neurons decreases the number of weights to be 
calculated.



Fig. 11 : Results obtained with a hyperbolic tangent 
transfer function

Fig. 12: Global distance between the models 
and the actual dissipater

C O N CLU SIO N S
It has been shown that the identification of a thermal system is 

possible using the response to random rates during random 
times. It has been shown that this identification may be done 
using neural based techniques. It has also been shown that, 
although it is possible to use many architectures, the neural 
model has to be carefully chosen. This leads to the conclusion 
that the online identification is efficient.

Future studies will address the survey of the evolution of the 
connection weights to detect drifts or failures of the thermal 
system.

NO M ENCLATU RE
A polynomial function in equation (4)
B polynomial function in equation (4)
C polynomial function in equation (4)
D polynomial function in equation (4)
d distance
e noise
F  polynomial function in equation (4)
n number of samples or o f regressors

q heat rate

q dimensionless heat rate
T temperature
t discrete time
u input
y  output
y  estimated value of y

Greek Sym bols
cp regression vector
9  dimensionless temperature
X  vector o f parameters

Subscripts
a ambient
dis dissipater
h in the hidden layer
/' in the input layer
max maximum
mod model
o in the output layer
step for the response to a step function
test during the test phase
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