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 This paper proposes the use of artificial neural networks (ANN) to perfectly predict the critical 
buckling loads of cylindrical isotropic helical spring with fixed ends and with circular sections, and with 
large pitch angles. The buckling equations of cylindrical isotropic helical springs loaded axially consist 
of a set of twelve linear differential equations. As finding a solution in an analytical manner is too 
difficult, numerical solution in an exact manner based on the transfer-matrix method to collect consistent 
dimensionless numerical data for the training process is used. In this way almost perfect weight values 
are obtained to predict the non-dimensional buckling loads. A good agreement is observed with the data 
available in the literature.  
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0 INTRODUCTION 
 

 As helical springs are an essential element 
of mechanisms and machines, they are widely 
used in numerous engineering applications. By 
means of developed analytical formulas based on 
the small helix pitch angle assumptions that are 
available in mechanical engineering text books, 
the design of such a helical spring is generally 
performed by the method of trial and error or by 
using design charts.  
 The pioneering author Haringx [1] 
presented a buckling formula in a closed form for 
cylindrical helical springs, with the use of a rod-
model approximation. For the buckling behavior 
of the helical springs with large helix pitch angles 
a few numerical studies have been undertaken [2] 
to [10]. The finite element method [2] to [4] and 
the transfer matrix method [5] to [10] are 
generally preferred in the numerical solution 
process. Those studies have shown that Haringx’s 
[1] formula gives accurate results only when the 
helical spring has a small helix pitch angle. 
Chassie et al. [9] have also presented some 
reliable buckling charts to be used in the design 
stage of cylindrical helical isotropic compression 
springs with clamped ends and with circular 
sections. In the numerical works associated with 
the buckling behavior of the helical springs with 

large pitch angles as mentioned above, the effect 
of both axial and shear deformations are 
considered [2] to [10]. It may be noted that in 
references [2] to [9], only the contribution of the 
torsional moment on the axial deflection is 
considered. As expected, for large helix pitch 
angles the effects of axial and shearing forces 
together with the bending moment should also be 
taken into account in order to achieve a complete 
formulation of the problem  to as in the present 
work[10]. 
 In the first part of the current work, the 
buckling behavior of isotropic cylindrical 
compression helical springs subjected to an axial 
static force and with a circular section is 
examined in a static manner by using both the 
buckling equations given by Yıldırım and the 
buckled deformation equations presented by 
Yıldırım [10]. The transfer matrix method is used 
for the numerical analysis. To obtain an exact 
numerical overall transfer matrix of the spring an 
effective numerical algorithm available in the 
literature [11] is also employed. The axial and 
shear deformation effects are all considered based 
on the first order shear deformation theory. For 
the determination of the vertical deflection of the 
springs with large pitch angles, analytical 
expressions, which are obtained based on 
Castigliano’s first theorem, are used to take into 
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account the effect of the whole stress resultants 
such as axial and shearing forces, bending and 
torsional moments on the tip deflection.  
 For the training process in ANN, in the 
second part of the present study, some exact 
numerical dimensionless buckling load data are 
collected by choosing the main parameters of the 
spring within a large range that affect the 
buckling behavior.  An ANN procedure with 
almost perfect weight values is proposed to 
predict the buckling loads to be used directly in 
the design stage of the helical springs.  
 
1 DIFFERENTIAL BUCKLING EQUATIONS 

OF A CYLINDRICAL HELICAL SPRING 
SUBJECTED TO AN AXIAL STATIC FORCE 

 
Consider a spatial bar. Let s be curvilinear 

position coordinate (Fig. 1). Let 
( ) ( , , )t n bT s T T T  be the internal force vector, 

and let ( ) ( , , )t n bM s M M M  be the internal 

moment vector, where Tt is the axial force; Tn and 
Tb are the shearing forces; Mt is the torsional 
moment; and Mn and Mb are the bending 
moments, respectively. Let ( )s = ( , , )t n b    

be the rotation vector, and ( ) ( , , )t n bU s U U U  be 

the displacement vector in Frenet coordinates 
(t,n,b). Initial internal static force and moment 
vectors are denoted by o ( )T s  and o ( )M s , 

respectively.  
 

Fig. 1. Frenet coordinates 
 

Yıldırım [10] derived the following 
buckling equation set in a vector form for a 
spatial bar:  

 0T

dU
T t x

ds
    , (1a) 

0M

d
M

ds
 

  , (1b) 

( ) 0o
M

dT
M xT

ds
  , (1c) 

( )   ( )  0o o
M T

dM
M xM t x T T x T

ds
      . (1d) 

For isotropic bar material and doubly 
symmetric sections 
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(2b) 

In the above, the undeformed cross-
sectional area is denoted by A, the moments of 
inertia with respect to the normal and binormal 
axes are denoted by In  and Ib, respectively. Jb is 
the torsional moment of inertia, G is the shear 
modulus and E is the Young’s modulus. k 
represents the Timoshenko’s k-factors.  

 

 
Fig. 2. Geometry of a helix subjected to an axial 

compressive force 
 

Let   be the helix pitch angle,   be the 
angular coordinate, and R = (D/2) be the radius of 
the cylinder (Fig. 2). Frenet-Serret relations for 
cylindrical helical springs are given by 

dt
n

ds
 

2

R
n

c
  (3a) 

 
dn

b t
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  
2 2

 
h R

b t
c c

  , (3b) 
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db

n
ds

 
2

h
n

c
  , (3c) 

where   is the curvature and  is the tortuosity 

of the helix. The infinitesimal arc length of the 
spring, ds, is obtained as follows: 

ds cd 
cos

R
d 


. (4) 

The free axial length of the helix is defined 
by 

0 ta n
L

n
D

   , (5) 

where the total number of active turns is denoted 
by n. The Frenet components of the initial force 
and moment vectors will be in the following form 
of (Fig. 2): 

0( s in , 0 , c o s )o
oT P P    , (6a) 

0( cos , 0, sin )o
oM P R P R    . (6b) 

Using Eqs (2 to 4), (6) and (1), a set of 
twelve linear differential scalar equations in 
Frenet trihedral, which govern the buckling of the 
cylindrical helical springs subjected to an axial 
static force, are written as follows: 

1
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(7l)

These linear differential equations with 
constant coefficients are valid for isotropic 
cylindrical helical springs with constant sections 
having double symmetry axes such as circle, 
rectangle etc. The first terms of Eqs. (7j), (7k) and 
(7l) are the major contribution of Yıldırım [10] to 
the literature. These equations are solved 
numerically with the help of the transfer matrix 
method and the numerical algorithm developed 
by Yıldırım [11]. 
 To determine the buckled deformations, 
Yıldırım [10] derived analytical expressions for 
the vertical tip deflection of helical springs with 
large pitch angles and an arbitrary shape by 
taking into account for the whole effect of the 
stress resultants such as axial and shearing forces, 
bending and torsional moments with the use of 
Castigliano’s first theorem. For cylindrical 
isotropic helical springs with circular cross-
sections, the following formulas are used for the 
determination of the vertical tip deflection [10]: 
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btbt MMTTTotal   . (8e) 

Eq. (8d) takes into account of just the 
effect of the torsional moment on the tip 
deflection. For quick insight, percent 
contributions of both the bending and torsional 
moment on the vertical deflection are illustrated 
in Fig. 3. As seen from Fig. 3 for  40  the 
percent contribution of the torsional moment on 
the total vertical deflection decreases to 65%, 
while this contribution reaches over 95% for 

 10 .  
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 10  

20   
 30  
 40  

 

Fig. 3. Percent contributions of a) bending moment b) torsional moment on the total axial deflection of a 
cylindrical isotropic spring with circular section [11] (d = 1.85 cm, G = 800000kgf /cm2, P = 

150 kgf n = 18, = 0.3, k = 1.1) 
 

It may be noted that these effects gain 
considerable importance for especially 
rectangular cross-sections. Consequently the true 
computation of the buckled deformation of the 
spring under a static axial force is one of the 
crucial steps of the buckling analysis.  

The application of Artificial Neural 
Networks in mechanical engineering problems 
has become increasingly known in recent years. 
Therefore, this approach was specifically applied 
in the field of "critical buckling loads of helical 
compression springs".  
 

2 ARTIFICIAL NEURAL NETWORKS 
 
 Artificial Neural Networks (ANN) are 
models of a highly parallel and adaptive 
computation based on very loose simulations of 
the brain [12].  In fact, there is no universally 
accepted definition of neural networks.  It is a 
network with simple processors which are called 
"units, nodes or PE-Processing units", with a 
small local memory.  These processor units are 
usually organized in a sequence of layers.  
Typically, an ANN contains two or more layers; 
the first layer is called the input layer where data 
is presented to the network.  An output layer is 
the interface of the outside of network; the output 
layer presents the result of the network. In the 
inside of the networks, between the input and 
output layer, there is a layer called the hidden 
layer.  Each node in a layer is connected to other 
nodes with connections called weights. A node 
sums the weighted input, and uses one activation 
function, and sends an output to the nodes to 
which it is connected. In general, there are two 

types of learning with ANN which are supervised 
and unsupervised. In supervised learning, the 
ANN learns on a training example set which 
consists of many pairs of input/output (I/O) 
mapping forms of the training examples. The 
network is trained by a training set in 
unsupervised learning and there is no input/output 
mapping of the training set that consists of input 
training examples only. There is no teacher 
learning as the network learns to adapt based on 
training examples. 
 A node structure is shown in Fig. 4. The 
node is the basic information processing unit of 
an ANN. It consists of: 
i) a set of connections, describing the node 

inputs X = { xi, xi+1, xi+2 …, xn} with weights 
W = {wi, wi+1, wi+2 …, wn}, 

ii) a summing function, for finding the weighted 
sum of the inputs with bias, 

u = XWT  or  
1

n

i i
i

u w x b


   (9) 

iii) an activation function-sigmoid function for 
squeezing of the output. 

 1
( )

1 u
y u

e 


  (10) 

where y is the output of the network between 0 
and 1. 

Backpropagation (BP) [13] networks as 
one of the supervised ANN methods may provide 
answers in many different fields such as machine 
learning, and engineering problems [14] and [15].  
A BP network consists of at least three layers: an 
input layer, at least one hidden layer, and an 
output layer. BP learns by iteratively processing a 
set of training examples. When a BP network is 
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cycled, an input example is propagated forward to 
the output through the intervening input-to-
hidden and hidden-to-output weights. 

 
3 THE PROPOSED ARTIFICIAL NEURAL 

NETWORK SYSTEM 
 

In this study, the three layers – BP 
algorithm is applied to calculate the best 
estimation of the critical buckling loads of 
isotropic cylindrical helical springs subjected to 
an axial static force (Fig. 5). 

The spring with clamped ends is assumed 
to have a circular cross-section. Exact numerical 
critical buckling loads are obtained numerically 
by solving a set of linear differential equations in 

Eq. set (7).  +Some numerical data calculated in 
such a way is used to determine the optimum 
weights and the desired BP algorithm to predict 
the critical dimensionless buckling loads 
determined by Eq. (11). 

2

2
0cos

cr

n

R
P P

EI



. (11) 

The ratio of the mean coil diameter to wire 
diameter is referred to the spring index. 

0DD
C

d d
   . (12) 

The spring index, C, the total number of 
active coils, n, and the ratio of L0/D0 are being 
independent values of inputs X. 

 

 

Fig. 4. A simple node structure 

 
Fig. 5. The structure of the proposed ANN 

 



Strojniški vestnik - Journal of Mechanical Engineering 56(2010)6, 409-417 

 

İbrikçi, T. - Saçma, S. - Yıldırım, V.- Koca, T. 414

 MATLAB Neural Network Toolbox is 
used for BP calculations [16].  The first step of 
this research is to normalize the data.  In order to 
squeeze X values and output between 0 and 1, a 
normalization process is applied. The 
normalization equation which performs a linear 
transformation of the original data is 

min
max min min

max min

( )
( )

( )n

X X
X X X X

X X


   


 (13) 

where Xmin and Xmax respectively are the minimum 
and maximum values in the data X. After the 
normalization of the data at the second stage of 
the reach, The Matlab functions were used for 
“training” and “testing”. The training data set has 
3662 patterns values (Table 1) for training the 
network for about 5000 epochs.  For training, the 
"Trainlm” training function is used, which is a 
network training function that updates weights 
and bias values according to the Levenberg-
Marquardt (LM) optimization which is the most 
widely used optimization algorithm[15]. It 
outperforms simple gradient descent and other 
conjugate gradient methods in a wide variety of 
problems. Another function that can be used is 
“Learngdm” function which is the gradient 
descent with momentum weight and bias learning 
functions. The “mse” function is used as 
“Network Performance Function” which 
measures the network's performance according to 
the mean of squared errors with Eq. (14) [16]. 
The Eq. could be written 

2

1

1 n

i i
i

E o t
n 

  , (14) 

where the o and t are the output, and the desired 
output respectively. The W and b values will be 
updated until the epoch number is reached. 

The relative error is determined as: 
( ) ( )

( )
(%) 100

ANN NUMERICAL
cr cr

NUMERICAL
cr

P P
RE

P

 
  
 

, (15) 

where )ANN(
crP  is a calculated value of the critical 

buckling load by ANN, and ( )NUMERICAL
crP  is a 

numerical value  of the critical buckling load by 
using the Eq. set (7).  
 The ANNs results are tested with the 
testing set given in Table 2 which consists of a 
total 1305 numerical critical buckling loads. In 
this test, the distinct maximum relative error for 
dimensionless critical buckling loads is found as 
0.93%.   

 

4 NUMERICAL EXAMPLES 
 

To verify the numerical results obtained by 
the present study, some benchmark results in the 
available literature were also considered in this 
section. Apart from this, some design charts are 
presented by using the ANN data. The Young’s 
modulus and Poisson’s ratio of the benchmark 
spring material with fixed ends are E = 210 GPa 
and 30. , respectively. Geometrical properties 
of the benchmark springs are presented in Table 
3. Table 4 shows the comparison of the present 
results with the benchmark studies available in 
the literature. Graphs in Figs. 6 and 7 illustrate 
the comparison of the present numerical (exact) 
and ANN dimensional critical buckling loads for 
a different number of active turns and spring 
indices. 

Table 4 shows a good agreement between 
the data results obtained so far. As seen from the 
table, the present numerical results, in general, are 
between the results in references [3] and [9]. 
While Tabarrok and Xiong [3] have used the 
finite element procedure, Chassie et al. [9] have 
preferred the transfer matrix approach as in the 
present study. For large L0/D0 ratios, Haringx’s 
[1] analytical results give greater critical buckling 
loads than all the numerical results in Table 4. 
The proposed ANN results are very close to the 
numerical results in the present work. As stated 
above, the distinct maximum relative error for 
dimensionless critical buckling loads in the 
questioning set given by Table 2 is found as 
0.93%. It may be concluded that the critical 
buckling loads with ANN may be accepted as 
satisfactory even for the buckling loads that are 
out of the range of the training data set. 
Therefore, the ANN method proposed in this 
paper may be used for the consistent design of 
any spring. 

 
5 CONCLUSIONS 

 
 In this study artificial neural networks 
(ANN) are used to predict the critical buckling 
loads of cylindrical isotropic helical springs with 
fixed ends and with circular sections, and with 
large-pitch angles together with the numerical 
solution of the differential equation set governing 
the buckling behavior of such springs.  
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Table 1. The training data set 

C N 
Number of  

taken values 
C n 

Number of  
taken values 

C n 
Number of  

taken values 

7 

5 36 

9 

5 36 

11 

5 36 
7 36 7 36 7 36 
9 36 9 36 9 36 

10 36 10 36 10 36 
11 36 11 36 11 36 
13 36 13 36 13 36 
15 36 15 36 15 36 
17 36 17 36 17 33 
19 36 19 33 19 31 
20 36 20 32 20 28 
21 36 21 32 21 28 
23 34 23 31 23 22 
25 34 25 20 25 16 
29 27 29 14 29 11 
30 22 30 17 30 10 

6 

5 107 

8 

5 107 

10 

5 107 
10 108 10 108 10 108 
15 108 15 108 15 108 
20 108 20 108 20 94 
25 105 25 79 25 65 
30 85 30 52 30 50 

12 

5 107 

Total = 3662 patterns   

10 108 
15 107 
20 73 
25 48 
30 27 

 
Table 2. The testing data set 

C N 
Number of  

taken values 
C N 

Number of  
taken values 

C n 
Number of 

taken values 

6.5 

5 36 

7.5 

5 36 

8.5 

5 36 
9 36 9 36 9 36 

13 36 13 36 13 36 
17 36 17 36 17 36 
21 36 21 34 21 32 
25 35 25 31 25 30 
29 26 29 24 29 18 

9.5 

5 36 

10.5 

5 36 

11.5 

5 36 
9 36 9 36 9 36 

13 36 13 36 13 36 
17 36 17 34 17 33 
21 29 21 26 21 27 
25 20 25 19 25 18 
29 13 29 14 29 14 

Total = 1305 patterns 
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Table 3. Geometrical properties of the benchmark springs 

Spring 
number 

Lo 
[mm] 

Do [mm] 
0

0

D

L  D 
[mm] d

D
C 0  n )(   0  

1 240 40 6 8 5 6 17.657 
2 720 100 7.2 25 4 15 8.687 
3 90 10 9 4 2.5 15 10.812 
4 120 10 12 2 5 20 10.812 
5 240 20 12 4 5 6 32.482 

 
Table 4. Comparison of the critical dimensionless buckling loads 

Spring 
number 

)(cr
   

Tabarrok 
and Xiong 

[3] 

Chassie et 
al [9] 

Haringx 
[1] 

Present Study 

Numerical ANN 
Relative 
error (%) 

1 10.1800    0.1061 0.1200 0.1124 0.1121 0.1119 -0.18 
2 6.4042    0.0306 0.0308 0.0307 0.0307 0.0306 -0.33 
3 9.0519    0.0230 0.0231 0.0231 0.0230 0.0229 -0.43 
4 9.9315    0.0122 0.0123 0.0124 0.0123 0.0123 0.0 
5 30.3133    0.0483 0.0524 0.0561 0.0498 0.0499 0.20 
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Fig. 6. Dimensional critical buckling loads (in Newtons) for n = 17, d = 1 mm, E = 206 Gpa with  
a) The spring index, C =6.5,            b) The spring index, C =11.5 
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b)
0

2
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6
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5 6 7 8 9 10 11 12 13 14 15 16
L 0 /D 0

P
cr

Exact 

ANNs

 

Fig. 7. Dimensional critical buckling loads (in Newtons) for n = 29, d = 1 mm, E = 206 Gpa Gpa with  
a) The spring index, C =6.5,            b) The spring index, C =11.5 
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 For the best estimation of the critical 
buckling loads a three layer – BP algorithm is 
used with a training data set which consisted of 
3662 patterns which are obtained from the exact 
numerical solution of the differential equation set 
which governs the buckling behavior of helical 
springs and given by Eq. (7). The questioning set 
with 1305 patterns gives distinct errors of a 
maximum of 0.93%. Hence, almost perfect 
weight values are obtained to predict the non-
dimensional buckling loads.  
 Since there is no analytical expression for 
the critical buckling loads for the helical 
compression springs with rectangle or hollow 
sections, the proposed ANN method may be used 
as a quick estimate of these loads in the design 
stage based on the theory presented in this work. 
Finally, for the design of compression helical 
springs with different sections and shapes it is 
possible that an extensive software package based 
on the ANN is developed by considering static, 
buckling and vibration states.   
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