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This paper focuses on the enhancement of the static gesture dictionary of  commercial data glove 
5DT 5 Ultra, with the primary goal to improve its ergonomic features and usability for Mechanical CAD 
(MCAD). The standard gesture dictionary of this data glove is based on 16 joint-limit simple static 
gestures designed in the 1990s by the NASA Aimes laboratory. Although simple to learn and perform and 
easy to recognize, most of these gestures have poor ergonomic features and are non-intuitive in the 
symbolical sense. The authors addressed this problem and suggested improvements by eliminating 11 
original simple static gestures and substituting them with new complex static gestures. Since the 
restructured gesture dictionary of 12 simple and complex static gestures imposed a problem of lower 
gesture recognition rate, this issue was approached using artificial intelligence. Namely, an ensemble of 
five multilayer perceptrons (MLPs) with backpropagation was used as gesture classifier. Bearing in mind 
that variable hand anatomies of different data glove users are one of the crucial factors impeding gesture 
recognition, two female and three male subjects  participated in the gesture data acquisition to provide a 
total of 2400 static gestures which were used to train, validate and test the ensemble classifier. For each 
of the five member networks, a resampling of the data set was performed, aleviating the problem of 
variance. The results showed that the proposed restructuring of data dictionary can be efficiently 
supported by the ensemble-based gesture classifier.                
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 

Virtual reality technologies are widespread 
in today's production manufacturing. This results 
in a number of simulations which, besides the 
classical human-computer interface (HIC), also 
use multi-modal HIC. Multi-modal interaction 
puts a human in the center of the interface, 
focusing on extraction and interpretation of 
information gathered from hand gestures, speech, 
tactile feedback and other modalities of 
communication.     

Since the second half of the 1970s when 
their use was pioneered by M. Krueger [1], hand 
gestures have been recognized as a natural and 
intuitive way of communicating not only with 
virtual environments, but with computers in 
general. However, despite of some three decades 
of development, the application of gestures in 
virtual environments is far from desired. As 
Poupyrev et al. noted [2],  there exists no unified 
framework for virtual environment interaction, no 
desktop-style metaphor familiar to the majority of 
users, and no optimal interaction technique for all 
possible task and input devices in virtual 
environments. Furthermore, despite their original 

intention, gestures are often criticised as being 
imprecise, non-ergonomic and not self-revealing 
[3]. The area of gesture design, application and 
recognition is still in its infancy.  

Amongst various definitions of the gesture 
found in general dictionaries and scientific 
papers, a definition by Turk [4] seems to be most 
comprehensive stating that a gesture is a 
meaningful body motion - i.e. physical movement 
of the fingers, hands, arms, head, face or body 
with the intent to convey information or interact 
with the environment [3]. A number of authors 
have contributed to the development of 
classification and taxonomy of gestures [3] to [9].  

Discussion in this paper is confined to 
hand gestures. In addition, the distinction is made 
between hand gestures based on two fundamental 
properties: complexity and dynamics, which are 
required for proper gesture recognition. 
According to these criteria, hand gestures can be 
classified into:  

simple static gestures (postures) - in which 
finger configurations consist of either fully 
closed or fully open fingers,  
complex static gestures (postures) - in which 
fingers can be flexed at an arbitrary angle,  
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simple dynamic gestures - in which either just 
a hand is moved or the fingers are moving 
with the hand in a fixed position, 
complex dynamic gestures - which involve the 
movement of fingers, as well as changes in 
location and orientation of a hand.  

With this classification in view, the scope 
of this paper is limited to simple and complex 
static gestures. 

One of the key advantages of virtual 
environments is the possibility of intuitive and 
natural interaction with the tasks in hand. As a 
highly articulated part of the human body, hand 
outperforms the most modern primary input 
devices with six degrees of freedom.  In that 
respect, the data glove is no doubt the first true 
interface for direct manipulation [10]. The first 
data glove SayreGlove, was developed by Defanti 
and Sandine in 1977 [11]. However, more 
intensive research of their application in virtual 
environments began in the 1990s.  

Up to date, numerous commercial and 
experimental models have been made, but 
regardless of the technical solution, data gloves 
have two basic applications, namely: (i) to allow 
real-time control of hand avatar and direct 
manipulation with virtual objects and (ii) to allow 
control of VR simulation using gestures. Modern 
commercial data gloves can be divided into (i) 
data gloves which measure fingure flexion and 
(ii) data gloves which register contacts between 
fingers/palms. Among the most popular 
commercial data gloves in academia and industry 
are Cyberglove (Immersion), 5DT 5/14 Ultra 
(Fifth Dimension Technologies), which measure 
fingure flexion, and Pinch Glove (Fakespace), 
which registers contacts. Due to a large number 
of sensors (18/22 – depending on the variant)  and 
the developed software support, Cyberglove is 
presently a de facto industrial standard.   

1 PROBLEM DEFINITION 

Owing to its all-round characteristics and  
low price, 5DT 5 Ultra data glove (Fifth 
Dimension Technologiess) is very popular among 
industry professionals and researchers. The glove 
is equipped with five proprietary optical sensors, 
which allow it to measure finger flexure using 
one sensor per finger. Thus, signals from the 
sensors represent mean value of finger flexions at 
metacarpophanlangeal and proximal joints [12]. It 

also comes with a ready software support for the 
detection of the predefined set of 16 gestures. The 
authors have used this glove with an experimental 
VR desktop system, which is described in more 
detail in [12]. However, the glove is not suitable 
for use with MCAD without some important 
modifications: 

only a third of the predefined gesture set are 
ergonomically suitable for prolonged use, 
since they cause muscle fatigue,  
although thumb flexure is measured, none of 
the standard-dictionary gestures include the 
use of thumb, which not only prevents the 
simulation of grasping but also makes it 
impossible to simulate useful gestures which 
require the use of thumb, 
owing to the ergonomic issues and the 
principles of operation of the optical sensors, 
the gestures are sometimes misinterpreted or 
undefined, 
most of the gestures lack symbolical 
meaningfulness which is necessary for 
efficient use with MCAD applications.

Gestures supported by 5DT 5 Ultra are 
coded as the combination of binary states (open = 
1/closed = 0) of the four fingers, excluding the 
thumb. Thus, it is possible to create 24=16
gestures as combinations of open/closed fingers. 
The gestures are assigned numbers from 0 to 15, 
0 representing the fist (all fingers closed) and 15 
representing the open hand (all fingers open). 
Gesture recognition is based on boundary values. 
If the sensor reading for a particular finger is 
above the predefined boundary value, the finger is 
considered closed (flexed). Conversely, if the 
reading falls below the boundary value, the finger 
is open (no flexion). All readings which fall 
between the boundary values are considered as 
errors, and the gesture is undefined.  

This simple method of gesture recognition 
works well in some situations but is not always 
reliable. This can be attributed to anatomical 
variations in various users, as well as to the 
disposition of optical sensors and their cross-
coupling, which can often result in incorrect 
recognition of a gesture [14].  

1.1 Biomechanical Aspects of Finger 
Movement

Instead of discussing hand degrees of 
freedom on a complex anatomy model, it is more 
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convenient to use simplified mechanical models 
proposed by [15] to [19]. For this purpose, the 
model by Beifang et al. [15] was chosen (Fig. 1).  

Fig. 1.  Simplified mechanical model of a human 
hand with joint designations [15]

This model depicts finger bones as lines, 
while the joints are represented by dots. Hand 
movements are observed as combinations of bone 
rotations in various joints. Four fingers have three 
joints each - metacarpophalangeal (MCP), 
proximal interphalangeal (PIP) and distal 
interphalangeal joint (DIP). MCP allows two 
degrees of freedom (flexion/extension and 
abduction/adduction), while the other two joints 
(PIP, DIP) allow one degree of freedom each - 
(flexion/extension). DIP and PIP joints on the 
four fingers and IP thumb joint allow one degree 
of freedom each (flexion). MCP and CMC thumb 
joints, as well as MCP finger joints, allow two 
degrees of freedom each - flexion and 
abduction/adduction.  

The four fingers and the thumb are 
characterized by different flexibility and 
interdependence of movements. Due to its special 
position, the thumb is most independent in its 
movements, as was experimentally proven by 
Häger-Ross and Schieber [20]. Extrinsic muscles 
which enable thumb movements mostly act 
independently, thus its relative independence in 
comparison with movements of other fingers. The 
index finger can perform flexion and extension 
independent from other four fingers. Flexion and 
extension of the middle finger are limited. Also, 
full flexion of the middle and small finger hinders 
extension of the small finger [21]. Due to 
connections between hand and forearm, extension 
of the ring finger depends on the neighbouring 
fingers. The small finger has its own extrinsic 
muscles which allow it relative independence of 

movements. Thanks to a couple of long extensor 
muscles, the small finger, just like the index 
finger, can extend independently when all other 
fingers are fully flexed. 

2 CRITICAL ASSESSMENT OF THE 
STANDARD  5DT GESTURE DICTIONARY 

Gestures of the 5DT 5 Ultra glove (Fig. 2) 
are based on the gesture dictionary proposed in 
1993 by the NASA Ames Research Center. These 
static gestures were originally intended for glove-
based navigation tasks in virtual environments 
and can be designated as joint-limit postures 
because they use only configurations of either 
fully open or fully closed fingers. The advantages 
of joint-limit  approach are simplicity of software 
support required for gesture recognition and ease 
of learning. On the other hand, they have several 
disadvantages.  

Firstly, some of these gestures cause hand 
fatigue even in cases when no protracted use is 
required, causing a distinct ergonomic problem. 
Secondly, most of them are devoid of any 
symbolical meaning which devalues them from 
the cognitive aspect, making them less suitable 
for a natural, logical contextual application, 
which should be the primary advantage of 
gestures in virtual environments. Gesture number 
4 (Fig. 2) can be taken as an example. In his study 
on the functional anatomy of the hand, Tubiana 
[21] and [22] reports that full flexions of the 
middle and small finger completely impede 
extension of the ring finger, which indicates that 
gesture 4 is not only ergonomically inadequate 
but is also impractical from the anatomic point of 
view.  

Besides the gestures, shown in Fig. 2 are 
also their ergonomic ratings. Filled circle denotes 
good ergonomic features, white circle stands for 
bad ergonomy, while the semi-filled circle 
denotes average ergonomic features of the 
particular gesture. 

3 MODIFICATION OF THE STANDARD                      
5DT GESTURE DICTIONARY  

We addressed the ergonomic and cognitive 
issues by restructuring the predefined gesture 
dictionary, eliminating some simple gestures and 
substituting them with the complex ones.  
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Fig. 2. Standard gesture dictionary of 5DT 5 Ultra data glove

Bearing in mind the ergonomic features 
and iconic and metaphoric meaningfulness, the 
existing gesture dictionary was restructured in 
order to allow the elimination of: 

finger configurations which involve full 
extension of the middle finger with the index 
and ring finger fully flexed, 
finger configurations which involve full 
extension of the ring finger with the middle 
finger or middle and index finger fully flexed,  

finger configurations which 
involve full flexion of the index, middle and 
ring finger with the small finger and thumb 
fully extended. 

Following the above stated guidelines, a 
total of eleven gestures were eliminated from the 
standard 5DT gesture dictionary (2, 4, 5, 6, 7, 9, 
10, 11, 12, 13 and 14) (Fig. 2). Of the remaining 
five gestures, three of them were left in their 
original form (0, 8 and 15), while the two 
remaining gestures were modified. Thus, gesture 
designated 1, was modified into gesture G03, 
while gesture 3 became gesture G05. Also added 
were five novel gestures, G04, G06, G08, G09 
and G10 (Fig. 3).  

The modified gesture dictionary comprises 
twelve static gestures and, according to 
conditional classification proposed by LaViola 
[8], belongs to small gesture dictionaries. This is 
an advantage regarding the efficiency of gesture 
recognition. Should the dictionary require an 
extension at any point, this can be solved with a 
context-dependent gesture recognition where a 
single gesture can be attributed with several 
meanings, depending on the suggested context of 
the application.  

4 DEVELOPMENT OF ANN-BASED 
GESTURE RECOGNITION SUPPORT 

In order to enhance ergonomic features of 
the 5DT 5 Ultra a data glove, the original gesture 
dictionary was modified by adding  complex 
static gestures. This means that it now features 
gestures with partially flexed fingers (gestures 
G6, G7, G8, G9 and G10) (Fig. 3).  

On the other hand, the departure from the 
joint-limit concept deteriorated the gesture 
recognition rate, so in order to compensate for 
that, new gesture recognition support was 
designed and implemented.  

A report on two main stages of 
development - the gesture data acquisition and the 
training and testing of artificial neural network 
(ANN) gesture classifier is also presented. 

4.1 Gesture Data Acquisition 

Five subjects, two females and three 
males, age 14 to 44, took part in the experiment, 
i.e. gesture data acquisition. None of them had 
medical history affecting the upper limbs, 
whereas they differed in finger skills and general 
hand flexibility - from below-average to 
excellent. Only one of the subjects had previous 
experience with the data glove. The subjects had 
45 seconds to perform each of the twelve 
gestures, wearing left-handed 5DT 5 Ultra data 
glove. They were instructed to make small, 
controlled finger movements while performing 
static gestures in order to generate noise which 
would, in a normal situation, be the result of hand  
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Fig. 3. Modified gesture dictionary containing simple and complex static gestures 

fatigue and gesture inconsistency. A custom made 
software application monitored input from the 
data glove on a USB port, with the update 
frequency of 5Hz,  and recorded gesture data into 
comma-separated-value files (CSV) (one for each 
gesture, for each subject). Each record consisted 
of six fields, the first five being the sensor 
readings, while the sixth field was gesture 
designation (1 to 12). The five subjects were 
represented with 40 records per gesture, thus 
5x40x12=2400 gestures were used in total to train 
and test the ANN classifier. 

4.2 Ensemble Design, Training and Testing  

The gesture recognition task was fulfilled 
using an ensemble of neural networks, i.e. 
multilayer perceptrons (MLPs) with one hidden 
layer and back propagation learning. Simulations 
were performed in the neural networks module of 
Statistica 7. Instead of using just one neural 

network for the task, a set of ten MLPs was 
formed, trained, validated and tested in order to 
select the best five MLPs which formed an 
ensemble. Ensembles improve performance since 
averaging across different MLPs lowers the 
expected variance, i.e. the sensitivity of MLPs to 
the choice of the data set which would otherwise 
cause variations in classification error. Logistic 
and linear transfer functions were used for the 
neurons in the hidden and output layer, 
respectively.

Train and test errors as well as the number 
of neurons in the hidden layer for the five 
constituent MLPs of the ensemble, are given in 
Table 1. Member networks are designated by
MLP, while the ensemble is designated by
Output. The summary statistics for classification 
results obtained by the ensemble are given in 
Table 2. The data represent average values scored 
by the five  member networks (MLPs). 

Table 1. General data for the five member MLPs and the ensemble 
Member  network / ensemble Train error Test error Inputs Hidden 
MLP 5:5-18-12:1 0.343628 0.37812 5 18 
MLP 5:5-30-12:1 0.202739 0.30542 5 30 
MLP 5:5-28-12:1 0.192906 0.37029 5 28 
MLP 5:5-29-12:1 0.209057 0.39992 5 29 
MLP 5:5-30-12:1 0.195123 0.31809 5 30 
Output 5:[5]:1 0.228690 0.35443 5 5 
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Table 2. Classification results for the ensemble  
 G01 G02 G03 G04 G05 G06 G07 G08 G09 G10 G11 G12 
Total 200 200 200 200 200 200 200 200 200 200 200 200 
Correct 193 199 196 199 196 191 200 190 175 200 200 185 
Wrong 7 1 4 1 4 9 0 10 25 0 0 15 
Unknown 0 0 0 0 0 0 0 0 0 0 0 1 
Correct (%) 96.5 99.5 98.0 99.5 98.0 95.5 100 95.0 87.5 100 100 92.5 
Wrong (%) 3.5 0.5 2.0 0.5 2.0 4.5 0.0 5.0 12.5 0.0 0.0 7.0 
Unknown 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 

5  DISCUSSION OF RESULTS 

As can be seen from Table 1, the five 
member networks differ in the number of neurons 
in the hidden layer with the minimum of 18 (MLP 
5:5-18-12:1) and the maximum of 30 neurons 
(MLP 5:5-30-12:1, networks 2 and 5). Network 2  
tested best, scoring an error of 0.30542, while 
network 4 had the largest test error of 0.39992. 
The overall error of the ensemble (Output 5:[5]:1) 
is the mean value of test errors for the five 
member networks and equals 0.35443.  

The classification results for individual 
gestures (Table 2) reveal that gestures G7, G10 
and G11 were classified with 100% accuracy. As 
expected, the ensemble performed worst in the 
case of two very similar gestures, G8 and G9, and 
gesture G12, which is very similar to G01. In 
addition, a single case of gesture G12 was 
unclassified and thus labeled as unknown gesture. 
Its class could not be decided by voting due to a 
disagreement between the five member networks.  

In all, gesture recognition using the five-
membered ensemble yielded satisfactory results 
showing that the modified gesture dictionary can 
be successfully used without significant 
deterioration of recognition accuracy.  

6  CONCLUSIONS 

The restructuring of the standard static 
gesture dictionary of 5DT 5 Ultra data glove 
successfully tackled the issue of ergonomy and 
symbolic meaning. Improvements were made by 
introducing complex static gestures which not 
only improved the ergonomic features of the 
gesture dictionary, but also imposed a distinct 
symbolic framework which helps users to 
pinpoint the function of particular gestures 
without extensive training. The problem of 

gesture recognition was efficiently solved using 
an ensemble of five MLPs.           

Ongoing investigation is aimed towards 
designing a system for static gestures recognition 
which would be flexible enough to allow efficient 
introduction of novel static gestures, as well as 
new users of data glove. Multilayer perceptrons 
with backpropagation are not suitable for this task 
primarily due to the fact that they require lengthy 
retraining with old and new data sets in case of 
any modifications. For that reason, the system 
shall be based on a probabilistic neural network 
(PNN) which shall be trained on a clustered data 
set to allow the necessary reduction of network 
complexity and the increase of processing speed.  
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