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ABSTRACT

This paper focuses on the study of the internal shape factor of
sheathed  electrical heating  elements.  First, the studied
geometnes are presented and three dimensionless parameters
are introduced. The analysis of finite elements simulations leads
to the proposition of an analytical expression of the
dimensionless internal shape factor. Then a non unilormity
factor is proposed and it is shown that this non uniformity is in
all cases inferior to 6%, and in most cases inferior 1o 1%. Then
the proposed relation is applied to two examples, one
determining the maximum heat flux for a given temperature, the
second one detcrmining the maximum temperature of the
heating wire fior a given heat flux,

INTRODUCTION

Sheathed electrical heating clements are widely used in many
processes {liquid heating, gas heating, infrared heating, ...) as
they are robust in a large temperature range. When the final
user is not directly concemned by the internal temperature
distribution, he is looking for a long life of the heating element.
This can be achieved by the manufacturer of the element by
carefully choosing the diameter of the heating wire. This
important when the service temperature of the
sheathed clement becomes high (about 1,000 °C). The two main
techniques that are used to manufacture sheathed electrical

heating elements are presented in figure 1.
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Fig. la: sheathed heating element with straight wircs
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Section A-A
Fig. 1b: sheathed heating element with coiled wires

The most used wires are the coiled wires. So, this study
focuses on this type of sheathed elements. Only few papers deal
wilh the temperature distribution in electrical heating elements
{Daurelle, 1990) (Thibault, 1991) (Lalot, 1994). This can be
due to the fact that this distribution strongly depends on the
value of the thermal conductivity of the electrical insulation
material. This value depends on the final value of the density of
the material, and so depends on the way this material is
compacted. It is possible to measure the thermal conductivity
by comparing experimental data (eg. the temperature
difference between the axis of the element and its surface for a
known heat flux) and computed results. This has been done for
few different types of clemens and at different locations
{straight pans and bends), but the results are confidential. To
avoid such confidentiality problems, instead of giving the
internal thermal resistance, a dimensionless internal shape
factor will be computed. This dimensionless shape factor is
defined as the ratio of the actual shape factor to the shape factor
of a heating clement that would consist of a continuous
cylindrical heating part.

In a previous work (Lalot, 1994), it has been shown that the
coiled wire may be approximated by a torus. This means that
the 3D effect is negligible, and that axi-symmetric numerical
simulations can accurately represent the actual phenomenon.
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THEORETICAL DEVELOPMENT

Description of tha studied geometries

Figure 2 shows the different geometrical parameters that
influence the temperature field in the sheathed clement,

Outer diameter
of the insulation
material

~Mean diameter
of the torus

Wire diameter
Coil pitch

Fig.2 : Influential geometrical parameters

Other parameters such as the thermal conductivity of the
insulation material and the thermal conductivity of the sheath
influence the wemperature ficld. But as only the internal shape
factor is looked for, these parameters will not be studied. They
are laken into account in the example that is presented below,

Figure 3 summanzes the values that have been smudied,

Duter diameter of the insulation material (mm) | 7
Mean diameter of thetorusimm) | 2 | 4 [ 6 [ &8 | 10
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Fig. 3 : Numerical values of the geometrical parameters

Combining all the values of the geametrical parameters makes
a set of 250 geometries. All these geometries have been
simulated using the finite element software Systus+ (SYSTUS
International, 1999). The geometrics have been prepared using
a Visual Basic program. Figure 4 shows an example of 2
geomelry and the corresponding temperaiure field.

A, Axis of the sheathed element

Fig. 4a : Example of a studied geametry
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&, Axis of the sheathed element

Fig. 4b : Example of a temperature field in a sheathed element

It is legitimate to think thar the dimensionless shape factor will
not directly depend on the parameters, but will only depend on
geometrical ratios, This explains that only one outer diameter
has been studied.

It it possible to introduce 3 dimensionless geometrical
pararmecicrs:

_ outer diameter of the insulation material
maan diameter of the torus

Gl

ID"

_ outer digmeter of the insulation material =0
wire diamefer D,

G2

¥

G 1 = dimensionless coll pitch = ______:'w." pitch S i b
wire diameter D,

The aim of this study is o give an analytical expression of the
internal shape factor as a function of these 3 dimensionless
geometrical parameters.

Analysls of the simulations

As it has boen previously said, 250 simulations have been
carried out. For all these simulations, 4 temperatures have been
extracted from the results:

- the mean temperature on the outer diameter of the insulation
material

Tntan outer diamerer = ETMWM '

aocdes ouder dicmeler

- the maximum temperature on the outer diameter of the
insulation material

Tt uiee diampter ™ Mu{f-nﬁm J:'-mr] '

« the minimum temperature on the outer diameter of the
insulation material

T sin outer diameier = Hi”{rﬂtﬁudmw] '

+ the maximum temperature of the wire,
Toar wire ™ Tnode wire

Knowing the heat @ dissipated by the wire (normally by Joule
effect), it is easy to compute a shape factor:




5, Lalot: Analtical represeantation of the internal shapa factor of sheathed electrical heating

e

5= -
k; {Tmﬁm'rmmm}

{1

The mean temperature on the outer diameter has been chosen
because it is the one that is easy to calculate during service.
Usually, the convection coelficient between the sheathed
eleniént and the fluid 1o be heated is known, Knowing the
temperature of the fluid and the amount of heat per unit surface
to be transferred, it is easy 1o calculate the mean surface
temperature of the clement. Knowing the thickness of the
sheath and its thermal conductivity, it is then possible to
calculate the mean temperature of the outer diameter of the
insulation material.
The maximum temperature of the wire has been chosen because
this is this temperature that determines if there is any danger
that the wire melts.

Then, this shape factor i3 compared (o the shape factor of &
theathed element that would consists of a continuous heating
cylinder:

. 1r X
s,_q.fﬁ_mﬁ @
b,

The comparison is made through the caleulation of the
dimensionless shape factor defined as fallaws:

5-

- 3

Q LalGl)
2k plT,

osir wire ~ Tt custar diasacer

=
Sp

The first idea is to look for a dependence of the dimensionless
thape factor on the ratio of the diameters G/ (Fig. 5). It ean
clearly be seen that there is no straight dependence and that the
dimensionless shape factor surely depends more on the other
dimensionless parameters.

Dimensionless shape facior
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Fig. 5 : Evolution of the dimensionless shape factor versus the
dimensionless parameter G/

Five distinet zones can be seen in Figure 5, 5o the next idea is to
plot the evelution of the dimensionless shape factor versus the
dimensionless parameter &2 (Figure 6) for the five values of
the dimensionless parameter G3, For clarily reasons, the results
are presented separately.
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Fig. 6 : Evolution of the dimensionless shape factor versus the
dimensionless parameter G2 for five values of GF
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It can be seen that there is & large difference between the
actual shape factor and the one that could be calculated
assuming that the heating element is a continuous cylinder.

To analytically represent the resulis the following equation is
proposed (solid lines in Figure 8):

§ = a(G1) Ln(G2) + B(G3) , ()
wilh:

arG1) = -0.000839G3* +0.0337 GI-0.120,
b(G3) = 0.00354 G3* -0.157 G3 + 1.572 .

It can be seen that there is a good agreement between the

proposed represenfation and  the actual values of the
dimensionless shape factor.

The ¢xpressions of afG3) and &G3) arc approximations of
heuristic values. Figure 7 shows the comparison: dots for
heuristic values and salid lines for analytical approximations.
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Fig. 7 : Representation of the evolution of the two
dimensionless functions involved in the expression of the
dimensionless shape factor

It can be seen thal the proposed expressions of afG3) and
G2) (it very well the heunistic values.

It has 1o be noticed that for values of &3 that are inferior 1o 4,
the values of afG3) and b{'GJ) are constant:

afGl)=0,
NGI)=l.

In that particular case, the coil is equivalent 1 a continuous
cylinder.
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Fig. & : Comparison of the sctual dimensionless shape factor
with the proposed analytical representation

It is often assumed that the heat flux is constant at the surface
of an electrical heating clement. The simulations that have been
carried out wo compute the internal shape factor allow the
calculation of & non uniformity factor, It is proposed 1o define
this non uniformity factor as follows:
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This factor 15 null when the wire can be assimilated w a
contimpous cylinder, and should increase when the wire
diameter is small compared to the pitch of the coil. So, it is
informative to plot the evolution of this factor wersus the
dimensionless internal shape factor (Fig. 9).
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Fig. 9 : Evalution of the non uniformity factor versus the
dimensionless internal shape factor

!l ¢an be seen that the non uniformity is limited to 6%, and that
in mast cases, it is inferior to 1%.

Mow that the analytical expression of the dimensionless shape
factor is established, it is possible to present examples.

APPLICATIONS

High temparature air heater

In this example, it will be supposed that air has to be heated at
1,000°C and that the maximum wire temperature is 1,200°C.
The application of the proposed equations will lead to the
calculation of the maximum heat g that it will be possible 1o

deliver per unit surface of sheathed heating element.

1t is necessary 1o assume other numerical values:

- conveclion coefficient: h = 00 Wim’K |

= clement outer diameler: D, = /6 mm ,

= sheath thickness: ¢ = I mm ,

- sheath material thermal conductivity: &, = /.5 Wmk |

- insulation material thermal conductivity: k; = /0 W/m& .

In that case, the dissipated heat fux may be written as follows:

g= T wive = Tair . (5
LT S
Sk 2k, \D.-21) h

Introducing equations (2) and (4) in equation (5), leads to the
following expression:

g rﬁm-rﬂ D,
D 1
£ La(G1) ==L [n —L |4
28 MO G bG3) Ik, [D.]+.'|

Then it can be said that the lowest value has to be chosen for
Gl , but technological constraints lead to the following relation:
D g = Oy = 2 D, . From Figure &, it can be concluded that the
lowest value of G3 has to be chosen. Then it is possible to plot
the evolution of ¢ versus the wire diameter (Figure 10).

Heat flux

19700
15600 1
19500
15400
19300
19200
19100

L
] 05 ] 1.5 z

Wire diameter

Fig. 10 : Evolution of the heat flux per unit surface versus the
wire diameter
It can be concluded that the heat flux docs not depend a lot on

the wire diameter. Taking 2 wire diameter inferior to 1.5 mm,
the sale value would be ¢ = 19,000 Wim®,

High heat flux water heater

In this example, it will be supposed that water has to be heated
at 100°C and the heat flux should be ¢ = LOOOkW/m® . The
application of the proposed equations will lead 1o the
calculation of the maximum temperature of the wire. Here
again, it is necessary to assume other numerical values:
- convection coefTicient; h = J0.000 Wim’K
- clement outer diameter; D, = /6 mm ,
- gheath thickness: £ = /mm,
- sheath material thermal conductivity: &, = 15 WimK |
- insulation material thermal conductivity: k; = JOW/mE |

In that case, the maximum temperature of the wire may be
writlen as follows:

S .79 -8 _t?._]+%]+rm, ©

Sk 2k \D,-2t

Introducing equations (2) and (4) in equation (8), leads to the
following expression:
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D, La(G1)
2k; a(G3)Ln(G2)+b(G3)

-r..u; wirg = B + Tm "
i D ] +* i
28, \D.-2t) &

The same technological constraimis lead 1o & maximum
temperature of about 650°C (Figure 11).

Maximum temperature of the wire (°C)
650

550
450
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Wire diameter (mm)
Fig. 11 : Evolution of the maximum temperature of the wire
versus the wire diameter

It can be concluded that there is no rigk of melting.

CONCLUSIONS

Simulations of the heat transfer in a sheathed clectrical heating
element has led to an analytical expression of the internal shape
factor. This allows the prediction of the maximum temperature
of the heating wire for a given heat flux, or the maximum heat
flux for a given wire lempemture. These simulations have
allowed the calculation of a non uniformity factor. It has been
shown that this non uniformity factor is, in most cases, inferior
to 1%. Future studies will address straight wires sheathed
clements.
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NOMENCLATURE

a function in equation (4)

b funclion in equation (4)

o diameter [m]

Gr ratio of the outer diameter of the insulation marerial w
the mean diameter of the torus, D,/ D,

ratio of the outer diameter of the insulation material w0
the diameter of the wire, 0y /D,

G3  ratio of the coil pitch to the diameter of the wire,
p/D,
h convection coefficient

G2

[Wim'K]

k thermal conductivity [WimEK]
p  pitch of the coiled wire (m]
Q@ heat rate ]
q heat Mux [Wim?)
5 shape factor [m]
5 reference shape factor

(for a continuous heating cylinder) [m]

5 dimensionless shape factor
f thickness of the sheath

Greek Symbols
& non uniformity factor

Subscripts
e sheathed element

i insulation material
] sheath

[ torus
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