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In this paper we propose and test a niching genetic algorithm (GA), which uses the so-called 
Hamilton similarity for a comparison of individuals in the population. The advantage of the Hamilton 
similarity lies in the fact that there is no need for context sensitive information in order to successfully 
compare two population members. Furthermore, the algorithm was tested on the famous Job Shop 
Scheduling Problem (JSSP) - benchmark mt10, and statistical results of the test were given. Significantly 
smaller standard deviation of the proposed GA compared to Simple GA clearly demonstrates its 
superiority. 

In addition to the Hamilton similarity, time dependent fitness scaling was proposed which in 
conjunction with niching significantly reduces the probability of the algorithm to get stuck in one of the 
less desirable local optimum. Finally, suggestions for future research are given. 
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0 INTRODUCTION 
 

Today, genetic algorithms as part of the 
wider area of artificial intelligence are more 
frequently used in solving real-life problems. 
Fifteen years ago, genetic algorithms were known 
only to a few scientists, professors and their 
students and their study was limited to the 
academic community. Today the situation is quite 
different. Interest in genetic algorithms has been 
shown by various branches of science; from 
economics, biology and medicine to computer 
science, engineering, operations research and 
social science [1]. Such a broad interest in genetic 
algorithms is the result of the fact that genetic 
algorithms are able to successfully tackle NP-hard 
(nondeterministic polynomial-time hard) 
problems. 

The JSSP discussed in this paper falls into 
the permutation class of problems that generally 
speaking brings additional difficulties to genetic 
algorithms. Because of the permutation nature of 
the problem, illegal solutions (offspring) are 
common, and this has a very negative impact on 
algorithm performance. Despite all the 
difficulties, first attempts to use genetic 
algorithms in solving the permutation class of 
problems appeared more than 20 years ago and 

four of those attempts were particularly important 
[2]: 
• Traveling salesman problem (Goldberg & 

Lingle, 1985), 
• Scheduling (Davis, 1985), 
• Integrated circuit design (Louis & Rawling, 

1991), 
• Vehicle route planning (Blanton Jr. & 

Weinwright, 1993). 
 

The present knowledge in the field of 
genetic algorithm allows significant progress in 
solving the permutation class of problems. 
Furthermore, a better understanding of selection 
mechanism and development of new operators, 
have placed genetic algorithms among the best 
and most widely applicable optimization 
techniques.  
 

1 NICHING GENETIC ALGORITHMS 
 
Niching genetic algorithms differ from 

simple genetic algorithm in a way that it does not 
allow one (best) individual to dominate through 
the entire selection process. This feature is 
extremely important because it implicitly reduces 
the ability of the algorithm to get stuck in a local 
optimum. 
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Although, in the literature different 
niching methods can be found [3] and [4], the 
most popular approach by far was proposed by 
David Goldberg by the name of Sharing [1]. In 
Goldberg’s approach, fitness function value of 
each individual in the population is reduced in 
proportion to its similarity to other members of 
the population. In this way, the ability of 
individual members to participate in the creation 
of the next generation is substantially diminished, 
which indirectly prevents domination of the best 
member. Such an approach logically implies the 
question of how to determine a degree of 
similarity between individual members of the 
population. There are two approaches, phenotypic 
and genotypic. The genotypic approach compares 
individuals on the chromosome level, while the 
phenotypic approach compares individuals’ 
characteristics, which an algorithm tries to 
optimize. The method proposed in this paper 
shows the third approach, the so called Hamilton 
similarity. The basic condition for using Hamilton 
similarity is chromosome representation in the 
form of the not so often used diploid 
chromosome. 

 
1.1 Diploid vs. Haploid Chromosome 

 
In the area of genetic algorithms, the 

implementation of diploid chromosome is 
extremely rare. The majority of research where 
diploid chromosome is used, focus on solving 
problems with time-changing fitness function [5]. 
These studies have shown that genetic algorithm 

that uses diploid chromosome, due to a greater 
genetic diversity of the population; react quicker 
to changes in the environment (time-changing 
fitness function). 

The primary goal of diploid chromosome 
representation is maintaining the weaker gene or 
the weaker group of genes in the population that 
at a certain point in the evolution are not of a 
great use but could become so in the near future. 
This principle allows greater retention of genetic 
diversity in the population and increases the 
probability of finding the global optimum. The 
claim that diploid chromosome retains greater 
genetic diversity was examined and proved by 
Goldberg and Smith [6] on the problem of 
“counting ones” in 1987. In its study 
chromosomes were represented in binary format 
(ones and zeros) where the ones contributed more 
to individual fitness values than zeros, therefore, 
coefficient r is always greater than one. 

1
0

1 >=
f
fr  , (1) 

where f1 is contribution to the total value of 
individual by ones, while f0 is contribution of 
zeros. 

In the case of haploid representation, 
chromosomes with a large number of zeros 
slowly disappear from the population. On the 
other hand, the population composed of 
individuals with diploid chromosome in a greater 
extent is able to defend zeros and in this way 
maintain higher genetic diversity, which is a very 
desirable characteristic. 

 

Fig. 1. The difference in loss rate of inferior genes between haploid and diploid chromosomes for 
coefficient of mutation 0.0033 
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It can be seen from Fig. 1 that during 
evolution haploid chromosomes lose more 
weaker genes compared to diploid chromosomes. 
The process continues until population reaches a 
steady state after which the weaker genes cannot 
be lost. The steady state is directly proportional to 
the coefficient of mutations (in Fig. 1 mutation 
coefficient is 0.0033). If the coefficient of 
mutations is greater, the weaker genes are 
preserved in the population. In the extreme case 
when the coefficient of mutation is 1 (random 
search) the proportion of the weaker genes 
(zeros), with some fluctuations, remains at the 
level of 50%. Considering the advantages 
provided by diploid representation of 
chromosomes and the fact that the Hamilton 
similarity operates exclusively with individuals 
with a diploid chromosome the way the proposed 
algorithm uses diploid chromosomes is more than 
obvious. 

 
1.2 Hamilton Similarity 

 
Determining the degree of similarity 

between individual members of the population is 
a challenging problem, especially in the case of 
the JSSP. The problem arises from the fact that 
conversion from genotypic to phenotypic 
representation is carried out using the so called 
active schedule. The problem with active 
schedule approach is that there may be two 
fundamentally different genotypes with identical 
or very similar phenotypic representations. On the 
other hand, two nearly identical genotypes can 
give completely different phenotypes. For this 
reason, genotypic and phenotypic comparison of 
individuals is difficult and unreliable so a new 
way of comparison should be found. The 
proposed algorithm uses the so-called Hamilton 
similarity based on a statistically predictable 
number of genes that two individuals have in 
common. The method is named after the British 
evolutionary biologist Hamilton [7], who in two 
of his famous papers laid down the mathematical 
basis for determining the occurrence probability 
of a particular gene in the population. According 
to the theory, all genes of one individual are by 
the same ratio inherited from both parents. 
Diploid organisms on each position within the 
chromosome have two complementary genes, of 
which only one would express itself and affect the 
phenotype of the organism. Since diploid 

organisms have two genes at each position in the 
chromosome, during the creation of new 
offspring each parent gives only one gene from 
each position. From the mentioned, it can be 
concluded that diploid organisms inherit exactly 
half of their genes from each parent. This 
regularity is a backbone of the proposed Hamilton 
similarities because similarity is determined 
exclusively by origin. 

If some rare varieties are disregarded, such 
as the fact that genes could disappear or appear in 
the population due to mutation, it can be argued 
that parents and offspring have 50% genes in 
common. The next-generation of offspring has 
25% of genes in common with the first generation 
and so on. This regularity can be formulated as: 

n

commoningenes ⎟
⎠
⎞

⎜
⎝
⎛=

2
1   , (2) 

where n is generational distance. 
 
 

 
Fig. 2. Generation distance between direct 

ancestors 
 

The example in Fig. 2 clearly shows that 
the generational distance between individual D 
and individual I are two generations. According 
to Eq. (2) those two individuals have 25% of their 
genes in common.  

Determining the generational distance 
imposes another question. What if two 
individuals are not direct ancestors? In such case, 
a more general form of Hamilton's theory must be 
applied. Specifically, the generational distance 
between two individuals is determined by adding 
together distances between each offspring from 
their nearest common ancestor. Two individuals 
who are related must share at least one common 
ancestor. It is important to note the word "at 
least", because the existence of two ancestors in 
common in the same generation has an important 
implication on the number of genes in common. 
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A generalized version of the Eq. (2) is as 
follows: 

n

mcommoningenes ⎟
⎠
⎞

⎜
⎝
⎛⋅=

2
1   , (3) 

where m is the number of ancestors in common 
and it can take values 1 or 2, while n is the sum of 
the generational distances between each 
individual and the first ancestor in common. If, 
for instance, the number of genes in common 
between individual F and individual K were be 
found, then the first nearest common ancestor 
would be detected. 
 

 

Fig. 3. Generational distance between not direct 
ancestors   

 
From Fig. 3 it can be seen that their 

nearest ancestor is in generation 2. It is important 
to note that in generation 2 there are two common 
ancestors (individual C and individualy D), so 
coefficient m from the Eq. (3) equals 2. 
Furthermore, the generational distance between 
individual F and K and their common ancestors 
can be obtained. Individual F is one generation 
away and individual K is two generations away 
from their common ancestors, so they have 25% 
of the genes in common: 

25.0
2
12  

21

=⎟
⎠
⎞

⎜
⎝
⎛⋅=

+

commoningenes . (4) 

 
1.3 Hamilton Similarity and Fitness Sharing 

 
Sharing [8] is by far the most commonly 

and most successfully used niching method [9]. 
According to the theory all individuals located 
within a niche are forced to share resources that 
niche provides. Fitness sharing as resource that is 
shared uses fitness function value. It simply 
reduces potential value of the fitness function 
proportional to the number of similar individuals 
in the population or the number of individuals in 

a particular niche. For proper operation of the 
algorithm it is necessary to determine the sharing 
function between the observed individual and all 
other individuals in the population. The sharing 
function is proportional to the similarity of two 
individuals d(i,j). The similarity of individuals 
ranges from 0 to 1. If two individuals are 
identical, then their d(i,j) is 1. If individuals are 
not identical and their difference exceeds the 
tolerance, then the value of  d(i,j) is 0, which 
practically means that they do not affect each 
other because they do not belong to the same 
niche. All other individuals have similarities 
between these two extremes. Corrected value f' of 
the fitness function can be defined as: 

 

∑
=

= n

j

jidsh

iff

1

)),((

)('  , 
(5) 

where sh is the sharing function that can be 
defined as: 
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where σshare is the threshold and α is the 
coefficient for fine tuning of individual influence. 

In the Hamilton similarity the sharing 
function does not depend on “hard to define” 
similarities between individuals but upon 
generational distance between them, so sharing 
functions are defined as follows: 
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 . (7) 

 
Gsimilarity is the number of previous 

generations in which similarity between two 
individuals is checked. If in the specified number 
of generations a common ancestor cannot be 
found, then it is considered that those individuals 
are not related and it is 0. The Hamilton similarity 
and the sharing functions computation is a central 
point of this paper. 

The sharing functions depending on 
generation distance and coefficient α from two 
individuals from the same generation are 
displayed in Fig. 4. Changing the value of the 
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coefficient α, mutual influence of individuals 
within a niche can be fine tuned. 

Fig. 4. Sharing function 
 

1.4 Domination 
 
In every algorithm that uses diploid 

chromosomes a problem of domination appears. 
In order to make the transition from genotypic to 
phenotypic view possible, for each position 
within the chromosome, a dominant gene must be 
determined. This dominant gene will be 
manifested in the form of phenotypic 
characteristics. In the literature several 
domination schemes can be found, but 
unfortunately they are mostly developed for the 
binary version of a chromosome. An additional 
problem with diploid chromosomes is the fact 
that only indirect representation can be used in 
order to avoid getting illegal solutions. For this 
reason a large number of scheduling problems 
that use direct operation representation cannot be 
used together with diploid chromosomes. The 
proposed algorithm uses the so-called “coding 
with reference list” that always guarantees a 
correct solution but at the same time allows a 
very large number of different genes to be at the 
same position, which implies a rather complicated 
dominance map. For the purposes of the proposed 
algorithm dominance map is composed as shown 
in Table 1. 

A dominance map is shown for the 
chromosome position where only five 
complementary genes can exist. The proposed 
dominance map guarantees that every possible 
gene has an equal number of dominant and 
recessive combinations. 

 

Table 1. Dominance map 
 1 2 3 4 5 
1 1 1 3 1 4 
2 1 2 2 4 2 
3 3 2 3 3 5 
4 1 4 3 4 4 
5 5 2 5 4 5 

 
 

2 SELECTION METHODS AND  
GENETIC OPERATORS 

 
2.1 Selection Methods 

 
Selection is a process that determines how 

many times a particular individual will become a 
parent which directly affects the number of 
offspring to which it will transmit its genes. The 
process can be divided into two phases: 
• Determining the number of attempts certain 

individual can expect to become parent. 
• Converting the potential number of attempts 

in the actual number of offspring. 

Determining the number of attempts to 
become a parent is actually a process of 
converting an individual’s fitness function into 
expected number of participation in creating the 
next generation. Since the expected number of 
participation is almost always a decimal number, 
the second part of selection process relates to a 
conversion of decimal number into integer, which 
refers to the actual number of offspring. 

Since several different selection processes 
are proposed by different authors some kinds of 
criteria have to be established in order to compare 
them. The best known criteria were defined by 
Baker in 1987 [10]. Baker has defined three 
parameters: 
• Bias - the absolute difference between actual 

and expected probability of selecting a 
particular individual. Optimal value is zero. 
That means that there is no difference 
between the expected number of 
participation in the reproduction process (the 
first step of selection) and the number of 
offspring (the second step of selection).  

• Spread - the range between theoretically 
minimal and theoretically maximal number 
of possible participation in the creation of 
the next generation individual can 
accomplish. The actual number of attempts 
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must be within the defined range. Narrow 
range is desirable. 

• Complexity - some selection methods are 
extremely complex and require large CPU 
time. The method that does not contribute to 
the complexity of the genetic algorithm is 
considered to be the better. 

For the purposes of the proposed algorithm 
three selection methods are considered: 
Stochastic Sampling with Replacement, 
Tournament selection and Stochastic Universal 
Sampling. Due to minimal bias and zero spread 
Stochastic Universal Sampling has been chosen 
as the selection method. 

 
2.2 Genetic Operators 

 
Mutation operators and crossover 

operators belong to the category of genetic 
operators. Crossover operators can be considered 
most important as they are responsible for the 
exchange of genetic material. Classical crossing 
operators such as: 
• one-point crossover, 
• two-point crossover, 
• n-point crossover and 
• uniform crossover 
are applicable only on chromosomes that 
operations in schedule represent in indirect way. 
When direct representation is used, in many cases 
illegal solutions are obtained. Since the proposed 
algorithm uses coding with reference list (indirect 
representation) the use of classical crossover 
operators is allowed. For the purposes of the 
proposed algorithm one and two-point crossover 
operators are chosen. 

The main purpose of the mutation operator 
is an attempt to preserve genetic diversity of the 
population. If the population is small, it is likely 
that dominance of the best adopted individual will 
occur very quickly and the genetic material of the 
population would be decimated. The problem can 
be solved in two ways; by increasing the 
frequency of mutation, which indirectly leads to 
more stochastic algorithm or by increasing the 
size of the population. Previous studies have 
shown that mutation should remain relatively 
small and time-regulated. In the proposed 
algorithm the frequency of mutation is kept below 
0.33%. 
 

3 FITNESS SCALING 
 

Fitness scaling has an extremely important 
role for niching. Indeed it can be said that for 
most fitness functions, if fitness sharing is used, 
employment of fitness scaling is almost 
necessary. It is not realistic to expect niching if 
there is no significant difference between the 
fitness function values of particular individuals 
[8]. If the fitness function is configured in such a 
way that the fitness functions of all individuals 
are around the same value, the selection process 
would become fully stochastic. The problem can 
be solved in numerous ways but two of them are 
particularly interesting: 

• linear scaling, 
• exponential scaling. 

Both methods are applied in the proposed 
algorithm using the time dependent scaling 
component. If exponential scaling is used without 
the time dependent component it may happen that 
in the early phase of evolution, dominance of the 
currently best individual occurs and the algorithm 
can end up in one of the local optimums. Using 
the time dependent exponential scaling early 
dominance of certain individuals is prevented 
because exponential scaling progressively 
increases in the later stages of evolution when the 
niches are already well defined. Unfortunately, in 
the last phase of the evolution, when the 
generation is comprised of mostly well-adjusted 
individuals, the selection process can become 
stochastic again. In order to solve this problem 
the exponent value is directly dependent on the 
value of the fitness function. This means that 
individuals with larger values of fitness function 
are further enhanced with a higher exponent 
values, so a better adopted individual in the final 
stages of the evolution is more often selected for 
reproduction. In this way all niches are 
dismantled in order to enable the algorithm to 
exploit the best niche. The proposed algorithm 
uses the following Fitness Scaling function: 

β
δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−= minmax

min

)(' ff
ff

G
G

trff  , 
(8) 

where: 
δ coefficient of linear scaling. It can take 

values between 0 and the minimum of 
fitness function, 

Gtr transition generation. The generation after 
which higher selection pressure is applied, 



Strojniški vestnik - Journal of Mechanical Engineering 56(2010)5, 330-339 

 

Abrashi, A. – Štefanić, N. –  Lisjak, D. 336

G current generation, 
fmin minimum value of fitness function in the 

current generation, 
fmax maximum value of fitness function in the 

current generation, 
f fitness function value, 
f' corrected fitness function value, 
β coefficient of basic exponential scaling. 
 

4 EXPERIMENT 
 

The experiment described in this section is 
conducted on a well known mt10 benchmark 
problem. The problem is particularly significant 
as it is used in almost any research connected 
with the JSSP. JSSP is a problem of scheduling 
set of jobs on a set of machines. JSSP cannot be 
easily solved, because, from the combinatorial 
point of view, it is classified as NP-hard, which 
means that it cannot be exactly solved even for a 
relatively small number of operations and 
machines.  

The purpose of the experiment was to 
show that the genetic algorithm can function very 
well without context sensitive information, and 
that results are quite reliable and close to global 
optimum. 

The experiment was conducted under the 
following conditions: 
• the number of generations: 300, 
• population size: 300, 
• frequency of mutation: 0.0033, 
• frequency of crossover: 1, 
• Gsimilarity: 3 generations, 
• δ linear scaling: 0, 
• Gtr transition generation: 150, 
• β basic exponential scaling: 6, 
• α power of sharing function: 1. 
 

Table 3. Statistical data  

Number of evolutions Hamilton SGA 
600 600 

Standard deviation 12.9812 22.26397 
Main 974.4033 1027.142 
Median 976 1027 
Max 1012 1086 
Min 937 962 

 
In order to make the experiment 

statistically reliable 600 evolutions were 
conducted and compared to the results from 
simple genetic algorithm (SGA). The number of 
occurrences of a particular solution is shown in 
Fig. 5. 

The experiment has clearly showed that 
proposed algorithms demonstrated superior 
results compared to the SGA. 
 
4.1 Influence of Evolutionary Parameters 
 
For the purposes of the experiment coefficients of 
mutation and crossover are kept constant. These 
coefficients are considered irrelevant for the 
outcome of the experiment. On the other hand, G 
and β proved themselves extremely important. 
Initial tests have shown that if Gtr is too small, the 
selection pressure becomes too high too early and 
the process of forming niches is seriously 
compromised. If Gtr is large, the algorithm does 
not have enough time to exploit the best niches in 
the final stage of the evolution.   

The sole purpose of coefficient β is to 
increase selection pressure which indirectly leads 
to the rapid creation of niches. There is no 
specific rule for determining the value of the 
coefficient β, but the rule of thumb is that a larger 
population can have higher values of  β. 

 
 

Table 2. Muth and Thompson’s 10 x 10 problem (mt10) 
Job Machine (processing time) 
1 1 (29) 2 (78) 3 (9) 4 (36) 5 (49) 6 (11) 7 (62) 8 (56) 9 (44) 10 (21) 
2 1 (43) 3 (90) 5 (75) 10 (11) 4 (69) 2 (28) 7 (46) 6 (46) 8 (72) 9 (30) 
3 2 (91) 1 (85) 4 (39) 3 (74) 9 (90) 6 (10) 8 (12) 7 (89) 10 (45) 5 (33) 
4 2 (81) 3 (95) 1 (71) 5 (99) 7 (9) 9 (52) 8 (85) 4 (98) 10 (22) 6 (43) 
5 3 (14) 1 (6) 2 (22) 6 (61) 4 (26) 5 (69) 9 (21) 8 (49) 10 (72) 7 (53) 
6 3 (84) 2 (2) 6 (52) 4 (95) 9 (48) 10 (72) 1 (47) 7 (65) 5 (6) 8 (25) 
7 2 (46) 1 (37) 4 (61) 3 (13) 7 (32) 6 (21) 10 (32) 9 (89) 8 (30) 5 (55) 
8 3 (31) 1 (86) 2 (46) 6 (74) 5 (32) 7 (88) 9 (19) 10 (48) 8 (36) 4 (79) 
9 1 (76) 2 (69) 4 (76) 6 (51) 3 (85) 10 (11) 7 (40) 8 (89) 5 (26) 9 (74) 

10 2 (85) 1 (13) 3 (61) 7 (7) 9 (64) 10 (76) 6 (47) 4 (52) 5 (90) 8 (45) 
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Algorithms with high β and small 
population size tend to get stuck in one of the 
local optimums. 

The sole purpose of coefficient β is to 
increase selection pressure which indirectly leads 
to a rapid creation of niches. There is no specific 
rule for determining the value of the coefficient β, 
but the rule of thumb is that larger population can 
have higher values of  β. Algorithms with high β 
and small population size tend to get stuck in one 
of the local optimums.  

In addition to the coefficient β, coefficient 
δ is also considered. Since the minimum of fitness 
function should be known in advance in order to 
correctly estimate the value of δ, it was rendered 
completely useless. Coefficient δ was set to 0 for 
all tests. 

Finally, coefficient α was used for 
controlling the niche capacity. For small values of 
α, the capacity of niche is significantly reduced. 
Since a relatively small population is used, the 
capacity of the niche should also be small in order 
to explore larger partition of the search space. 

 
4.2 Additional Experiments 

 
The proposed algorithm was also tested on 

all 40 “la” benchmark problems [11]. The 
evolutionary parameters used for each group of 
problems are shown in Table 4. Each test was run 
50 times and statistical results are given in Table 
5. Due to a relatively small population size, and 
therefore small genetic diversity, the algorithm 
had difficulties finding optimal solution for large 

problems. A small population was chosen in order 
to speed up the algorithm. Even for a relatively 
small population, the algorithm has found 18 out 
of 37 known global optimums.  

 
5 CONCLUSION AND FURTHER RESEARCH 

 
Two conclusions can be drawn from the 

conducted experiments. First, the use of the 
Hamilton similarity allows the application of the 
algorithm on various problems with minor 
modification. This means that context sensitive 
information is no longer necessary in order to 
determine the similarity between two individuals. 
Second, time dependent scaling enables an 
increase in the selection pressure only when 
niches are well defined which implicitly helps 
algorithm to avoid one of the less desirable local 
optimums, which is clearly shown by the results 
of an experiment.  

Although the algorithm showed very 
positive results there is still plenty of room for 
improvement. First of all, the dominance map is 
defined quite arbitrarily and it is not subjected to 
the process of evolution, which is a problem 
worth testing [12]. Furthermore, the steady-state 
version of the algorithm should also be tested. In 
nature it is common for parents to defend their 
offspring or to delegate part of their resources to 
them. Since the proposed algorithm in each 
generation is exchanged for the whole population, 
the impact of the surviving parents on the 
algorithm performance has not been tested. 

 
 

 
Fig. 5. The histogram of the best makespans obtained after 600 trials for the mt10 problem 
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Table 4. Evolutionary parameters (la benchmark problems) 
 G Gtr β α Gsimilarity Mutation Crossover Pop. size 

la01-la05 (10x5) 300 150 4 1 5 0.0033 0.95 300 
la06-la10 (15x5) 400 200 4 1 5 0.0033 0.95 300 
la11-la15 (20x5) 400 200 4 1 5 0.0033 0.95 300 

la16-la20 (10x10) 400 200 4 1 4 0.0033 0.95 300 
la21-la25 (15x10) 500 250 4 1 5 0.0033 0.95 300 
la26-la30 (20x10) 750 375 4 0.2 5 0.0033 0.95 300 
la31-la35 (30x10) 1000 600 4 0.2 5 0.0033 0.95 300 
la36-la40 (15x15) 800 480 4 0.2 5 0.0033 0.95 300 

 
Table 5. Statistical results (la benchmark problems) 

 la01 la02 la03 la04 la05 la06 la07 la08 la09 la10 
Main 666 669.4 617.7 606.7 593 926 890 863 951 958 

Median 666 669.5 617 607 593 926 890 863 951 958 
Best 666 657 609 593 593 926 890 863 951 958 

Worst 666 682 622 612 593 926 890 863 951 958 
Optimum 666 655 597 590 593 926 890 863 951 958 

σ 0 6.217 2.184 4.834 0 0 0 0 0 0 
 la11 la12 la13 la14 la15 la16 la17 la18 la19 la20 

Main 1222 1039 1150 1292 1207 977.9 787.5 875.7 875 922.2 
Median 1222 1039 1150 1292 1207 979 787 875 873 918 

Best 1222 1039 1150 1292 1207 956 785 855 863 913 
Worst 1222 1039 1150 1292 1207 982 804 884 886 944 

Optimum 1222 1039 1150 1292 1207 945 784 848 842 902 
σ 0 0 0 0 0 6.129 3.435 6.506 4.793 9.324 
 la21 la22 la23 la24 la25 la26 la27 la28 la29 la30 

Main 1093.8 980.8 1041.3 998.7 1026.2 1257.2 1300.1 1279.2 1248.8 1396.4 
Median 1096 982.5 1039 1002 1024 1265.5 1299.5 1278 1251 1397.5 

Best 1068 956 1032 977 1008 1237 1287 1252 1212 1367 
Worst 1125 994 1061 1020 1064 1278 1315 1307 1276 1418 

Optimum - 927 1032 935 977 1218 - 1216 - 1355 
σ 14.42 7.913 8.484 8.875 11.230 12.389 8.343 14.365 13.757 13.272 
 la31 la32 la33 la34 la35 la36 la37 la38 la39 la40 

Main 1785.5 1852.3 1720.3 1733.3 1898.1 1319.9 1462.1 1277.3 1309.9 1286.0 
Median 1784 1850 1719 1730 1898 1322 1460 1278 1312 1284 

Best 1784 1850 1719 1721 1888 1296 1449 1252 1268 1270 
Worst 1791 1964 1736 1761 1928 1335 1490 1303 1335 1326 

Optimum 1784 1850 1719 1721 1888 1268 1397 - 1233 1222 
σ 2.158 3.815 4.433 10.632 9.649 10.099 10.873 12.967 14.753 11.357 
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