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ABSTRACT
This paper focuses on the study of the internal shape factor of 

sheathed electrical heating elements. First, the studied 
geometries are presented and three dimensionless parameters 
are introduced. The analysis of finite elements simulations leads 
to the proposition of an analytical expression of the 
dimensionless internal shape factor. Then a non uniformity 
factor is proposed and it is shown that this non uniformity is in 
all cases inferior to 6%, and in most cases inferior to l%. Then 
the proposed relation is applied to two examples, one 
determining the maximum heat flux for a given temperature, the 
second one determining the maximum temperature of the 
heating wire for a given heat flux.

INTRODUCTION
Sheathed electrical heating elements are widely used in many 

processes (liquid heating, gas heating, infrared heating, ...) as 
they are robust in a large temperature range. When the final 
user is not directly concerned by the internal temperature 
distribution, he is looking for a long life of the heating element. 
This can be achieved by the manufacturer of the element by 
carefully choosing the diameter of the heating wire. This 
becomes important when the service temperature of the 
sheathed element becomes high (about 1,000 °C). The two main 
techniques that are used to manufacture sheathed electrical 
heating elements are presented in figure 1.
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Fig. la: sheathed heating element with straight wires
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Fig. lb: sheathed heating element with coiled wires

The most used wires are the coiled wires. So, this study 
focuses on this type of sheathed elements. Only few papers deal 
with the temperature distribution in electrical heating elements 
(Daurelle, 1990) (Thibault, 1991) (Lalot, 1994). This can be 
due to the fact that this distribution strongly depends on the 
value of the thermal conductivity of the electrical insulation 
material. This value depends on the final value of the density of 
the material, and so depends on the way this material is 
compacted. It is possible to measure the thermal conductivity 
by comparing experimental data (e.g. the temperature 
difference between the axis of the element and its surface for a 
known heat flux) and computed results. This has been done for 
few different types of elements and at different locations 
(straight parts and bends), but the results are confidential. To 
avoid such confidentiality problems, instead of giving the 
internal thermal resistance, a dimensionless internal shape 
factor will be computed. This dimensionless shape factor is 
defined as the ratio of the actual shape factor to the shape factor 
of a heating element that would consist of a continuous 
cylindrical heating part.

In a previous work (Lalot, 1994), it has been shown that the 
coiled wire may be approximated by a torus. This means that 
the 3D effect is negligible, and that axi-symmetric numerical 
simulations can accurately represent the actual phenomenon.
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THEORETICAL DEVELOPM ENT

Description of the studied geometries
Figure 2 shows the different geometrical parameters that 

influence the temperature field in the sheathed element.
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Fig.2 : Influential geometrical parameters

Other parameters such as the thermal conductivity of the 
insulation material and the thermal conductivity of the sheath 
influence the temperature field. But as only the internal shape 
factor is looked for, these parameters will not be studied. They 
are taken into account in the example that is presented below.

Figure 3 summarizes the values that have been studied.
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Fig. 3 : Numerical values of the geometrical parameters

Combining all the values of the geometrical parameters makes 
a set of 250 geometries. All these geometries have been 
simulated using the finite element software Systus+ (SYSTUS 
International, 1999). The geometries have been prepared using 
a Visual Basic program. Figure 4 shows an example of a 
geometry and the corresponding temperature field.
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Fig. 4b : Example of a temperature field in a sheathed element

It is legitimate to think that the dimensionless shape factor will 
not directly depend on the parameters, but will only depend on 
geometrical ratios. This explains that only one outer diameter 
has been studied.

It is possible to introduce 3 dimensionless geometrical 
parameters:

^  _ outer diameter o f the insulation material _ £>,• 
mean diameter o f the torus D,

_ outer diameter o f  the insulation material _ Dj 
wire diameter ’

G3 = dimensionless coil pitch = coil pitch _ p  
wire diameter

The aim of this study is to give an analytical expression of the 
internal shape factor as a function of these 3 dimensionless 
geometrical parameters.

Analysis of the simulations
As it has been previously said, 250 simulations have been 

carried out. For all these simulations, 4 temperatures have been 
extracted from the results:

- the mean temperature on the outer diameter of the insulation 
material

I
J mean outer diameter ~  '

n nodes outer diameter
node outer diameter >

- the maximum temperature on the outer diameter of the 
insulation material
^'max outer diameter ~  M a x ij'notj e outer diameter ) »

- the minimum temperature on the outer diameter of the 
insulation material
Tmin outer diameter ~~ ^ ^ n (Tnode outer diameter) »

- the maximum temperature of the wire.
I'm ax wire ~  M ax(Tnode wire)

Knowing the heat Q dissipated by the wire (normally by Joule 
effect), it is easy to compute a shape factor:



S  =
max wire ~  ^mean outer diameterY (i)

The mean temperature on the outer diameter has been chosen 
because it is the one that is easy to calculate during service. 
Usually, the convection coefficient between the sheathed 
element and the fluid to be heated is known. Knowing the 
temperature of the fluid and the amount of heat per unit surface 
to be transferred, it is easy to calculate the mean surface 
temperature of the element. Knowing the thickness of the 
sheath and its thermal conductivity, it is then possible to 
calculate the mean temperature of the outer diameter of the 
insulation material.
The maximum temperature of the wire has been chosen because 
this is this temperature that determines if there is any danger 
that the wire melts.

Then, this shape factor is compared to the shape factor of a 
sheathed element that would consists of a continuous heating 
cylinder:

c _ 2 * P  ÒQ------------
Ln\ A

DJ

2 n  p  
L n ifil) '

(2)

The comparison is made through the calculation of the 
dimensionless shape factor defined as follows:

Š = A  = ______ ________________________  (3)
S q 2 n  k i P y max wire ^mean outer diameter)

The first idea is to look for a dependence of the dimensionless 
shape factor on the ratio of the diameters G l (Fig. 5). It can 
clearly be seen that there is no straight dependence and that the 
dimensionless shape factor surely depends more on the other 
dimensionless parameters.

Fig. 5 : Evolution of the dimensionless shape factor versus the 
dimensionless parameter Gl

Five distinct zones can be seen in Figure 5, so the next idea is to 
plot the evolution of the dimensionless shape factor versus the 
dimensionless parameter G2 (Figure 6) for the five values of 
the dimensionless parameter G3. For clarity reasons, the results 
are presented separately.
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Fig. 6 : Evolution of the dimensionless shape factor versus the 
dimensionless parameter G2 for five values of G ì
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It can be seen that there is a large difference between the 
actual shape factor and the one that could be calculated 
assuming that the heating element is a continuous cylinder.

To analytically represent the results the following equation is 
proposed (solid lines in Figure 8):

S  = a(G3) Ln(G2) + b(G3) , (4)

with:

a(G 3) = -0.000839 G32 + 0.0337 G 3-0.120, 

b(G3) = 0.00354 G32 -0.157 G3 +1.572.

It can be seen that there is a good agreement between the 
proposed representation and the actual values of the 
dimensionless shape factor.

The expressions of a(G3)  and b( G3)  are approximations of 
heuristic values. Figure 7 shows the comparison: dots for 
heuristic values and solid lines for analytical approximations.
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Fig. 7 : Representation of the evolution of the two 
dimensionless functions involved in the expression of the 

dimensionless shape factor

It can be seen that the proposed expressions of a(G3) and 
b(G3) fit very well the heuristic values.

It has to be noticed that for values of G3 that are inferior to 4, 
the values of a(G 3) and b(G 3) are constant:

a(G3) = 0 ,

b (G 3 )= l.

In that particular case, the coil is equivalent to a continuous 
cylinder.
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Fig. 8 : Comparison of the actual dimensionless shape factor 
with the proposed analytical representation

It is often assumed that the heat flux is constant at the surface 
of an electrical heating element. The simulations that have been 
carried out to compute the internal shape factor allow the 
calculation of a non uniformity factor. It is proposed to define 
this non uniformity factor as follows:
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f i  _  Tmax outer diameter ^min outer diameter
T —T1 max wire 1 mean outer diameter

Introducing equations (2) and (4) in equation (5), leads to the 
following expression:

This factor is null when the wire can be assimilated to a 
continuous cylinder, and should increase when the wire 
diameter is small compared to the pitch of the coil. So, it is 
informative to plot the evolution of this factor versus the 
dimensionless internal shape factor (Fig. 9).
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Fig. 9 : Evolution of the non uniformity factor versus the 
dimensionless internal shape factor

It can be seen that the non uniformity is limited to 6%, and that 
in most cases, it is inferior to 1%.

Now that the analytical expression of the dimensionless shape 
factor is established, it is possible to present examples.

a p p l ic a t io n s

? = -
Ln(Gl)-------------------------------

2ki v a(G 3)Ln(G 2) + b(G3)
Ln[A '  

2 k, U ,
/+ — 
h

Then it can be said that the lowest value has to be chosen for 
G l , but technological constraints lead to the following relation: 
D, max = D j - 2 Dw . From Figure 8, it can be concluded that the 
lowest value of G3 has to be chosen. Then it is possible to plot 
the evolution of q versus the wire diameter (Figure 10).

Fig. 10 : Evolution of the heat flux per unit surface versus the 
wire diameter

It can be concluded that the heat flux does not depend a lot on 
the wire diameter. Taking a wire diameter inferior to 1.5 mm, 
the safe value would be q = 19,000 W/m2 .

High temperature air heater
In this example, it will be supposed that air has to be heated at 

1,000°C and that the maximum wire temperature is 1,200°C. 
The application of the proposed equations will lead to the 
calculation of the maximum heat q that it will be possible to 
deliver per unit surface o f sheathed heating element.

It is necessary to assume other numerical values:
- convection coefficient: h = 100 W/m2K ,
- element outer diameter: De = 16 mm ,
- sheath thickness: t = 1 mm ,
- sheath material thermal conductivity: k, = 15 W/mK ,
- insulation material thermal conductivity: kt = 10 W/mK .

In that case, the dissipated heat flux may be written as follows:

High heat flux water heater
In this example, it will be supposed that water has to be heated 

at 100°C and the heat flux should be q = 1,000 kW/m2 . The 
application of the proposed equations will lead to the 
calculation of the maximum temperature of the wire. Here 
again, it is necessary to assume other numerical values:
- convection coefficient: h = 10,000 W/m2K  ,
- element outer diameter: De = 16 mm,
- sheath thickness: t = 1 mm ,
- sheath material thermal conductivity: k, = 15 W/mK ,
- insulation material thermal conductivity: kt = 10 W/mK .

In that case, the maximum temperature of the wire may be 
written as follows:

T ■ - T  ■J m a x  w i r e  1 a i r

* D eP
+ ^ e Ln f  Df L '

Ski 2 k, h

(5) • = 9
'  x D e p

I D ‘  I n f  '
1 S

{  Ski ' 2 k ~ \ D e - 2 t J h + .. (6)

Introducing equations (2) and (4) in equation (6), leads to the 
following expression:

□  1 - s
stnan 439



k thermal conductivity [W/mK]
f  De In (G I)  . 1 P pitch of the coiled wire [m]

2 kj a ( G3)Ln(G2 )  + b(G3) ' Q heat rate [W]

° e  L n r a .  i 1
4- TT 1 water • <7 heat flux [W/m2]

2 k, D . - 2 t ' h s shape factor [m]
\  3 So reference shape factor

technological constraints lead to a maximum (for a continuous heating cylinder) [m]

of about 650°C (Figure 11). Š dimensionless shape factor
t thickness of the sheath

Greek Symbols
S  non uniformity factor

Subscripts
e sheathed element
i insulation material
s sheath
t torus
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It can be concluded that there is no risk of melting. 

CONCLUSIONS
Simulations of the heat transfer in a sheathed electrical heating 

element has led to an analytical expression of the internal shape 
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shown that this non uniformity factor is, in most cases, inferior 
to 1%. Future studies will address straight wires sheathed 
elements.

Lalot, S., 1994, Etude d'un Réchauffeur Electrique pour 
Fluides Corrosifs, These de doctorat, Université de 
Valenciennes et du Hainaut Cambrésis

SYSTUS International, 1999, Systus+ user's manual

ACKNO W LEDGM ENTS

This study was partially sponsored by SYSTUS International 
and by VULCANIC (major French manufacturer of electrical 
heating elements).

NOMENCLATURE
a function in equation (4)
b function in equation (4)
D diameter [m]
Gl ratio o f the outer diameter of the insulation material to

the mean diameter of the torus, Dt /D ,
G2 ratio o f the outer diameter of the insulation material to 

the diameter of the wire, Dt /D w 
G3 ratio of the coil pitch to the diameter of the wire, 

p / D w

h convection coefficient [W/m2K]

MB=I a ^ r r a o w . j i i ^ c a i  j _
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