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ABSTRACT

Multiplicity of solutions induced by opposing thermal and
solutal buoyancy forces in a vertical porous layer subject 1o
horizontal fluxes of heat and mass is stdied analytically and
numerically using the Darcy model. The governing parameters
for the problem are the Rayleigh number, Ry, the Lewis
nurmber, Le, the husyancy ratio, N and the aspect ratio of the
porous matrix, A. The analytical solution developed is hased on
the paralle] flow approximation. The effect of the parameters Le
and N on the multplicity of solutions is studied. It is
demonstrated, in this study, that numerical multiple steady state
solutions, that agree very well with the analytical ones, are
possible when the aspeet ratio of the porous layer is large
enough. It is also found that the heat and mass transfer depend
strongly on the solution considered when multiple steady states
are eristing,

L INTRODUCTION

Dauble-diffusive naiural convection induced in a fluid-
saturated porous medium is widely encountered in engineering
applications. This phenomenon is of imporlance in many
Siluations like the migration of moistre through air contained
in fibrous insulations, food processing, contaminant iranspar in
ground water, electrochemical processes, ele.

Past siudies on double diffusive convection in a vertical
poraus enclosure indicate that the resulting flows can be very
different from those driven by the temperature field solely,
especially when the buoyancy forces are opposite. The literature
review shows that a limited number of investigations were
concemned with opposing double-diffusive nafural convection in
rectangular porous enclosures. Trevisan and Bejan (1985) used
numerical metheds to study heat and mass wransfer in a square
cavity subjected to temperature and concentration gradients in
the horizontal direction. They observed that the Nusselt and
Sherwood numbers were minimum in the vicinity of N = -1. It
was demanstrated numerically by Alavyoon et al. (1994) that
there ig a domain of N (< 0) in which oscillating convection is

obtained for a given set of the governing parameters. Ouiside
thiz domain, the selution approaches steady-siate convection.
Alzo, for opposing forces, the existence of muluple steady
solutions has been demonstrated analytically and numencally
by Mamou et al. (1995a) and Amahmid et al. (1999a). For a
given value of W, it was demonstrated by Mamou et al. (1995b)
that both Lewis and Rayleigh numbers have an influence on the
domain of existence of these multiple steady staie solutions. For
the case of opposing and equal huoyancy forces (M = -1) the
rest state, in a vertical cavity with constant temperature and
concentration on the vertical walls, is an exact solution of the
problem. However i was demonstrated by Mamou et al.
(1998a) and Charmier-Majtabi et al. (1998), by mean of linear
stability theory, that the onset of convection occurs when the
Rayleigh number exceeds a critical value which depends on the
aspect ratio of the cavity and the Lewis number. The case of a
vertical cavity with constant grodients of temperature and
concentration prescribed on the vertical walls of the enclosure
has been also considered by Mamou et al. (1998h). A linear
stability analysis was carmmied out 1o describe the oscillatory and
the stationary instability in terms of the governing parameters of
the problem. By using the parallel flow approximation it was
demonstrated that there exists a subenitical Rayleigh number at
which a stable convective solution bifurcates from the rest siaie
thraugh finite amplitude convection.

The abjective of the present investigation is to study the effect
of the Lewis number and the buoyancy ratio an the mulitiplicity
of solutions in the case of opposing double diffusive natural
convection 1n a vertical porous layer subject to honzonial
gradients of heat and mass.

2. MATHEMATICAL MODEL

The studied configuration is a two dimensional reclangular
porous matrix of height H® and width L". The geometry of the
enclosure is skeiched in Fig. 1. The wvertical sides of the

enclosure are submitted to constant fluxes of heat,q', and
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mass, ', while its honzontal sides are insulated and
impermeable. The fluid saturated porous medium is assumed
izotrapic and homogeneous and the Darcy model is considered.
Using the Boussinesq approximation and assuming constant
properties, the dimensionless equations goverming (his problem
arg:

viy =-R,.(%+ N%] (n
u%w%:ﬁ'j‘ (2
u%+ w%:?’s (3)

The velocity components are related to the stream function by

P VRea— )

where ¥ is the siream function, T the temperature, 5 the
concentralion, By the thermal Darcy-Rayleigh number, N the
buoyancy ratio and Le the Lewis number. These parameters ane
defined as:

_8PrKq'L? Psi /D
Ry = » N=
Aav Prq'l A

and L:---E

where [iy and [g are the thermal and solutal expansion
cocflicients, o and D arc the thermal and solutal diffusivities
and K is the permeability of the porous medium.

The houndary conditions for Eqs. (1)-(3) are:

W=l dTi/dw=08/h=1 for x=%I1/2 ()

W=aT/dy=35/3=0 for y=stA/2 6

where the aspect ratio of the enclosure is defined by A=H'/ L*

The heat and masgg wransfers are evalumed in terme of the
Musselt and Sherwood numbers which are given respectively
by:

.—T_"; Sh_ !
T(—, 0)-T{-—, 0)
1 2

s T
Dy =5(——
SI'I. N-5( l-m

M

Note that, according 10 the boundary conditions (Egs. (5) and
(6)), the thermal buoyancy forces tend to induce a
counterclockwise fluid circulation while the salutal buoyancy
fiorces tend to induce a clockwise fuid circulation for N<0 (case
of opposing flows) and a counterclockwise fluid circulation for
M= (case of cooperative flows).

3. RESULTS AND DISCUSSION

For large aspect ratie (A => 1) 1t has been demonstrated in the
past by Alavyoon et al. (1994) that the present problem can be
significantly simplificd by the approximation of the parallel
flow. With this approximation u = 0 and v = v(x) in the central
part of the cavity, i.e., ouwside the end regions. The
approximation allows the following simplifications:

Fix.y)mPix), TaCry+@p(x)and S=Cgy+g(x) (8)

where Ty and Cg are unknown iemperature and concenirabion
gradients respectively in v direction. Those gradients are
determined by imposing zero heat and mass transfer across any
transversal gsection of the cavity. Lising these approximations,
together with the boundary conditions (5) and (6), Egs. (1) to
(4) are reduced to a set of ordinary differential equations which
can be solved to yield a closed analytical solution. Depending
on the gign of the parameter I” defined by

s RT'[NLICS'IC]'::I {9}
two solutions are possible.
For I'=0, we set I'={Y and the solution of the simplified

governing equations  (denoted (l-solution), satisfiing the
boundary conditions in x-direction, is:

W= A cosh((Ix)+ a (10)
T = Cyy+(1-aCy )x - Cr A sinh(£ix) ()
§=Cgy+(1-aLeCg)x—LeCgA sinh(fx)  (12)

where A=-alcosh ({12), A"=A/0) and a=R({N+1) (F

The expressions of Cy and Cy can be established by imposing
2ero heal and mass transfer across any transversal section which
yiclds:

Cr=AMi+Ay); Cs=LeA Al+Lelag)  (13)
Then, Mu and 5h are given by:
Nu=1/1-CtA;)  Sh=141-LeCgA,)  (14)

whene
Hu'I:%{*'EJ‘—::'{MHQFI]}]] nd A, -.{u--%mmfz:]

To compute the value of {2, an equation of this parameter is
established by combining Eqs. (9) and {13):

?
aA 0% —R AN+ (A Le? +%}a, =0 15
+

where A, mlaMgeale’ +Au:|..:1

MNote that the (2-solution consists of a unicellular flow
circulating in counterclockwise direction for N=>-1 and in
clockwise direction for N<-1.
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For I <0, we set I =" and the resulting solution (denoted
iw-solution) can be deduced by setting Cd=io in the above
solution. Since sinh{iw)=izin{ew) and coshiio=cos{n) it is
readily found that the solutions are similar 1o those given by
Eqgs. (100-{12) with the hyperbolic functions replaced by
circular functions. The parameter @ can be computed from the
following equation

1+ MLe?

bByar® - R (N+1)(ByLe? +— B =0 (16)

where

By =1+ Bg+Byle® + ByLe?

bt 3Bl 2
By=b Z{h +3{ra.nim-'2}}|

By = h{l-%un{m!])] and b==Ry(N+1)ya?

Analytical and numerical treatment of Eqs.(15) and (16)
showed that the domain where multiple steady state solutions
are possible in the plane {Le, N) is represented by regions | and
2 of Fig. 2. It is clear that these regions correspond to opposing
thermal and solutal buoyancy forces and are included in the
domain -3<M<-1/3.

By solving Eq. (16) it is found that three monocellular in-
solutions can be obtained for the same governing parameters in
the small domain represented by region 1 in Fig. 2 when Ryme
SRy S Ry The 1imits Ry 0d Ry depend on Le and N.
They can be determined numerically by solving Eq. (16). For
example, these three solutions are possible when -1SN2-0.5922
for Le=10 and when -1=N=-0.8897 for Le=1000. Mote that the
Nuid circulations corresponding to these three solutions are in
the same direction (clockwise for Le<! and counterclockwise
for Le=1}). The values of Ry and Ryg,, that delimite the
range of Ry for which multiple selutions exist are functions of N
and Le (not presenied here). [t is found that Ry. changes
slightly with M while Rype lends towards infinity when N
spproaches -1.

The presence of multiple monocellular iw-solutions in the
region | of Fig. 2 is also demonstrated numerically by solving
the full poverning equations (1)44). The numerical wehnigue
used in this study is similar o that described by Amahmid et al.
(1999h). The numerical results obtained are illustrated in Figs, 3
and 4 in terms of Nu and Sh as functions of Ry for Le=10 and
N=-0.995. The computations were performed with aspect ratios
A in the range 62A<9. It can be scen from these figures that
three analytical solutions are observed for 2.22<R<7.8. Two of
these solutions were obtained numerically. Let oy, oy and oy
denote the values of o comesponding to these solutions such
thai @ <m,<m,. [t is noted that the two solutions oblained
numerically correspond to e, and my. That corresponding to oy
was not obtained numerically despite the multiple favourable
initisl conditions tested. The difference between the (wo
solulions obtained numerically in terms of Nu remains less than
25%. However, the Sherwood number changes considerably
from one solution to the other. At Ry =7, for example, the
solution w, leads to Sh=1.002, while that corresponding to wy
leads 1o Sh=4.51, i.e., four times higher than the first value.

g
;
E@

Multicellular iw-solutions conzisting of (2m+1) cells (m =1,
2, 3,...), are also possible for values of N very close to -1 inside
region | of Fig. 2. But these salutions could nat be abuained
numerically in the present work. It is noted that even when N is
very close to -1, the changes observed in the number of existing
solutions are extremely different from those found for N=-1
when Ry 18 mereased. For example, for Le=10 and N=-0.995,
there is a unique monocellular solution for Ry <2.22, the
number of solutions passes to three monocellular solutions for
2 225Ry<7.8, drops io a smgle monocellular solubion for 7.8<
Ry <67.5, passes again to three solutions (one monocellular and
two three-cells solutions) for 67.5< Ry <459, rises to five
solutions (one monocellular, two three-cells solutions and two
five-cells solutions) for 459< Ry <3958, drop o three solutions
{one monocellular and two three-cells solutions) for 3958< Ry
<(385 then o a single monocellular solution for Ry >=6385, It is
clear then that the number of in-solutions undergoes increases
and decresses when Ry increases. However, the number of
solutions can only increase with Ry for M=-1 (Amahmid et al.,
1999a). Also, when a flow mode m (i.e a flow consisting of
(2Zm+1) cells) appears, it does not disappear by further
increasing Ry for N =-1.

For region 2 it is found that an £2-solution is always existing
regardless af the value of Ry, Furthermare, for adequaie ranges
of By, multiple io-solutions (fwo or more) are possible in this
region. It is found that this region satisfics the following
equation:

=1SNsNp for Le<l and NgsNs-1 for Lexl

where My is given by

iLe? + 2f3Le+1

=

boderr o

For any couple (Le, M) in region 2, it can be demonstraled
analytically that there exist two values of Ry for which the
velocity is zero on the ventical boundaries and the opposing
effects of thermal and solutal buoyancy forces act such that the
Darcy model satisfics the no-slip boundary conditions on the
vertical boundaries. This condition 15 satisfied nowhere in the
rest of the (Le. ™) plane. The values of Ry for which this
behavior is obtained are:

LEF
Ry _4,1{—“#* -12L¢? ]
*

ILeF(N+1)?

where

i ks 3te? + N+ Let)
N+l

Also it can be verified that the fow direction for any
monocellular in-solution depends only on the sign of (Le-1)
{clockwise for Le<| and counterclockwise for Le=1). While it
is noted that the flow direction for the £2-solutions depends on
the sign of (N+1). This implies that the direction of the flow is
imposed by the component (emperaiung or concentration) with
the highesi diffusivity in the case of io-solubions and by the one
wiih the highest buoyancy forces in the case of £2-solutions.
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The multiplicity of steady state solutions in region 2 is
illustrated in Figs. 3 and 4 in terms of Mu and Sh variations with
Ry for MN=-1.6 and Le=10. The solutions presented in these
figures are constituted by one (2-zolution and two in-solutions.
It can be seen from Figs. 3 and 4 that the l-solution 15
analytically possible for any given value of Ry while the -
solutions are possible only in the range 3.49zR; 292.7.
Furthermore, there exist values of Ry at which the iw-solutions
pass  from monocellular pattem to  threecells  pattern.
MNumerically, it was demonstrated that it is possible 1o obtain
only two monocellular solutions (one {I-solution and one iwm-
solution) for 55Ry 560, If we focus our attention only on the
solutions obtained numencally, it can be noted that the best heat
and mass transfers are generated by the iw-solution for which
Mu and Sh pass through maximum values when Ry increases.
This means that, for this kind of opposing flow, the increase of
Ry may lead 1o a decrease of Nu or Sh. For the (2-solution, Nu
and Sh have asymptotic evolutions (Nus1.006 and Sha1.609 at
large Ry) and the heat ransfer is always dominated by diffusive
effects regardless of the value of Ry It is noted that the
analytical monocellular £2 and ig-solutions consist of clockwise
and counterclockwise rotating cells, respectively. It should be
noted that for S=Ry <20, it was found that an aspect ratio A=4
was sufficient to predict numerically the analytical results for
both £ and im-solutions. For this range of Ry, a secondary flow
consisting of two small vortices confined inside the main cell
are induced in the case of the numerical {lsolution. The
secondary cells are located in the upper and lower pans of the
enclosure. However, for the same range of Ry, the secondary
flow iz not observed for the numerical im-solution. It appears
only when Ry 220 and consists of two sccondary clockwise
rotating cells located in the upper right and lower left corners of
the enclosure. The expansion of these cells in the vertical
direction, when Ry increases, is found 1w affect gradually the
parallel nature of the flow in the core region. In this case, higher
values of A are required to predict the analytical resulis. Note
that the parallel nature of the flow was not affected by the
presence of the secondary cells in the case of {l-zolutions even
at large values of Ry.

The above discussion shows that in region 2, up to three
monocellular solutions are possible for the same set of the
governing parameters (one (Y-solution and wo io-solutions).
The flow rotation for the im-solutions is opposite to that for £2-
solution. However, for region 1 the cells are rotating in the same
direction fior all the monocellular solutions

Analytically, it can be demonstrated in region 2 that there
exists values of Ry for which the flow consists of n veriical cells
rotating in the same direction (clockwise for Le<1 and
counterclockwize for Le>1).

4, CONCLUSION

Double-diffusive natural convection in a vertical porous layer
submitted to constant fluxes of heat and mass on 1ts vertical
sides is studied analytically and numerically. It iz found that
multiple steady state solutions are possible when the thermal
and solutal buoyancy forces have opposing effects. The values
of the buovancy ratio for which this phenomenon is observed
are always included in the range -3<N<-1/3 for any value of the
Lewis number, This means that the multiplicity of solutions is
possible only when the thermal and solutal buovancy forces
have oppasing effects and are of the same order of magnitude.
The analytical study shows that, for adequate ranges of Ry,
three analytical monocellular ig-solutions, rotating in the same
direction, are possible in region 1 (Fig. 2). While in region 2

two monocellular wo-solutions, rotating mn the same direction,
and one Cl-solution, rotating in the opposite directions, are
possible. The rolation direction corresponding to monocellular
im-solutions is imposed by the component (temperature or
concentration) having the highest diffusivity (i.e depends on Le)
while that comesponding to (2-<solutions is imposed hy the
component having the highest buoyancy forces (i.e depends on
N). Mumerically, two of the three monecellular solutions were
obtained. Also for the same set of poverning parameters, two
different solutions (when these exist) can induce considerable
differences in terms of Nu and Sh. For region 2 there are values
of Ry such that the flow wvelocity is zero on the vertical
boundaries for the iw-solutions meaning that the opposing
buoyancy forces act as though the Darcy model satisfies the no-
slip condition on the vertical boundaries.
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