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ABSTRACT
A numerical simulation for a filling process in an open tank 

is performed in this paper. A single set of governing 
equations is employed for the entire physical domain covering 
both water and air regions. The great density jump and the 
surface tension existing at the free surface are properly handled 
with the extended weighting function scheme and the NAPPLE 
algorithm. There is no need to smear the free surface. 
Through the use of a properly defined boundary condition, the 
method of “extrapolated velocity” is seen to provide accurate 
migrating velocity for the free surface, especially when the 
water front hits a comer or a vertical wall. Such a 
methodology does not pose to the Courant criterion, and thus 
allows large time steps. The numerical results show that 
when the water impinges upon a comer, a strong pressure 
gradient forms in the vicinity of the stagnation point. This 
forces the water to move upward along the vertical wall. The 
water eventually falls down and generates a gravity wave. 
These findings are seen to excellently agree with an existing 
experiment for the free surface evolution and the corresponding 
total water volume inside the tank. Due to its accuracy and 
simplicity, the present numerical method is believed to have 
good performances for simulating viscous free surface flow in 
industrial and environmental problems such as die-casting, 
cutting with water jet, gravity wave on sea surface, and many 
others.

INTRODUCTION
Filling process in cavity, mold, and tank is encountered in 

many scientific and industrial applications. The major 
difficulties dealing with such problems lie in the treatment of a 
few particular physical phenomena. First, an accurate 
tracking of the liquid-air interface (known as free surface) is 
needed. Second, turnaround of the liquid front should be 
properly handled when the liquid front impinges upon a comer 
or upon a wall perpendicular to the liquid flow. Third, the 
force balance equation on the free surface including the surface 
tension, the normal stress, and the shear stresses should be 
precisely satisfied. Fourth, dynamic contact angle at the 
liquid front should be carefully modeled unless the 
characteristic length of the problem is sufficiently large.

Many numerical simulation methods have been developed 
for mold-filling. However, the above-mentioned numerical 
difficulties are still not well resolved. Among them, Gilotte et 
al. (1995) determined the stream function inside the liquid

region with the potential flow theory, while a liquid jet was 
divided into branches manually. Instead of tracking the free 
surface, Advani and coworkers (Bruschke and Advani, 1994; 
Maier et al., 1996) located only the control volumes where the 
free surface was passing through. Local refinement thus was 
needed for a more precise free surface profile. Matsuhiro et 
al. (1990) and Zaidi et al. (1996) used the marker and cell 
method (MAC) to track the free surface advancement. 
Surface tension and stresses on the free surface were ignored. 
Sato and Richardson (1994) employed fringe elements in 
addition to fixed Cartesian fundamental elements such that the 
shape of the free surface could be tracked and then “boundary- 
fitted.” Unfortunately, the speed of computation could be 
deteriorated when the fringe elements were too small due to a 
Courant-Friedrich-Lewy stability condition.

In their effort in resolving the free surface problem, Hirt and 
Nichols ( 1981 ) introduced the concept of VOF (volume of 
fluid). A scalar function J \x ,y , z , t )  was defined such that 
/  was zero in the air region and jumped to unity in the fluid 
region. Such a particular function was found governed by the 
hyperbolic equation (Hirt and Nichols, 1981)

d f d f d f d f n ...
—  +u —  + v —  + w —  = 0 (l)
d t dx dy dz

where ( u, v, w ) denoted the flow velocity. Unfortunately, Eq. 
(I) is a trivial equation either in the liquid region or in the air 
region, while the VOF function /  possesses a discontinuity at 
the free surface. This gives rise to a great numerical difficulty 
when Eq. (I) is solved. To circumvent the numerical 
difficulty, Hirt and Nichols (1981) employed the donor- 
acceptor scheme (Ramshaw and Trapp, 1976) to estimate the 
average /  value inside each finite volume instead of solving 
Eq. (I) directly. However, the numerical procedure was found 
very tedious especially when applied to three-dimensional
mold-filling problems (Chen et al., 1994). Furthermore, the 
time step should not be large due to the Courant criterion 
(advancement of the free surface should be less than one grid 
mesh in a single time step).

A few variants of the VOF function /  have been proposed 
for solving Eq. (I) directly. They include at least the indicator 
function (Unverdi and Tryggvason, 1992), the marker function 
(Pericleous et al., 1995), the color function (Wu et al., 1996), 
the level set function (Sussman et al., 1998; Hetu and Ilinca,
1999), and the characteristic function (Pichelin and Coupez, 
1999). All of these variant functions will be simply denoted
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by /  for convenience. Pichelin and Coupez (1999) 
employed an explicit discontinuous Taylor-Galerkin method 
(Pichelin and Coupez, 1998) to solve Eq. (I) for the 
characteristic function in a three-dimensional mold-filling 
problem. However, their methodology was found to produce 
an unphysical zigzag free surface.

In the use of the marker function, Pericleous and coworkers 
(Chan et al., 1991; Pericleous et al., 1995) employed the van 
Leer's TVD scheme to solve Eq. (1). Free surface with acute 
angles along with a serious numerical smearing was obtained. 
This does not seem physically realistic. The fundamental 
concept of the level set function is to use a smeared VOF 
function /  instead of the original sharp step function such 
that the gradient of /  exists across the free surface and thus 
Eq. (1) is numerically solvable. Very fine grids are generally 
needed. Otherwise, considerable artificial diffusion might 
arise. When applied to mold-filling problem, Dhatt et al. 
(1990) found that the choice of the spatial representation of /  
near the liquid front required experience, insight and personal 
adjustments. The identification of new fronts from the / -  
value required as well certain experience, especially for the 
comer region and highly curved fronts.

Very rece'ntly, Lee and Sheu (2000) proposed a new 
numerical formulation for free surface flow without smearing 
the free surface. A force balance equation considering the 
surface tension was imposed on the free surface through the use 
of the NAPPLE algorithm (Lee and Tzong, 1992). To achieve 
a smooth free surface profile, a particular technique called 
“extrapolated velocity” was developed. The results showed a 
good agreement with the well-documented dam-breaking 
experiments from Martin and Moyce (1952). In the present 
study, the methodology by Lee and Sheu (2000) is employed to 
simulate the filling process in an open tank. A modification to 
the method of “extrapolated velocity” will be performed to 
properly handle the sharp turnaround of the liquid front after its 
impingement on a comer of the tank.

THEORETICAL ANALYSIS
Consider a liquid being forced to fill a two-dimensional 

open tank of width L . The liquid enters the tank with a 
uniform velocity U,„(t) through a gate of height B on one
side of the tank as illustrated in Fig. I . The flow is assumed 
laminar and incompressible. All of the physical properties of 
the liquid are constant. After introducing the dimensionless 
transformation

x = X / L ,  y = Y  I L , u = U I U c , v = Y /U c ,

P = ( P - P „ ) K P i U l ) ,  t = (Uc IL ) t ,

Re = p lUcL / p l , Fr = Uc / -JgL , p* = p t p i ,  
p * = p l p i ,  b = BI L , ui n=Um /Uc (2) 

a single set of governing equations covering both the liquid and 
the surrounding air can be written as

• i d u
p  \ J 7 -
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(4)
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The associated boundary conditions are
u(x,y,  0) = 0, v(x,y,  0) = 0 

u(0,y,r) = u,„(r) for 0 < y < b .
u(0, y. r) = 0 for y  Ž b , 

v(0,y,r) = 0 ,  u(;r,0, r) = 0 , v(jr,0, r) = 0 ,
u(l,y, f) = 0 , v(l,y, r) = 0 (6)

Physically speaking, the boundary condition for the 
surrounding air does not have a significant influence on the 
liquid flow (Lee and Sheu, 2000). In addition, the filling 
process considered in the present study will terminate before 
the liquid reaches the height y  = 1. Hence, the computational 
domain is truncated at y -1  with the simplest artificial 
boundary condition

u(x,\, r) = 0, cV(x,l, r)/5y  = 0 (7)
Mathematically, the dimensionless density p * and viscosity 
p  * appearing in Eqs. (4) and (5) are step functions across the 
liquid-air interface. They have the value of unity in the liquid 
region and jump to another constant in the air region, i.e.

;
[Pa 'Pl

in liquid 
in air

(8a)

w  ;K  > Ml

in liquid 
in air

(8b)

where the subscripts a and / denote, respectively, the 
properties of the air and the liquid. Note also that in the 
governing equations (3)-(5), the liquid-air interface is treated as 
an internal boundary such that no additional treatment is needed 
for the shear stresses there. In this connection, effect of 
surface tension is taken into account by considering the force 
balance equation on the liquid-air interface (Sarpkaya, 1996; 
Tsai and Yue, 1996; Lee and Sheu, 2000)

k L I
(fff , ) / - ( — )(<T„

We = P , U lc L

Pi

dy
dn

)a (9)

= 2 —i  (10)

where p/ and pa stand for the dimensionless pressures on 
the liquid side and the air side, respectively. The symbols y 
and k  are, respectively, the coefficient of surface tension and 
the curvature of a convex free surface profile. The notation 
a nn denotes the normal stress, while dv„/dn represents the
normal strain rate. For convenience, the liquid-air interface 
will be referred to as “free surface" in the present study, 
although it is not really “free of stresses.”

SOLUTION METHOD
In the present study, the momentum equations (4) and (5) 

are solved with the extended weighting function scheme (Lee 
and Sheu, 2000) on a fixed and nonstaggered Cartesian grid 
system. Due to the integration form of this particular scheme, 
the great discontinuity of the density p  * across the free 
surface can be effectively handled. It is noteworthy that both 
liquid and air could be incompressible even though their 
densities are significantly different. Thus, the law of “volume 
conservation” (3) is valid for the entire computational domain 
including the free surface itself and both regions of liquid and 
air. Through the use of the NAPPLE algorithm (Lee and 
Tzong, 1992; Lee and Sheu, 2000), the continuity equation (3)
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is converted into a pressure-linked equation. The pressure 
solution then is solved with the SIS solver (Lee, 1989), while 
the force balance equation (9) is imposed on the free surface. 
The numerical procedure has been clearly described by Lee and 
Sheu (2000).

As mentioned earlier, one of the major difficulties in solving 
a moving free surface problem is the prediction of the free 
surface advancement. Generally speaking, when the solution 
(u.v, p) for a given time is obtained, the migrating velocity of 
the free surface cannot be precisely interpolated from the 
velocity solution at the grid points due to the great 
discontinuity of the velocity gradient across the free surface. 
In view of the fact that the velocity gradient on the liquid side 
is very small as compared to the air side, Lee and Sheu (2000) 
proposed the method of “extrapolated velocity from the liquid 
region” to estimate the migrating velocity of the free surface.

Figure 2 shows a schematic free surface (the solid curve) in 
a computational domain on a fixed Cartesian grid system. 
The grid points (the white nodes) adjacent to the free surface 
on the liquid side separate the computational domain into two 
regions. One of the two regions contains only liquid, while 
the other (the gray region) includes the whole air region, the 
free surface itself and a narrow liquid layer between the white 
nodes and the free surface. Based on the concept of the 
“extrapolated velocity” (Lee and Sheu, 2000), one solves the 
Laplace equations

d Lu '
■0, à l y*

=  0 (12)
d x  d  y "  d x  d  y~

on the gray region (see Fig. 2) with known velocities at the 
white nodes to yield an artificial velocity (u*, v*). The 
migrating velocity of the free surface is then interpolated from 
this artificial velocity.

As indicated by Lee and Sheu (2000), the Laplace equations 
(12) are used only to extrapolate the liquid velocity in a narrow 
region between the white nodes and the free surface. 
Influence of the boundary conditions imposed on the other 
boundaries of the computational domain (the gray region) 
would not be so significant. Hence, the following artificial 
boundary conditions are assigned for the boundaries when they 
are exposed to air

dv* (0, y ) / dx  = 0 , dv*(l,y ) / dx  = 0 , 
du*(x,0) /dy = 0 ,  v*(x,0) = 0 ,
u * (x,l) = 0 , dv*(x, l ) /dy = 0 (13)

Definition of the boundary conditions for u * on the vertical 
walls X = 0 and x = 1 will be discussed later. After the 
artificial velocity (i/*,v*) is known and the migration velocity 
of the free surface is obtained, the free surface advancement for 
the next time step can be easily estimated with a numerical 
procedure proposed by Lee and Sheu (2000).

RESULTS AND DISCUSSION
Hwang and Stoehr (1988) performed an experiment on 

filling process of water flow in a square cavity similar to the 
open tank shown in Fig. 1. The width of the tank and the 
height of the gate were L = 13.2 cm and B -  3.8 cm,  
respectively. A sequence of photographs was taken to record 
the evolution of the free surface profile. However, the 
velocity at the gate (/,„ (/) was not known. Fortunately, the 
volume of water inside the tank can be evaluated from the 
photographs. The result is approximately

Q(t) = 0.005/ ( 6 - / )  (14)
which implies

Um(t)= 0 .7896(1 -//3 ) (15)

where Q, Uin, and / are measured in m~, m / s  and s ,  
respectively.

In the present computation, the physical properties of water 
and air at 25°C are employed, i.e.

p w = 9 9S kg / m i , / /w =0.99x10 ~*kg/ms  

p a = 1.205 kg/m*  , p a = 1.81 X I 0 '5 kg /m s 

Pa ! Pw ~ 0.001207, Ma I Mw -  0.01828
Y = 0.0720 N I m (16)

while the gravity is g  = 9 .806m /s2 . The characteristic 
velocity is assigned as

Uc = Dib(0) = 0.7896 m /s (17)
The corresponding Reynolds number, Froude number, and 
Weber number are, respectively, Re = 1.210x10s , 
Fr = 0.6468, and Ike = 1314. The dimensionless gate height 
and inlet velocity are i  = 0.25 and u;„ ( r )=  1-0.06417 r ,  
respectively.

Numerical results including the evolution of the free surface 
profile, velocity, and pressure were obtained on various 
combinations of grid meshes and time steps. Among them, 
the finest grid is Ax = Ay = 0.0125 and Ar = 0.006493 which 
corresponds to 0.19 cm and 0.00125 s ,  respectively. It 
seems adequate for the present problem. The results obtained 
on the finest grid are revealed in Figs. 3 and 4.

Figure 3 shows the isobars (with increment Ap = 0.1) and 
the velocity at four representative times, i.e. / = 0.1 s, 0.3 r , 
0.45 s , and 0.65 s . Evolution of the free surface profile at 
every 0.05 s is plotted in Fig. 4(a). To clearly observe the 
sharp advancement of the free surface in the period
0.2s S / < 0 .3 s ,  the free surface is presented in Fig. 4(b) at 
every 0.01s in that period. The results reveal that the water 
enters the tank as a wall jet along the tank bottom on y  = 0 
After the water front hits the opposite wall on x = 1 , a great 
pressure gradient forms in the vicinity of the stagnation point. 
This forces the water flow to jump up along the vertical wall on 
X = 1 . It is quite interesting to note that after reaching the 
highest point ( y  = 0.84) at / = 0.25 s ,  the water falls down 
and forms a gravity wave traveling in the -x  direction. It 
jumps up the vertical wall on x = 0 again after the wave 
reaches there. The computation was terminated at / = 0.65 s 
in view of the boundary condition (7). As expected, the air 
region is seen to possess essentially a uniform pressure.

It should be pointed out here that using a non-permeable 
condition

K*(l,y) = 0 (18)
for the extrapolated velocity ( u* , v* )  will give rise to a 
physically unrealistic situation that the water front will never 
reach the opposite wall on x = 1 . By contrast, the use of the 
freely permeable boundary condition

du * (1, y)  / dx = 0 (19)
would cause a serious “water leakage” after the water hits the 
wall X = 1 . Physically, the water does not “sense” the 
existence of the wall x = 1 before it reaches there. The 
boundary condition on the water front would suddenly transit 
from the “free surface” situation to a non-permeable condition. 
This instantly decelerates the water flow (du I d r «  0 )  and 
thus induces a strong pressure increase in a region covering the 
stagnation point. In the present study, the freely permeable
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boundary condition (19) is employed before the water reaches 
the wall X = 1, and thereafter, the non-permeable condition 
( 18) is assumed. Suppose the water front just touches the wall 
at time r*  during a time step elapsing in the period 
r„_| < r  < r„ . This particular time step will be divided into 

two sub-steps ( r  * - r„ _ t and r„ -  r * ) such that the freely 
permeable condition (19) can be applied exactly up to time 
r* . Similar treatment is performed when the gravity wave 
hits the wall x = 0 .

To examine the reliability of the present numerical method, 
result of free surface advancement is compared with the 
experimental observation from Hwang and Storhr (1988) in 
Fig. 5. Excellent agreement between the present prediction 
and the experiment data is observable.

Finally, let the water volume inside the tank be examined in 
Fig. 6. The white dots in Fig. 6 are the water volume 
estimated from the experimental observation of Hwang and 
Steohr (1988). The dashed curve, a least-square 
approximation of the white dots, stands for the inlet condition 
(14) and (15) on which the present computation is based. The 
solid curve is the water volume directly evaluated from Fig. 4. 
From Fig. 6, one sees a satisfactory agreement between the 
solid curve and the dashed curve. This demonstrates the 
accuracy of the present numerical method on the law of mass 
conservation.

CONCLUSION
This paper presents a numerical simulation for a filling 

process in an open tank. A single set of governing equations 
is employed for the entire physical domain covering both water 
and air regions. The great density jump across the water-air 
interface (free surface) is handled with the extended weighting 
function scheme such that there is no need to smear the free 
surface. A force balance equation (including surface tension) 
is imposed on the free surface through the use of the NAPPLE 
algorithm. In this connection, a modified “extrapolated 
velocity” is developed to track the sharp turnaround of the 
water front when it impinges upon a comer. Excellent 
agreement between the present numerical results and an 
existing experiment is found. The numerical method 
employed in this work is very simple and accurate. It applies 
to industrial and environmental problems such as die-casting, 
cutting with water jet, gravity wave on sea surface, and many 
others as well.
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Fig. 1 Configuration of the problem
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Fig. 2 Computational domain for the artificial velocity 
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Fig. 3 The isobars (with increment &p = 0.1 ) and the 
velocity vectors at four representative times.
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Fig. 4 Evolution of the free surface profile (a) at every 
0 s , and (b) at every 0.01 s in the period 0.2s £ / £ 0.3r .

Fig. 5 Comparison of free surface advancement between the 
present result and the experimental observation (Hwang and 
Storhr, 1988)
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Fig. 6 An examination of the computed mass conservation 
inside the tank
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