
Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339 Paper received: 18.11.2009
UDC 658.5 Paper accepted: 04.05.2010

* Corr. Author's Address: Energy and Environmental Protection Institute, Koranska 5, 10000 Zagreb, Croatia,
arijan.abrashi@ekonerg.hr 330

Solving JSSP by Introducing Hamilton Similarity and Time
Dependent Fitness Scaling

Arijan Abrashi1,* - Nedjeljko Štefanić2- Dragutin Lisjak2
1Energy and Environmental Protection Institute, Croatia

2Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia

In this paper we propose and test a niching genetic algorithm (GA), which uses the so-called
Hamilton similarity for a comparison of individuals in the population. The advantage of the Hamilton
similarity lies in the fact that there is no need for context sensitive information in order to successfully
compare two population members. Furthermore, the algorithm was tested on the famous Job Shop
Scheduling Problem (JSSP) - benchmark mt10, and statistical results of the test were given. Significantly
smaller standard deviation of the proposed GA compared to Simple GA clearly demonstrates its
superiority.

In addition to the Hamilton similarity, time dependent fitness scaling was proposed which in
conjunction with niching significantly reduces the probability of the algorithm to get stuck in one of the
less desirable local optimum. Finally, suggestions for future research are given.
© 2010 Journal of Mechanical Engineering. All rights reserved.
Keywords: genetic algorithm, niching, Hamilton similarity, time dependent fitness scaling, Job
shop scheduling problem

0 INTRODUCTION

Today, genetic algorithms as part of the
wider area of artificial intelligence are more
frequently used in solving real-life problems.
Fifteen years ago, genetic algorithms were known
only to a few scientists, professors and their
students and their study was limited to the
academic community. Today the situation is quite
different. Interest in genetic algorithms has been
shown by various branches of science; from
economics, biology and medicine to computer
science, engineering, operations research and
social science [1]. Such a broad interest in genetic
algorithms is the result of the fact that genetic
algorithms are able to successfully tackle NP-hard
(nondeterministic polynomial-time hard)
problems.

The JSSP discussed in this paper falls into
the permutation class of problems that generally
speaking brings additional difficulties to genetic
algorithms. Because of the permutation nature of
the problem, illegal solutions (offspring) are
common, and this has a very negative impact on
algorithm performance. Despite all the
difficulties, first attempts to use genetic
algorithms in solving the permutation class of
problems appeared more than 20 years ago and

four of those attempts were particularly important
[2]:
• Traveling salesman problem (Goldberg &

Lingle, 1985),
• Scheduling (Davis, 1985),
• Integrated circuit design (Louis & Rawling,

1991),
• Vehicle route planning (Blanton Jr. &

Weinwright, 1993).

The present knowledge in the field of
genetic algorithm allows significant progress in
solving the permutation class of problems.
Furthermore, a better understanding of selection
mechanism and development of new operators,
have placed genetic algorithms among the best
and most widely applicable optimization
techniques.

1 NICHING GENETIC ALGORITHMS

Niching genetic algorithms differ from

simple genetic algorithm in a way that it does not
allow one (best) individual to dominate through
the entire selection process. This feature is
extremely important because it implicitly reduces
the ability of the algorithm to get stuck in a local
optimum.

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Solving JSSP by Introducing Hamilton Similarity and Time Dependent Fitness Scaling 331

Although, in the literature different
niching methods can be found [3] and [4], the
most popular approach by far was proposed by
David Goldberg by the name of Sharing [1]. In
Goldberg’s approach, fitness function value of
each individual in the population is reduced in
proportion to its similarity to other members of
the population. In this way, the ability of
individual members to participate in the creation
of the next generation is substantially diminished,
which indirectly prevents domination of the best
member. Such an approach logically implies the
question of how to determine a degree of
similarity between individual members of the
population. There are two approaches, phenotypic
and genotypic. The genotypic approach compares
individuals on the chromosome level, while the
phenotypic approach compares individuals’
characteristics, which an algorithm tries to
optimize. The method proposed in this paper
shows the third approach, the so called Hamilton
similarity. The basic condition for using Hamilton
similarity is chromosome representation in the
form of the not so often used diploid
chromosome.

1.1 Diploid vs. Haploid Chromosome

In the area of genetic algorithms, the

implementation of diploid chromosome is
extremely rare. The majority of research where
diploid chromosome is used, focus on solving
problems with time-changing fitness function [5].
These studies have shown that genetic algorithm

that uses diploid chromosome, due to a greater
genetic diversity of the population; react quicker
to changes in the environment (time-changing
fitness function).

The primary goal of diploid chromosome
representation is maintaining the weaker gene or
the weaker group of genes in the population that
at a certain point in the evolution are not of a
great use but could become so in the near future.
This principle allows greater retention of genetic
diversity in the population and increases the
probability of finding the global optimum. The
claim that diploid chromosome retains greater
genetic diversity was examined and proved by
Goldberg and Smith [6] on the problem of
“counting ones” in 1987. In its study
chromosomes were represented in binary format
(ones and zeros) where the ones contributed more
to individual fitness values than zeros, therefore,
coefficient r is always greater than one.

1
0

1 >=
f
fr , (1)

where f1 is contribution to the total value of
individual by ones, while f0 is contribution of
zeros.

In the case of haploid representation,
chromosomes with a large number of zeros
slowly disappear from the population. On the
other hand, the population composed of
individuals with diploid chromosome in a greater
extent is able to defend zeros and in this way
maintain higher genetic diversity, which is a very
desirable characteristic.

Fig. 1. The difference in loss rate of inferior genes between haploid and diploid chromosomes for
coefficient of mutation 0.0033

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Abrashi, A. – Štefanić, N. – Lisjak, D. 332

It can be seen from Fig. 1 that during
evolution haploid chromosomes lose more
weaker genes compared to diploid chromosomes.
The process continues until population reaches a
steady state after which the weaker genes cannot
be lost. The steady state is directly proportional to
the coefficient of mutations (in Fig. 1 mutation
coefficient is 0.0033). If the coefficient of
mutations is greater, the weaker genes are
preserved in the population. In the extreme case
when the coefficient of mutation is 1 (random
search) the proportion of the weaker genes
(zeros), with some fluctuations, remains at the
level of 50%. Considering the advantages
provided by diploid representation of
chromosomes and the fact that the Hamilton
similarity operates exclusively with individuals
with a diploid chromosome the way the proposed
algorithm uses diploid chromosomes is more than
obvious.

1.2 Hamilton Similarity

Determining the degree of similarity

between individual members of the population is
a challenging problem, especially in the case of
the JSSP. The problem arises from the fact that
conversion from genotypic to phenotypic
representation is carried out using the so called
active schedule. The problem with active
schedule approach is that there may be two
fundamentally different genotypes with identical
or very similar phenotypic representations. On the
other hand, two nearly identical genotypes can
give completely different phenotypes. For this
reason, genotypic and phenotypic comparison of
individuals is difficult and unreliable so a new
way of comparison should be found. The
proposed algorithm uses the so-called Hamilton
similarity based on a statistically predictable
number of genes that two individuals have in
common. The method is named after the British
evolutionary biologist Hamilton [7], who in two
of his famous papers laid down the mathematical
basis for determining the occurrence probability
of a particular gene in the population. According
to the theory, all genes of one individual are by
the same ratio inherited from both parents.
Diploid organisms on each position within the
chromosome have two complementary genes, of
which only one would express itself and affect the
phenotype of the organism. Since diploid

organisms have two genes at each position in the
chromosome, during the creation of new
offspring each parent gives only one gene from
each position. From the mentioned, it can be
concluded that diploid organisms inherit exactly
half of their genes from each parent. This
regularity is a backbone of the proposed Hamilton
similarities because similarity is determined
exclusively by origin.

If some rare varieties are disregarded, such
as the fact that genes could disappear or appear in
the population due to mutation, it can be argued
that parents and offspring have 50% genes in
common. The next-generation of offspring has
25% of genes in common with the first generation
and so on. This regularity can be formulated as:

n

commoningenes ⎟
⎠
⎞

⎜
⎝
⎛=

2
1 , (2)

where n is generational distance.

Fig. 2. Generation distance between direct

ancestors

The example in Fig. 2 clearly shows that
the generational distance between individual D
and individual I are two generations. According
to Eq. (2) those two individuals have 25% of their
genes in common.

Determining the generational distance
imposes another question. What if two
individuals are not direct ancestors? In such case,
a more general form of Hamilton's theory must be
applied. Specifically, the generational distance
between two individuals is determined by adding
together distances between each offspring from
their nearest common ancestor. Two individuals
who are related must share at least one common
ancestor. It is important to note the word "at
least", because the existence of two ancestors in
common in the same generation has an important
implication on the number of genes in common.

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Solving JSSP by Introducing Hamilton Similarity and Time Dependent Fitness Scaling 333

A generalized version of the Eq. (2) is as
follows:

n

mcommoningenes ⎟
⎠
⎞

⎜
⎝
⎛⋅=

2
1 , (3)

where m is the number of ancestors in common
and it can take values 1 or 2, while n is the sum of
the generational distances between each
individual and the first ancestor in common. If,
for instance, the number of genes in common
between individual F and individual K were be
found, then the first nearest common ancestor
would be detected.

Fig. 3. Generational distance between not direct
ancestors

From Fig. 3 it can be seen that their

nearest ancestor is in generation 2. It is important
to note that in generation 2 there are two common
ancestors (individual C and individualy D), so
coefficient m from the Eq. (3) equals 2.
Furthermore, the generational distance between
individual F and K and their common ancestors
can be obtained. Individual F is one generation
away and individual K is two generations away
from their common ancestors, so they have 25%
of the genes in common:

25.0
2
12

21

=⎟
⎠
⎞

⎜
⎝
⎛⋅=

+

commoningenes . (4)

1.3 Hamilton Similarity and Fitness Sharing

Sharing [8] is by far the most commonly

and most successfully used niching method [9].
According to the theory all individuals located
within a niche are forced to share resources that
niche provides. Fitness sharing as resource that is
shared uses fitness function value. It simply
reduces potential value of the fitness function
proportional to the number of similar individuals
in the population or the number of individuals in

a particular niche. For proper operation of the
algorithm it is necessary to determine the sharing
function between the observed individual and all
other individuals in the population. The sharing
function is proportional to the similarity of two
individuals d(i,j). The similarity of individuals
ranges from 0 to 1. If two individuals are
identical, then their d(i,j) is 1. If individuals are
not identical and their difference exceeds the
tolerance, then the value of d(i,j) is 0, which
practically means that they do not affect each
other because they do not belong to the same
niche. All other individuals have similarities
between these two extremes. Corrected value f' of
the fitness function can be defined as:

∑
=

= n

j

jidsh

iff

1

)),((

)(' ,
(5)

where sh is the sharing function that can be
defined as:

⎪
⎩

⎪
⎨

⎧
<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

others

dd
sh share

share
0

1 σ
σ

α

 , (6)

where σshare is the threshold and α is the
coefficient for fine tuning of individual influence.

In the Hamilton similarity the sharing
function does not depend on “hard to define”
similarities between individuals but upon
generational distance between them, so sharing
functions are defined as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧
<

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

others

Ggsh similarity

g

0
2
1

α

 . (7)

Gsimilarity is the number of previous

generations in which similarity between two
individuals is checked. If in the specified number
of generations a common ancestor cannot be
found, then it is considered that those individuals
are not related and it is 0. The Hamilton similarity
and the sharing functions computation is a central
point of this paper.

The sharing functions depending on
generation distance and coefficient α from two
individuals from the same generation are
displayed in Fig. 4. Changing the value of the

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Abrashi, A. – Štefanić, N. – Lisjak, D. 334

coefficient α, mutual influence of individuals
within a niche can be fine tuned.

Fig. 4. Sharing function

1.4 Domination

In every algorithm that uses diploid

chromosomes a problem of domination appears.
In order to make the transition from genotypic to
phenotypic view possible, for each position
within the chromosome, a dominant gene must be
determined. This dominant gene will be
manifested in the form of phenotypic
characteristics. In the literature several
domination schemes can be found, but
unfortunately they are mostly developed for the
binary version of a chromosome. An additional
problem with diploid chromosomes is the fact
that only indirect representation can be used in
order to avoid getting illegal solutions. For this
reason a large number of scheduling problems
that use direct operation representation cannot be
used together with diploid chromosomes. The
proposed algorithm uses the so-called “coding
with reference list” that always guarantees a
correct solution but at the same time allows a
very large number of different genes to be at the
same position, which implies a rather complicated
dominance map. For the purposes of the proposed
algorithm dominance map is composed as shown
in Table 1.

A dominance map is shown for the
chromosome position where only five
complementary genes can exist. The proposed
dominance map guarantees that every possible
gene has an equal number of dominant and
recessive combinations.

Table 1. Dominance map
 1 2 3 4 5
1 1 1 3 1 4
2 1 2 2 4 2
3 3 2 3 3 5
4 1 4 3 4 4
5 5 2 5 4 5

2 SELECTION METHODS AND
GENETIC OPERATORS

2.1 Selection Methods

Selection is a process that determines how

many times a particular individual will become a
parent which directly affects the number of
offspring to which it will transmit its genes. The
process can be divided into two phases:
• Determining the number of attempts certain

individual can expect to become parent.
• Converting the potential number of attempts

in the actual number of offspring.

Determining the number of attempts to
become a parent is actually a process of
converting an individual’s fitness function into
expected number of participation in creating the
next generation. Since the expected number of
participation is almost always a decimal number,
the second part of selection process relates to a
conversion of decimal number into integer, which
refers to the actual number of offspring.

Since several different selection processes
are proposed by different authors some kinds of
criteria have to be established in order to compare
them. The best known criteria were defined by
Baker in 1987 [10]. Baker has defined three
parameters:
• Bias - the absolute difference between actual

and expected probability of selecting a
particular individual. Optimal value is zero.
That means that there is no difference
between the expected number of
participation in the reproduction process (the
first step of selection) and the number of
offspring (the second step of selection).

• Spread - the range between theoretically
minimal and theoretically maximal number
of possible participation in the creation of
the next generation individual can
accomplish. The actual number of attempts

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Solving JSSP by Introducing Hamilton Similarity and Time Dependent Fitness Scaling 335

must be within the defined range. Narrow
range is desirable.

• Complexity - some selection methods are
extremely complex and require large CPU
time. The method that does not contribute to
the complexity of the genetic algorithm is
considered to be the better.

For the purposes of the proposed algorithm
three selection methods are considered:
Stochastic Sampling with Replacement,
Tournament selection and Stochastic Universal
Sampling. Due to minimal bias and zero spread
Stochastic Universal Sampling has been chosen
as the selection method.

2.2 Genetic Operators

Mutation operators and crossover

operators belong to the category of genetic
operators. Crossover operators can be considered
most important as they are responsible for the
exchange of genetic material. Classical crossing
operators such as:
• one-point crossover,
• two-point crossover,
• n-point crossover and
• uniform crossover
are applicable only on chromosomes that
operations in schedule represent in indirect way.
When direct representation is used, in many cases
illegal solutions are obtained. Since the proposed
algorithm uses coding with reference list (indirect
representation) the use of classical crossover
operators is allowed. For the purposes of the
proposed algorithm one and two-point crossover
operators are chosen.

The main purpose of the mutation operator
is an attempt to preserve genetic diversity of the
population. If the population is small, it is likely
that dominance of the best adopted individual will
occur very quickly and the genetic material of the
population would be decimated. The problem can
be solved in two ways; by increasing the
frequency of mutation, which indirectly leads to
more stochastic algorithm or by increasing the
size of the population. Previous studies have
shown that mutation should remain relatively
small and time-regulated. In the proposed
algorithm the frequency of mutation is kept below
0.33%.

3 FITNESS SCALING

Fitness scaling has an extremely important
role for niching. Indeed it can be said that for
most fitness functions, if fitness sharing is used,
employment of fitness scaling is almost
necessary. It is not realistic to expect niching if
there is no significant difference between the
fitness function values of particular individuals
[8]. If the fitness function is configured in such a
way that the fitness functions of all individuals
are around the same value, the selection process
would become fully stochastic. The problem can
be solved in numerous ways but two of them are
particularly interesting:

• linear scaling,
• exponential scaling.

Both methods are applied in the proposed
algorithm using the time dependent scaling
component. If exponential scaling is used without
the time dependent component it may happen that
in the early phase of evolution, dominance of the
currently best individual occurs and the algorithm
can end up in one of the local optimums. Using
the time dependent exponential scaling early
dominance of certain individuals is prevented
because exponential scaling progressively
increases in the later stages of evolution when the
niches are already well defined. Unfortunately, in
the last phase of the evolution, when the
generation is comprised of mostly well-adjusted
individuals, the selection process can become
stochastic again. In order to solve this problem
the exponent value is directly dependent on the
value of the fitness function. This means that
individuals with larger values of fitness function
are further enhanced with a higher exponent
values, so a better adopted individual in the final
stages of the evolution is more often selected for
reproduction. In this way all niches are
dismantled in order to enable the algorithm to
exploit the best niche. The proposed algorithm
uses the following Fitness Scaling function:

β
δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−= minmax

min

)(' ff
ff

G
G

trff ,
(8)

where:
δ coefficient of linear scaling. It can take

values between 0 and the minimum of
fitness function,

Gtr transition generation. The generation after
which higher selection pressure is applied,

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Abrashi, A. – Štefanić, N. – Lisjak, D. 336

G current generation,
fmin minimum value of fitness function in the

current generation,
fmax maximum value of fitness function in the

current generation,
f fitness function value,
f' corrected fitness function value,
β coefficient of basic exponential scaling.

4 EXPERIMENT

The experiment described in this section is
conducted on a well known mt10 benchmark
problem. The problem is particularly significant
as it is used in almost any research connected
with the JSSP. JSSP is a problem of scheduling
set of jobs on a set of machines. JSSP cannot be
easily solved, because, from the combinatorial
point of view, it is classified as NP-hard, which
means that it cannot be exactly solved even for a
relatively small number of operations and
machines.

The purpose of the experiment was to
show that the genetic algorithm can function very
well without context sensitive information, and
that results are quite reliable and close to global
optimum.

The experiment was conducted under the
following conditions:
• the number of generations: 300,
• population size: 300,
• frequency of mutation: 0.0033,
• frequency of crossover: 1,
• Gsimilarity: 3 generations,
• δ linear scaling: 0,
• Gtr transition generation: 150,
• β basic exponential scaling: 6,
• α power of sharing function: 1.

Table 3. Statistical data

Number of evolutions Hamilton SGA
600 600

Standard deviation 12.9812 22.26397
Main 974.4033 1027.142
Median 976 1027
Max 1012 1086
Min 937 962

In order to make the experiment

statistically reliable 600 evolutions were
conducted and compared to the results from
simple genetic algorithm (SGA). The number of
occurrences of a particular solution is shown in
Fig. 5.

The experiment has clearly showed that
proposed algorithms demonstrated superior
results compared to the SGA.

4.1 Influence of Evolutionary Parameters

For the purposes of the experiment coefficients of
mutation and crossover are kept constant. These
coefficients are considered irrelevant for the
outcome of the experiment. On the other hand, G
and β proved themselves extremely important.
Initial tests have shown that if Gtr is too small, the
selection pressure becomes too high too early and
the process of forming niches is seriously
compromised. If Gtr is large, the algorithm does
not have enough time to exploit the best niches in
the final stage of the evolution.

The sole purpose of coefficient β is to
increase selection pressure which indirectly leads
to the rapid creation of niches. There is no
specific rule for determining the value of the
coefficient β, but the rule of thumb is that a larger
population can have higher values of β.

Table 2. Muth and Thompson’s 10 x 10 problem (mt10)
Job Machine (processing time)
1 1 (29) 2 (78) 3 (9) 4 (36) 5 (49) 6 (11) 7 (62) 8 (56) 9 (44) 10 (21)
2 1 (43) 3 (90) 5 (75) 10 (11) 4 (69) 2 (28) 7 (46) 6 (46) 8 (72) 9 (30)
3 2 (91) 1 (85) 4 (39) 3 (74) 9 (90) 6 (10) 8 (12) 7 (89) 10 (45) 5 (33)
4 2 (81) 3 (95) 1 (71) 5 (99) 7 (9) 9 (52) 8 (85) 4 (98) 10 (22) 6 (43)
5 3 (14) 1 (6) 2 (22) 6 (61) 4 (26) 5 (69) 9 (21) 8 (49) 10 (72) 7 (53)
6 3 (84) 2 (2) 6 (52) 4 (95) 9 (48) 10 (72) 1 (47) 7 (65) 5 (6) 8 (25)
7 2 (46) 1 (37) 4 (61) 3 (13) 7 (32) 6 (21) 10 (32) 9 (89) 8 (30) 5 (55)
8 3 (31) 1 (86) 2 (46) 6 (74) 5 (32) 7 (88) 9 (19) 10 (48) 8 (36) 4 (79)
9 1 (76) 2 (69) 4 (76) 6 (51) 3 (85) 10 (11) 7 (40) 8 (89) 5 (26) 9 (74)

10 2 (85) 1 (13) 3 (61) 7 (7) 9 (64) 10 (76) 6 (47) 4 (52) 5 (90) 8 (45)

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Solving JSSP by Introducing Hamilton Similarity and Time Dependent Fitness Scaling 337

Algorithms with high β and small
population size tend to get stuck in one of the
local optimums.

The sole purpose of coefficient β is to
increase selection pressure which indirectly leads
to a rapid creation of niches. There is no specific
rule for determining the value of the coefficient β,
but the rule of thumb is that larger population can
have higher values of β. Algorithms with high β
and small population size tend to get stuck in one
of the local optimums.

In addition to the coefficient β, coefficient
δ is also considered. Since the minimum of fitness
function should be known in advance in order to
correctly estimate the value of δ, it was rendered
completely useless. Coefficient δ was set to 0 for
all tests.

Finally, coefficient α was used for
controlling the niche capacity. For small values of
α, the capacity of niche is significantly reduced.
Since a relatively small population is used, the
capacity of the niche should also be small in order
to explore larger partition of the search space.

4.2 Additional Experiments

The proposed algorithm was also tested on

all 40 “la” benchmark problems [11]. The
evolutionary parameters used for each group of
problems are shown in Table 4. Each test was run
50 times and statistical results are given in Table
5. Due to a relatively small population size, and
therefore small genetic diversity, the algorithm
had difficulties finding optimal solution for large

problems. A small population was chosen in order
to speed up the algorithm. Even for a relatively
small population, the algorithm has found 18 out
of 37 known global optimums.

5 CONCLUSION AND FURTHER RESEARCH

Two conclusions can be drawn from the

conducted experiments. First, the use of the
Hamilton similarity allows the application of the
algorithm on various problems with minor
modification. This means that context sensitive
information is no longer necessary in order to
determine the similarity between two individuals.
Second, time dependent scaling enables an
increase in the selection pressure only when
niches are well defined which implicitly helps
algorithm to avoid one of the less desirable local
optimums, which is clearly shown by the results
of an experiment.

Although the algorithm showed very
positive results there is still plenty of room for
improvement. First of all, the dominance map is
defined quite arbitrarily and it is not subjected to
the process of evolution, which is a problem
worth testing [12]. Furthermore, the steady-state
version of the algorithm should also be tested. In
nature it is common for parents to defend their
offspring or to delegate part of their resources to
them. Since the proposed algorithm in each
generation is exchanged for the whole population,
the impact of the surviving parents on the
algorithm performance has not been tested.

Fig. 5. The histogram of the best makespans obtained after 600 trials for the mt10 problem

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Abrashi, A. – Štefanić, N. – Lisjak, D. 338

Table 4. Evolutionary parameters (la benchmark problems)
 G Gtr β α Gsimilarity Mutation Crossover Pop. size

la01-la05 (10x5) 300 150 4 1 5 0.0033 0.95 300
la06-la10 (15x5) 400 200 4 1 5 0.0033 0.95 300
la11-la15 (20x5) 400 200 4 1 5 0.0033 0.95 300

la16-la20 (10x10) 400 200 4 1 4 0.0033 0.95 300
la21-la25 (15x10) 500 250 4 1 5 0.0033 0.95 300
la26-la30 (20x10) 750 375 4 0.2 5 0.0033 0.95 300
la31-la35 (30x10) 1000 600 4 0.2 5 0.0033 0.95 300
la36-la40 (15x15) 800 480 4 0.2 5 0.0033 0.95 300

Table 5. Statistical results (la benchmark problems)

 la01 la02 la03 la04 la05 la06 la07 la08 la09 la10
Main 666 669.4 617.7 606.7 593 926 890 863 951 958

Median 666 669.5 617 607 593 926 890 863 951 958
Best 666 657 609 593 593 926 890 863 951 958

Worst 666 682 622 612 593 926 890 863 951 958
Optimum 666 655 597 590 593 926 890 863 951 958

σ 0 6.217 2.184 4.834 0 0 0 0 0 0
 la11 la12 la13 la14 la15 la16 la17 la18 la19 la20

Main 1222 1039 1150 1292 1207 977.9 787.5 875.7 875 922.2
Median 1222 1039 1150 1292 1207 979 787 875 873 918

Best 1222 1039 1150 1292 1207 956 785 855 863 913
Worst 1222 1039 1150 1292 1207 982 804 884 886 944

Optimum 1222 1039 1150 1292 1207 945 784 848 842 902
σ 0 0 0 0 0 6.129 3.435 6.506 4.793 9.324
 la21 la22 la23 la24 la25 la26 la27 la28 la29 la30

Main 1093.8 980.8 1041.3 998.7 1026.2 1257.2 1300.1 1279.2 1248.8 1396.4
Median 1096 982.5 1039 1002 1024 1265.5 1299.5 1278 1251 1397.5

Best 1068 956 1032 977 1008 1237 1287 1252 1212 1367
Worst 1125 994 1061 1020 1064 1278 1315 1307 1276 1418

Optimum - 927 1032 935 977 1218 - 1216 - 1355
σ 14.42 7.913 8.484 8.875 11.230 12.389 8.343 14.365 13.757 13.272
 la31 la32 la33 la34 la35 la36 la37 la38 la39 la40

Main 1785.5 1852.3 1720.3 1733.3 1898.1 1319.9 1462.1 1277.3 1309.9 1286.0
Median 1784 1850 1719 1730 1898 1322 1460 1278 1312 1284

Best 1784 1850 1719 1721 1888 1296 1449 1252 1268 1270
Worst 1791 1964 1736 1761 1928 1335 1490 1303 1335 1326

Optimum 1784 1850 1719 1721 1888 1268 1397 - 1233 1222
σ 2.158 3.815 4.433 10.632 9.649 10.099 10.873 12.967 14.753 11.357

6 REFERENCES

[1] Goldberg, D. (1989). Genetic algorithms in
search, optimization, and machine learning.
Addison Wealey Longman, Inc, p. 412.

[2] Knjazew, D. (2002). OmeGA: a competent
genetic algorithm for solving permutation and
scheduling problems. Kluwer Academic
Publisher, p. 152.

[3] Grant, D. (2005). A Comparison of localized
and global niching methods. SIRC 2005 - The
17th annual colloquium of the Spatial

Information Research Centre. University of
Otago, Dunedin, New Zealand.

[4] Kowalczuk, Z., Białaszewski, T. (2006).
Niching mechanisms in evolutionary
computations. Faculty of electronics,
telecommunications and computer science,
Gdansk University of Technology.

[5] Goldberg, D., Smith, R. (1987). Nonstationary
function optimization using genetic
algorithms with dominance and diploidy.
International Conference on Genetic
Algorithms, Cambridge, MA, p. 59-68.

Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339

Solving JSSP by Introducing Hamilton Similarity and Time Dependent Fitness Scaling 339

[6] Mohfoud, S.W. (1995). Niching Methods for
Genetic Algorithms. PhD. Dissertation,
University of Illinois at Urbana-Champaign,
Urbana.

[7] Dowkins, R. (2006). The Selfish Gene. Oxford
University Press, p. 384.

[8] Ursam, R.K. (2001). When Sharing Fails,
EvALife project group, Department of
Computer Science, University of Aarhus.

[9] Goldberg, D.E., Richardson, J. (1987).
Genetic algorithms with sharing for
multimodal function optimization.
Proceedings of the Second International
Conference on Genetic Algorithms and their
application, p. 41-49.

[10] Baker, J.E. (1987). Reducing bias and
inefficiency in selection algorithms. Genetic

algorithms and their applications. Proceedings
of the second International Conference on
Genetic Algorithms.

[11] Lawrence, S. (1984). Resource constrained
project scheduling: an experimental
investigation of heuristic scheduling
techniques (supplement). Technical report,
Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh.

[12] Yang, S. (2007). Learning the dominance in
diploid genetic algorithms for changing
optimization problems. Proceedings of the 2nd
Int. Symp. on Intelligence Computation and
Applications, China University of
GeoSciences Press, p. 157-162.

