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Optimization of the Unloading Bridge Working Cycle 
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This paper presents one of the possible ways of optimization of unloading bridge working cycle i.e. 

minimization of: energy consumption, material dissipation during the grab discharging, rope incline 
angle etc. Optimization procedure of the working cycle is divided into two phases, first optimization of the 
cargo and grab movement and second determination of the unloading bridge mechanisms movement upon 
obtained optimum path and parameters of cargo and grab movement. The developed mathematical model 
enables direct application of optimum control theory methods i.e. optimization of the cargo and grab 
movement is determined using Pontryagin’s maximum principle. All relevant expressions are derived 
analytically. Repeatable and optimum unloading cycle is necessary for calculation of the real capacity of 
unloading device which is the base for calculation of energy consumption, exploitation cost, etc. 
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 

Terminal for bulk cargo unloading 
presents the organization of different activities, 
connected with control and handling of material 
flow from the vessel to the transport or the 
storage system. The main task of the terminal for 
bulk cargo unloading is to provide maximum 
servicing of vessels with minimum of expenses. 

Unloading devices present knot points of 
unloading terminals, and in most cases are the 
bottle necks, so their functioning is the basic 
prerequisite for optimum work of the whole 
unloading system.  

Unloading (working) cycle of unloading 
devices with grab i.e. unloading bridge consist of: 
material grabbing from the vessel, grab and cargo 
transfer from the vessel to the receiving hopper, 
grab discharging and empty grab return transfer 
from the receiving hopper to the vessel. Full 
automation of unloading process of the unloading 
bridge facilities with grab, is possible but it is 
very expensive. Manual unloading process is not 
acceptable because crane operator can not repeat 
the optimum unloading cycle in the longer time 
period.  

The only practical feasible solution is to 
introduce the half-automatic unloading cycle 
which consists of the manual part, where the 
crane operator control the grab moving, and of 

the automatic part in which the computer controls 
the grab moving according to the given algorithm.  

Manual part of half-automatic unloading 
cycle consists of the empty grab lowering to the 
material surface in the vessel, from one of the 
three points of the end of automatic part of the 
unloading cycle (Fig. 1.), material grabbing and 
grab hoisting with cargo to one of the three points 
of the beginning of automatic part of the 
unloading cycle. Position of three points, which 
presents beginning/end of automatic part of half-
automatic unloading cycle is virtual and depends 
on given geometry of system, river water level, 
material level in the vessel, etc. [3] 

Automatic part of half-automatic 
unloading cycle consists of grab transfer from one 
of the three points of the beginning of automatic 
part of the unloading cycle to the receiving 
hopper, grab discharging and empty grab return 
transfer from the hopper to the one of the three 
possible points of the end of automatic part of the 
unloading cycle.  

Main conditions and boundaries which 
should be taken into consideration in optimization 
of the half-automatic unloading cycle are: 
geometrical features of the system (dimensions of 
the vessel, level of material in the vessel, 
configuration of the operative coast, geometry of 
the crane), technical performances of the system 
(hoisting and travelling velocity and acceleration, 
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stress on crane construction), natural phenomena 
(river water level, wind) etc.  

The aim of the work is to obtain optimum 
half-automatic unloading cycle based on real 
physical conditions and boundaries. Optimum 
half-automatic unloading cycle means optimum 
unloading path (minimum number of oscillations 
and minimum rope incline angle of the grab and 
cargo; avoiding of the obstacles i.e. geometric 
boundaries of the system, positioning of the grab 
and cargo at the end of the deceleration period, 
exactly over the hopper for easy grab discharging 
and in the one of three possible points of the 
beginning/end of the automatic part of the 
movement, without swinging), minimum 
dissipation of material and therefore minimum 
spending of energy needed for unloading bridge 
mechanisms movement. 

Optimization is done in order to determine 
feasible unloading capacity of the system 
(feasible unloading cycle time which can be 
repeated in time). Cycle time must be plausible 
and known in advance according to the technical 
parameters of the system, details given in [1] and 
[5]. Calculation of the cycle duration for existing 
system, will be given in the chapter 5. 

 
1 METHODOLOGY 

 
Methodology applied in this paper consists of: 

- Mathematical model of the bulk cargo 
unloading device with grab including defined 

boundary conditions and control values, based 
on theoretical and experimental values. 

- Optimization of the grab and cargo movement 
in the automatic part of the half-automatic 
unloading cycle, of any unloading device using 
Pontryagin`s maximum principle. It is divided 
in two parts. First part – optimization of the 
grab and cargo movement as pendulum, second 
part – optimum movement of the unloading 
device mechanisms. 

- Obtaining of the half-automatic unloading 
cycle duration based on shown procedure. 

Proposed methodology is applied for the 
optimization of the bridge crane unloading cycle 
at the existing unloading terminal in Prahovo port 
on Danube river, Serbia. All relevant technical 
data needed for modeling of the bridge crane are 
obtained from the existing devices. Empirical 
data, gained from the real system (existing 
unloading terminal) are introduced in the result 
section of the paper [1] and  [7]. 

 
1.1.  Mathematical Model of the Unloading 
Bridge 
 

Analyzed unloading bridge is in fact a 
gantry crane with cantilever on both sides. Crane 
construction consists of two box girders with rails 
for single trolley on top. 

Simplified scheme of the unloading bridge 
is shown on Figure 1. 
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Fig. 1. Simplified scheme of the unloading bridge 
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Generalized coordinate is: ξ - instantaneous 
center of gravity  (C) position of the crane trolley. 
Review of indications used in the mathematical 
model: ψ - rope angle, g - gravity acceleration, m 
- grab and cargo mass, xk - distance between 
vessel and hopper, zk - height distance between 
beginning/end point of automatic part of half-
automatic unloading cycle and discharging point 
of the grab, zt - height distance between 
beginning/end point of automatic part of half- 
automatic unloading cycle and rope suspension 
point, ml - mass of the crane trolley, l - 
instantaneous rope length, Fd – driving force of 
trolley, F - force in the rope, Fw - resistance force 
of motion [5]: 

( cos ) ( ) /w 1 wF F m g 2 f d Dψ μ β= + ⋅ + ⋅ , 
where: d - the journal diameter, Dw - diameter of 
the trolley wheel, μ - coefficient of friction for the 
wheel bearing refereed to the axle journal, f - 
coefficient of rolling friction, β -  flange friction 
factor (caused by trolley skewing). 

Differential equation which describes 
movement of unloading bridge trolley is: 

sin1 d wm F F Fξ ψ= − −&& , (1)
where: 

sinx lξ ψ= + ⋅ , 

( ) / costl z z ψ= −   i.e. ( )tx z z tgξ ψ= + − ⋅  

x

z

ψ

mg

F

0  
Fig. 2. Forces which act on the grab and cargo 

Movement of the grab and cargo is 
suitable to analyze in the coordinate system x-z 
(Fig. 2). At the beginning of the movement grab 
and cargo are at point 0. In that case differential 
equations which describe movement of grab and 
cargo are:  

sin , cos , ,

sin , cos ,

Fm x F  m z F mg  S
m

x S  z S g

ψ ψ

ψ ψ

= = − =

= = −

&& &&

&& &&
 

(2)
Grab and cargo, for time interval known in 

advance [0, tc], from initial state: 

, ( ) ; ( ) ;
( ) ; ( ) ;

t 0  x 0 0  x 0 0
        z 0 0  z 0 0
= = =

= =
&
&

 
(3)

should came to ending state: 
, ( ) ; ( ) ;

( ) ; ( ) ;
c c k c

c k c

t t x t x x t 0
z t z z t 0

= = =
= =

&
&

 
(4)

with limitation that grab and cargo should pass 
through point (xk/2, zk), defined by system 
geometry (generally position in x – direction is 
arbitrary), and after that continue to move 
horizontaly i.e.  

( ) / ; ( ) ; ( )k k c kx x 2 z z z t t zτ τ τ= = ≤ ≤ = , 
(5)

where moment of time τ  is not known in advance. 
If such functions ψ(t), S(t) > 0  can be 

found, together with following conditions: 
( ) ; ( ) ; ( )
( ) ; ( ) ; ( ) ,c c c

0 0 0 0 S 0 g
t 0 t 0 S t g

ψ ψ
ψ ψ

= = =
= = =

&
&  

(6)
in a way that appropriate solutions of equations 
(2) fulfills conditions (3), (4) and (5), the whole 
system can be controlled. 

By increasing the order of differential 
equations (2) those equations can be written as: 

sin cos
cos sin

x S S
z S S

ψ ψ ψ
ψ ψ ψ

= +
= −

& &&&&
& &&&&

 
(7)

and conditions (6) can be written as: 
( ) ; ( ) ; ( ) ;
( ) ; ( ) ; ( ) .c c c

x 0 0 x 0 0 z 0 0
x t 0 x t 0 z t 0

= = =
= = =

&& &&& &&
&& &&& &&  

(8)
In that way task of controlled movement of 

the grab and cargo can be stated in a following form: 
,IV IV

x zx u z u= =  (9)
( ) ; ( ) ; ( ) ; ( ) ;
( ) ; ( ) ; ( ) ;
( ) ; ( ) ; ( ) ; ( ) ;
( ) ; ( ) ; ( ) ;
( ) / ; ( ) ; ( )

c k c c c

c k c c

k k c k

x 0 0 x 0 0 x 0 0 x 0 0
z 0 0 z 0 0 z 0 0
x t x x t 0 x t 0 x t 0
z t z z t 0 z t 0
x x 2 z z z t t zτ τ τ

= = = =
= = =
= = = =
= = =
= = ≤ ≤ =

& && &&&
& &&
& && &&&
& &&

 

(10)
where ux and uz are allowed values of control 
which belongs to open set. 

Initial condition for z&&&  is not set in order 
to ensure movement in z - direction at the 
beginning of the movement, while final condition 
for z&&&  is automatically fulfilled due to transverse 
condition.  

According to (2) and (7) equations (9) and 
conditions (10) are equivalent with equations (2) 
and conditions (3), (4), (5) and (6). 

Optimization of the unloading bridge 
working cycle is divided in two parts. First part – 



Strojniški vestnik - Journal of Mechanical Engineering 55(2009)1, 55-63 

 

Bugaric, U. - Vukovic, J.  - Petrovic, D. - Jeli, Z. - Petrovic, Z. 58 

optimization of the grab and cargo movement as 
pendulum, second part – optimum movement of 
the unloading device mechanisms. 

1.2 First Part of Optimization - Optimization 
of the Grab and Cargo Movement 

 
First part of optimization assumes 

optimization of the grab and cargo movement (i.e. 
pendulum), automatic part of the half-automatic 
unloading cycle, independently from unloading 
device (bridge crane) mechanisms with respect to 
equations (9) and conditions (10).  

By introducing new variables yi (i=1 to 8) 
system (9) and conditions (10) can be written in 
the following form: 

; ; ; ;
; ; ;

1 2 2 3 3 4 4 x

5 6 6 7 7 8 8 z

y y y y y y y u
y y y y y y y u
= = = =
= = = =

& & & &
& & & &  

(11)
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) / ( ) ( )

1 2 3 4

5 6 7

1 c k 2 c 3 c 4 c

5 c k 6 c 7 c

1 k 5 k 5 c k

y 0 0 ;       y 0 0 ;  y 0 0 ;  y 0 0 ;
y 0 0 ;       y 0 0 ; y 0 0 ;
y t x  ;    y t 0 ; y t 0 ; y t 0 ;
y t z  ;    y t 0 ; y t 0 ;
y x 2 ;   y z ;  y t t z  ;τ τ τ

= = = =
= = =
= = = =
= = =
= = ≤ ≤ =

 

(12)
which allowed direct application of Pontryagin’s 
maximum principle. Values ux and uz are control 
values in x and z direction [2], [4] and [7]. 

During the grab and cargo transfer from 
vessel to hopper and vice versa minimum rope 
incline angle as well as no more than one 
oscillation of the grab and cargo are required. 
Beside that, changes in rope load as a result of 
grab and cargo transfer should be reduced to a 
minimum. In that sense condition of optimality 
(13) presents good enough measure of behavior 
of those values. 

( )
ct

2 2 2 2
3 4 x 8

0

1J y y u y dt
2

= + + + →∞∫  
(13)

Differential equations (11) and conditions 
(12) together with condition of optimality (13) 
presents the task of optimum control.  

In another words, on the basis of equation 
system (2), it can be concluded that rope 
inclination and angular velocity of rope have 
greater influence on movement in x–direction i.e. 
on values  y3, y4, and  ux while change of rope 
load has greater influence on movement in z - 
direction i.e. on value y8. So, minimum value of 
(13) fulfills required demands and represents 

optimality criterion for discussed problem and it 
provides that the values of control and rope 
incline angle not become so big, minimum 
number of oscillations, continuousness of the 
force in rope, uniform work, etc.  

The problem defined by the relations (11), 
(12) and (13) is reduced to the form which makes 
possible the direct application of maximum 
principle. For these reasons, considering (11) and 
(13) the function is established: 

( )2 2 2 2
3 4 x 8

1 2 2 3 3 4 4 x

5 6 6 7 7 8 8 z

1H  y y u y
2

y y y u
       + y y y u

λ λ λ λ
λ λ λ λ

=− + + + +

+ + + + +
+ + +

 

(14)
where the values λi satisfied the differential 
equations system: 

( 1 to 8),i
i

H i
y

λ ∂
= − =

∂
&  

 

; ; ; ;
; ; ; .

1 2 1 3 3 2 4 4 3

5 6 5 7 6 8 8 7

0   y  y
0    y

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

= = − = − = −
= = − = − = −

& & & &

& & & &  
(15)

According to the theorem of the principle 
of maximum, function (14) for the optimum  
solution has the maximum value. According to 
the needed condition of extreme: 

x

H 0
u

∂
∂

= and 
z

H 0
u

∂
∂

= , 
(16)

the controls in x and z direction are obtained: 
;x 4 x 4

8 8 8 7

u 0 u
0 0 y .
λ λ

λ λ λ
− + = → =

= → = → =&  
(17)

 Following transverse conditions should 
be added to conditions (12): 

( ) ; ( )8 8 c0 0 t 0λ λ= = , 

what is trivially fulfilled in (17). 
Structure of differential equation systems 

(11) and (15) shows that optimization of grab and 
cargo movement in x and z direction can be done 
separately. System of differential equations for 
optimization grab and cargo movement in x 
direction has the following form: 

; ;
; ;

; ;
;

1 2 2 3

3 4 4 4

1 2 1

3 3 2 4 4 3

y y y y
y y y

0 
y y  .

λ
λ λ λ
λ λ λ λ

= =
= =
= = −
= − = −

& &
& &
& &

& &

 

(18)
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Boundary conditions are: 
,

( ) ; ( ) ;
( ) ; ( ) ;

,
( ) ; ( ) ;
( ) ; ( ) .

1 2

3 4

c

1 c k 2 c

3 c 4 c

t 0  
y 0 0  y 0 0  
y 0 0  y 0 0 
t t  
y t x  y t 0 
y t 0  y t 0

=
= =
= =

=
= =
= =

 

(19)
System of differential equations for 

optimization grab and cargo movement in z 
direction has the following form: 

; ; ; ;
; ; ; .

5 6 6 7 7 8 8 6

5 6 5 7 6 8

y y  y y  y y  y
0    0

λ
λ λ λ λ λ λ

= = = = −
= = − = − =

& & & &
& & & &  

(20)
Boundary conditions are:  

, ( ) ; ( ) ;
( ) ; ( ) ;

, ( ) ; ( ) ;
( ) ; ( ) ;

( ) ; ( ) ;
( ) ; ( ) .

5 6

7 8

5 k 6

7 8

c 5 k 6

7 8

t 0  y 0 0  y 0 0  
         y 0 0  0 0 
t  y z y 0  
         y 0  0

t t   y z   y t 0   
                y t 0   t 0

λ
τ τ τ

τ λ τ
τ τ

λ

= = =
= =

= = =
= =

≤ ≤ = =
= =

 

(21)
Each of differential equations systems (18) 

and (20) defined on this way, with condition (19) 
and (21) presents the two-point boundary value 
problem. Due to configuration of the differential 
equation systems (18) and (20) each of them can 
be solved analytically [4]. 
 
1.2.1 Analytical Solutions 

 
 According to differential equation 

systems (11) and (18) following relations can be 
established: (movement in x - direction) 

, ,
,

,

x 4 1 1

2 1 2

2
3 2 1 2 3

u L
L t L

1y L t L t L
2

λ λ
λ

λ

= =
= − +

= + − +

 

,

3
4 3 1 1

2
2 3 4

4 2 1

3 2
1 2 3 4

1y y L t
6

1     + L t L t L
2

y y y
1 1    = L t L t L t L  .
6 2

λ = − − +

− +

= − =

− + − +

& &
 

Finally, differential equation system (18) 
can be reduced to one fourth order differential 
equation: 

IV 3 2
1 1 1 1 2 3 4

1 1y y y L t L t L t L
6 2

− + = − + − +&& , 
(22)

where L1 to L4 are arbitrary constants. 
Solution of above differential equation has 

the following form: 
/ /

/ /

( )cos( / )
( )sin( / )

3t 2 3t 2
1 1 1

3t 2 3t 2
1 1

3 2
1 1 1 1

y x A e B e t 2
           + C e D e t 2

E t F t G t H   ,

−

−

= = + +

+ +
+ + + +

 

(23)
Differentiating previous expression per t 

expressions for  y2 to y4 are obtained as: 

/

. ( )cos( / )

( )cos( / )
( )sin( / )

( )sin( / )

3t
2 1 1

3t
1 1

3t
1 1

3t 3t 2
1 1

2
1 1 1

y x 0 5 3 B A e t 2

D C e t 2
                B A e t 2

               3 D C e t 2 e

3E t 2F t G  ,

−

⎡= = − + +⎢⎣
+ + −

− + +
⎤+ − + +⎥⎦

+ + +

&

 

(24)

/

. ( )cos( / )

( )cos( / )
( )sin( / )

( )sin( / )

3t
3 1 1

3t
1 1

3t
1 1

3t 3t 2
1 1

1 1

y x 0 5 B A e t 2

                 + 3 D C e t 2
                 + 3 B A e t 2

                D C e t 2 e

                6E t 2F

−

⎡= = + +⎢⎣
− + +

− +
⎤+ + +⎥⎦

+ +

&&

 

(25)

/

cos( / ) cos( / )

sin( / ) sin( / )

3t
4 1 1

3t 3t 2
1 1

1

y x D t 2 C e t 2

             Ae t 2 B t 2 e

            6E

−

⎡= = + −⎢⎣
⎤− − +⎥⎦

+

&&&

 

(26)

/

. ( )cos( / )

( )cos( / )
( )sin( / )

( )sin( / )

IV 3t
4 x 1 1

3t
1 1

3t
1 1

3t 3t 2
1 1

y x u 0 5 B A e t 2

                         + 3 D C e t 2
                          + 3 B A e t 2

                        D C e t 2 e−

⎡= = = − + +⎢⎣
− + +

− −
⎤− + ⎥⎦

&

 

(27)
where A1, B1, C1, D1, E1, F1, G1, H1  are constants 
which are determined upon boundary conditions 
(3) and (4).  

For movement in z - direction according to 
differential equation systems (11) and (20) 
following relations can be established: 

, ,
, ,

z 6 5 5

6 5 6 8 7

8 6 8 5 6

u L
L t L y

y  , y L t L

λ λ
λ λ

λ

= − =
= − + =
= − = −

&&
& &
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where L5 and L6 are arbitrary constants. 
Substituting  (L5, –L6) with (A2, B2) the 

required expressions for movement in z –direction 
are obtained as: 

IV
8 z 2 2y z u A t B= = = +&  (28)

2
8 2 2 2

1y z A t B t C
2

= = + +&&&  
(29)

3 2
7 2 2 2 2

1 1y z A t B t C t D
6 2

= = + + +&&  

4 3 2
6 2 2 2 2 2

1 1 1y z A t B t C t D t E
24 6 2

= = + + + +&  
(30)

5 4 3
5 2 2 2

2
2 2 2

1 1 1y z A t B t C t
120 24 6

1             D t E t F
2

= = + + +

+ + +
 

(31)

where A2, B2, C2, D2, E2, F2  are constants which 
are determined upon boundary conditions (12).  

Directly from differential equation system 
(2) expressions for Ψ and S are obtained as: 

,

( )2 2

xarctg
z g

S x z g  .

ψ =
+

= + +

&&

&&

&& &&

 

(32)
 

1.3. Optimum Movement of the Unloading 
Bridge Mechanisms (Trolley) 
 

Driving force Fd, needed for trolley 
movement, due to relatively less complex 
construction of unloading bridge, can be 
determined directly from differential equation (1) 
on the basis of obtained optimum grab and cargo 
movement given by expressions (23´to (32) as a 
direct task of dynamics from following 
expression:  

( )

sin

2

d 1 t2

w

d xF m x z z
z gdt

       + F F ψ

⎡ ⎤
= ⋅ + − ⋅ +⎢ ⎥+⎣ ⎦

+ ⋅

&&

&&  

(33)
 

2 RESULTS 
 

Results of the derived mathematical model 
are differential equations of unloading bridge 
trolley motion, along with boundary conditions 
and controlled values. Results of the first part of 
the optimization are optimum motion of the grab 
and cargo during automatic part of the cycle, 
represented by velocity, acceleration, jerk and 
control values (in x and z direction), inclination 
angle, angular velocity. Output values from first 
part of optimization are input values for second 
part of optimization. Results of the second part of 
the optimization is needed driving force for 
obtaining optimum unloading bridge trolley 
motion and change of the rope length per time. 
All obtained results are presented on Fig. 3 to 5. 

Figure 3 show results of grab and cargo 
optimization process per time. Those results are: 
change of coordinates x and z per time (Fig. 3a), 
change of grab and cargo velocity in x and z 
direction per time ( x& , z&  Fig. 3b), change of grab 
and cargo acceleration in x and z direction per 
time ( x&& , z&&  Fig. 3c), change of grab and cargo 
jerk in x and z direction per time ( x&&& , z&&&  Fig. 3d), 
change of grab and cargo control in x and z 
direction per time ( IV

xx u= , IV
zz u=  Fig. 3e), 

change of rope incline angle ψ and angular 
velocity ψ&  of grab and cargo per time (fig. 3f); 
change of force in the rope  F/m i.e. S per time 
(Fig. 3g); and optimum path of grab and cargo 
 z = F(x) (Fig. 3h). 

Values, upon which results shown on 
figure 3 are obtained, are: distance between vessel 
and hopper in x - direction xk = 9m, distance 
between vessel and hopper in z - direction zk = 
8m, tc = 20s - time, known in advance, needed for 
obtaining one half of automatic part of half–
automatic unloading cycle i.e. grab transfer from 
vessel to hopper or vice versa, tc is determined 
upon maximum allowed velocities and 
accelerations in x and z direction [1] and  
τ = x-1(xk/2) - time needed for grab and cargo 
transfer to one half of distance between vessel 
and hopper i.e. z(τ ≤ t ≤ tc) = zk . 
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Fig. 3. Change of the optimised values 
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Numerical values needed for calculation of 
the driving force Fd from expression (33) are 
following: diameter of the trolley wheel,  
Dw = 0.4m, the journal diameter d = 0.1m, 
coefficient of friction for the wheel bearing 
refereed to the axle journal μ = 0.012, coefficient 
of rolling friction f = 0.05cm, flange friction 
factor β = 2.3, height distance between 
beginning/end point of automatic part of half-
automatic unloading cycle and rope suspension 
point zt = 17m, mass of the crane trolley  
m1 =15000kg, mass of the grab and cargo  
m = 12500 kg. Result is shown on the Figure 4, 
while change of the rope length is shown on the 
Figure 5. 

F d
[N

]

t [s]  
Fig. 4. Driving force needed for optimum 

unloading bridge trolley movement 
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Fig. 5. Change of the rope length per time 

 
 3 DISCUSSION 

 
Using all obtained results from previous 

chapters, together with empirical data obtained 
from real system, makes possible to define 
duration of the working cycle. All obtained 
results (velocity, acceleration and jerk) are real 
and in the range of the suggested values for this 
type of unloading devices. [6] 

3.1. Working Cycle Duration 
 

Duration of half-automatic working 
(unloading) cycle consist of following times 
needed for complete certain operations: [1] 
– automatic part of half automatic unloading 

cycle: 
ac c gdt 2 t t 2 20 8 48 s= + = ⋅ + =  

where tgd = 8s  is time needed for grab 
discharging. 
– manual part of half-automatic unloading cycle: 

( . . ) ( . . )
( . . )

mc gl gc gh et t t t t
    = 1 2 7 2 15 1 2 7 2 5

     = 22 4 34 4 s

= + + + =
÷ + + ÷ + =
÷

 

where:  
tgl = (1.2 to 7.2)s - time for grab lowering from 
one of three possible points of ending of 
automatic part of unloading cycle to material in 
the vessel with velocity 50 m/min. Lowering 
distance depends on water level and vary between 
1 and 6m, 
tgc = 15s - time needed for grab closing, 
tgl = (1.2 to 7.2)s - time for grab hoisting from 
material in the vessel to one of three possible 
points of beginning of automatic part of 
unloading cycle with velocity 50 m/min. Hoisting 
distance depends on water level and vary between 
1 and 6m, 
te = 5s - extra time needed for crane operator to 
locate the most suitable place for grabbing. 

Finally duration of working cycle is: 

( . . )
( . . ) .

uc ac mct t t
   = 48 22 4 34 4
    = 70 4 82 4 s

= + =
+ ÷ =
÷

 

Repeatable and optimum unloading cycle 
(in the sense explained in Chapter 1) is necessary 
for calculation of the real capacity of unloading 
device which is the base for calculation of energy 
consumption, exploitation cost, etc. 

 
4 CONCLUSIONS 

 
The characteristic of bulk cargo is the fact 

that the transport expenses, manipulation and 
waiting present the important part of their values. 
Unloading bulk cargo terminal works 24 hours 
seven days a week during the sailing period. 
Presented optimized working cycle of unloading 
bridge reduces rope inclination angle, force in a 
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rope and therefore needed energy for performing 
such kind of motion. 

Application of the obtained results is in 
introducing of the half automatic unloading cycle 
during the bulk cargo material unloading. In that 
case it is possible to achieve the optimum 
unloading cycle, dissipation of material during 
the grab discharging can be reduced to the 
minimum, dynamic stress of cranes can be 
smaller and it is also possible to eliminate 
influence of the human factor in unloading 
process (training of operator, weather conditions, 
night work, etc.). 

It is important to underline that developed 
optimization procedure for grab and cargo 
movement has universal application i.e. results of 
optimization process can be applied on any 
transport device which can perform such kind of 
motion (harbor cranes, overhead cranes etc.). 
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