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Former investigations in transformation-free cooling processes of long cylindrical workpieces in a 
gas nozzle field showed a typical behaviour of the dimensional changes, which correlated to only few 
dimensionless numbers. These numbers are created by the following parameters: shape and dimensions 
of component, its initial temperature, temperature of the quenching media, heat transfer coefficient, heat 
conductivity, heat capacity, density, thermal expansion coefficient, Young’s modulus, Poisson’s ratio, 
yield strength and strain hardening behaviour. The representative group of 28 austenitic stainless steels 
was selected from literature. Their properties were statistically analyzed in order to carry out a 
systematic investigation of the most significant material properties and process parameters of dimension 
and shape changes during transformation-free cooling. The characteristic values of statistically 
significant interval of considered austenitic steel properties – average and standard deviation - as well as 
the range of usual process parameters for their heat treatment are used for simulations execution by the 
commercial FEM program SYSWELD. The relative changes of the component dimensions obtained from 
numerical simulations, have been analyzed in dependence of six autonomous dimensionless numbers with 
their interactions in order to find the proper equations for prediction of unavoidable distortion in a 
transformation-free cooling. To define these equations, the method of nonlinear regression analysis was 
used. 
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
 

Predicting distortion after steel heat 
treatment by computer simulation is a complex 
task that involves a number of process parameters 
and nonlinear variation of steel properties. The 
most important process in this respect is a 
martensitic hardening. Cooling of austenitized 
parts has always been accomplished with 
inhomogeneous temperature distributions, which 
have thermal stresses and thermal strains as a 
consequence. If material cannot elastically 
accommodate these stresses, the thermal strains 
cause plastic deformation. These deformations 
occur before reaching the first phase 
transformation when steel microstructure is in the 
supercooled austenitic phase. Therefore, 
investigating the problem of unavoidable 
distortions after transformation free cooling 
provides knowledge about influential factors on 
the behaviour of workpieces and presents us with 
some practical measures to reduce these 
distortions. Consequently, the behaviour of 
austenitic steels, which shows no phase 

transformations during cooling, should be 
investigated [4] and [5]. 

The analysis of transformation-free 
cooling leads to a set of coupled differential 
equations, which describe the development of 
thermal stresses with strain hardening caused by 
the processes of heat conduction and transfer [1], 
[3] and [11]. This analysis represents a 
comparable simple case of the distortion 
phenomena simulation because complex 
processes connected to phase transformations 
were considered. However, considering this most 
simple case, it can be mentioned that an analytic 
solution for the differential equations set of that 
thermo-mechanical problem is not available even 
for the simple part geometries such as finite 
length cylinders, discs or plates [11]. On the other 
hand, numerical solutions with finite element 
programs such as SYSWELD give an insight into 
a specific simulated case without general trends 
and validity of workpieces behaviour. To get a 
general insight into the distortion behaviour after 
transformation-free cooling, the dimensionless 
analysis was proposed. The proposed 
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dimensionless numbers contain process 
parameters, material properties, and geometrical 
dimensions [6]. A nonlinear regression analysis 
was used to determine the correlation between 
proposed dimensionless numbers and relative 
change in cylinders length. 

 
1  DIMENSIONLESS NUMBERS 
 
Former investigations of transformation-

free cooling of long cylindrical workpieces in a 
gas nozzle field showed a typical behaviour of the 
dimensional changes depending on few 
dimensionless numbers [5] and [6]. As the 
changes of length and diameter are functions of 
position, their mean values must be calculated, as  
shown in Fig. 1a.  

The first of the dimensionless numbers, 
which indicates heat transfer at workpieces with a 
very good heat conductivity, is the Biot number. 

( )
1

V S
F Bi

α
λ
⋅

= =   (1) 

The volume to surface ratio (V/S) at Eq. 
(1) indicates a characteristic linear dimension of a 
part, α means the average heat transfer coefficient 
and λ is the average heat conductivity in the 
considered temperature interval.  

Fig. 1b shows the dimensional changes of 
cylinders with the length of 50 up to 200 mm and 

diameter between 10 and 50 mm. For a different 
length and diameter of a cylinder, the plot of 
relative changes in length against Biot number 
offers uniform curves. From Fig. 1 it is obvious 
that thermal strains will appear only when the 
Biot number is more than 0.1. It is in 
correspondence with the results of a number of 
investigations that showed it is possible to neglect 
temperature gradients and thermal stresses and 
strains for small Biot numbers (Bi < 0.1). 

The mutual connections between thermal 
stresses and strains in the range of elastic 
deformation are defined by the Hooke´s law [3]. 
Based on the equations of Hooke´s law, the 
following three dimensionless numbers are 
derived: 

( )2 th 0F T Tα ∞= −   (2)  

3F ν=  (3) 

4
0
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σ
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The term T0 corresponds to initial 
temperature and T∞ is the temperature of cooling 
media. αth is the mean coefficient of thermal 
dilatation, and ν is Poisson's coefficient. E is 
Young’s modulus, and the σ0 is materials yield 
strength.

 
Fig. 1. a)Determination of relative changes in length and in diameter [5] 
b) Relative change of length and diameter depending on Biot number [6]. 
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At the field of plastic deformation the total 
strain (ε) consists of elastic (εe) and plastic strain 
(εp). To describe the stress-strain dependence in 
the case of materials hardening by plastic 
deformation, the modified Ramberg-Osgood 
model [9] is applied. This model was shown as 
the most applicable by previous experiments [5]. 
It describes the stress-strain correlation in the 
field of plastic deformation by Eq. (5) [10] and 
[12]: 

e pε ε ε= +  (5a) 
1
n

E K
σ σε ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 

(5b) 
A parameter K signifies the absolute stress 

level, and n is a strain-hardening exponent. It is a 
measure of the strength, which is called the 
"modulus of plasticity" in reference [10]. The 
parameter K is not equal to the yield or tensile 
strength, but to the strength extrapolated to a total 
strain ε equal 1 [10].  

Eq. (5a-b) can also be noted in a 
dimensionless form, using the maximum elastic 
strain ε0 as a reference value [12]. At the first 
step, the left and the right side of Eq. (5a) are 
divided by ε0, and also the equality ε0=σ0/E is 
introduced on the right side of this new 
expression: 
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(6b) 
By rearranging the terms in Eq. (6.b) and 

after introducing them in Eq. (6.a) the final Eq. 
(7) has been derived. It is used for definition of 
the next two dimensionless numbers F5 and F6. 
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The proposed six dimensionless numbers 
(Table 1) are not the only possible set of numbers.  

 

Table 1. Definition of dimensionless numbers. 
 

 Dimensionless number 
 Bi=F1 F2 F3 F4 F5 F6 
Term ( )

λ
α⋅SV  ( )th 0T Tα ∞⋅ −  ν 

0σ
E  

K
0σ  n

1  

Length L [m]    
Diameter D [m]    
Initial temp. of material T0  [oC]    
Temp. of quenching media T∞ [oC]    
Heat transfer coeff. α [W/(m2K)]    
Heat conductivity λ [W/(mK)]    
Coeff. of therm. expan. αth [1/K]    
Poisson's ratio ν [1]    
Young's modulus E [MPa]    
Yield strength σ0 [MPa]    
Plasticity modulus K [MPa]    
Strain hardening exponent n [1]    
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Nevertheless, their influence on thermal 
strains is confirmed by numerical simulations and 
by the conducted experiments [4], [5] and [6]. All 
products and quotients of these numbers are also 
dimensionless (e.g. F4F5=E/K), but the six terms 
are independent from each other. That means that 
it is not possible to create one of them with 
mathematical operation of two or more other 
terms. From the proposed set of dimensionless 
numbers in Table 1, their effect on thermal 
distortion was systematically investigated for the 
following four numbers (F1, F2, F4 and F5). Their 
influence on thermal distortions and a relative 
change in length of cylinders made of an 
austenitic steel was shown as the most significant 
[6]. 

 
2 NUMERICAL INVESTIGATIONS 
 
Numerical simulations with the computer 

program SYSWELD calculated distortions of 
austenitic cylinders after transformation-free 
cooling. During these simulations, the heat 
transfer problem was solved simultaneously with 
the problem of mechanical stresses and strains. A 
cylinder of 20 mm diameter and 200 mm length 
was chosen as a geometrical domain for all 
simulations. The choice of this geometry can be 
explained as follows: the ratio of length and 
diameter is significantly larger than 3 and the 
most experimental results are sampled for those 
dimensions. All simulations were carried out with 
2D models using kinematic strain hardening [4]. 
Its selection is justified by former simulations and 
experiments performed on austenitic stainless 
steel SAE30300 (German grade X8CrNiS18.9) 
[5] and [6]. 

Most of the material properties in Table 1 
are dependent on temperature and are given in [?] 
for the above mentioned steel. However, in order 
to provide a better insight into the influences of 
individual dimensionless number on distortion 
behaviour of cylinders, the numerical simulations 
were conducted with mean values of steel 
properties. The chosen steel properties are mean 
values averaged over considered temperature 
range, which is typical of the analysed set of 
austenitic steels. The values of the heat transfer 
coefficient on all cylinder surfaces were taken as 
equal and constant during the complete cooling 
cycle.  

The aim of the research was to define an 
adequate expression (10) which enables the 
connection of the changes of dimensionless 
numbers shown in table 1 with the corresponding 
relative changes in length ΔL/L. 

L
L
Δ

= (F1, F2, F3, F4, F5, F6). (10) 
In searching for a form and coefficients of 

expression (10), the nonlinear regression analysis 
was applied. During this analysis, the nonlinear 
least squares functions from Matlab Statistics 
Toolbox fit a polynomial model that has a known 
form but unknown parameter values.  

The Eq. (10) could have a very 
complicated form, but it can be simplified by 
derivation of some typical combination of the 
above mentioned numbers (Table 1). By 
introducing Eq. (5a) and the equality 
ε0=σ0/E≡1/F4 into Eq. (7) and rearranging the 
terms in a way that the plastic deformation term 
remains on the left side and all other terms are 
placed at the right side, the following form is 
derived: 
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(11.b) 
From the analytical equations of thermal 

stresses and strains for cooling cylinders with an 
axially symmetrical distribution of temperature 
gradients [1] and [12] it can be seen that the ratio 
σ/σ0 is dependent from value of thermal stresses 
caused by temperature gradients and Poisson’s 
number with the following equality: 
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0 0

0 31 1-
T F

C C
F

α Δσ
σ ν

= ≡
−

. 
(12) 

A dimensionless constant C0
’ has 

introduced as constant of proportionality. After 
the Eq. (12) has inserted into Eq.(11.b) and by 
rearranging the dimensionless constants the final 
expression for a new ''dimensionless deformation 
parameter''  pε was achieved:  
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6
0 2 2 5 1

3 4 3 41

F
C F F F C

p
F F 1 F Fε

⎛ ⎞
= + +⎜ ⎟− −⎝ ⎠

. 
(13) 

The terms of Eq. (13) represent the 
influences on distortion and plastic deformations 
caused by thermal stresses (the first term), 
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materials hardening (the second term) and 
mechanical properties of material (the third term). 
With the proposed form of dimensionless 
deformation parameter pε, a very good regression 
model can be derived, and the correlation (10) 
was simplified, because it consists of only two, 
instead of six variables. 

ΔL/L = f(Bi, pε). (14) 
 

3 MATERIAL DATA 
 

The correlation (14) for predicting of relative 
change in cylinders length caused by thermal 
stresses and deformation hardening was proved 
for a whole group of twenty-eight representative 
austenitic stainless steels (Table 2). For this group 
of steels the mean values of all properties, which 
are relevant to the numerical simulation, were 
determined at room temperature by statistical 
analysis (Table 3) according to the database of 
Cambridge Engineering Selector programme [2]. 
Afterwards, all considered properties were 
extrapolated from room temperature to 548 oC, 

which is an average temperature of cooling 
process (Table 3). Extrapolation equations were 
derived from the experimentally determined 
changes of the considered properties dependent 
on temperature and stresses for stainless steel 
grade SAE30300 (DIN X8CrNiS18.9) whose 
properties are very close to the mean values of 
properties of analysed austenitic stainless steels 
set [4]. 
 
Table 2. A representative group of analysed 
austenitic stainless steels 

Steel grades 
 
27Cr-9Ni (as cast); 19Cr-10Ni-2,5Mo; 19Cr-
9Ni-0,2C; 19Cr-10Ni; 19Cr-11Ni-2,5Mo; 19Cr-
9Ni; 19Cr-11Ni-3,5Mo; 24Cr-13Ni; 25Cr-20Ni; 
X8CrNiS18.9; AISI 201; AISI 202; AISI 205; 
AISI 216; AISI 301; AISI 302; AISI 304; AISI 
305; AISI 308; AISI 309; AISI 310; AISI 314; 
AISI 315; AISI 316; AISI 317; AISI 321; AISI 
329; AISI 330 

 

 
Table 3. Typical range of all relevant properties in the observed set of austenitic steels denoted by Table 2 
 

Material property  Average value Standard deviation 
at 20 oC 7859 ± 109 
at 548 oC 7616 ± 217 

 
Density, ρ [kg/m3 ] 

at 1084 oC 7378 ± 219 
at 20 oC 15.38 ± 1.56 
at 548 oC 21.64 ± 3.12 

 
Heat conduction, λ [W/mK] 

at 1084 oC 27.75 ± 3.13 
at 20 oC 499.5 ± 16.2 
at 548 oC 619 ± 32 

 
Heat capacity, c [J/kgK] 

at 1084 oC 735 ± 33 
at 20 oC 16.41⋅10-6 ± 1.420⋅10-6 
at 548 oC 19.96⋅10-6 ± 2.850⋅10-6 

Coefficient of thermal expansion, αth [1/K] 

at 1084 oC 23.441⋅10-6 ± 2.854⋅10-6 
at 20 oC 196 000 ± 6450 
at 548 oC 150 000 ± 13000 

 
Young’s modulus,⋅E [MPa] 

at 1084 oC 105 000 ± 13000 
Poisson´s ratio, ν  at 20, 548  and 1084 oC 0.27 ± 0.05 

at 20 oC 306 ± 99 
at 548 oC 242 ± 198 

 
Yield strength, σ0, [MPa] 

at 1084 oC 179 ± 99 
Plasticity modulus, K = 1100.6 MPa (at 548 oC) 
Strain hardening exponent, n = 0.5178 (at 548 oC) 
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Table 4. The plan for selection of dimensionless numbers for numerical simulations of transformation 
free cooling of cylinders made of austenitic steels 
 

Levels of Biot number F1 and corresponding heat transfer coefficients α [W/m2K] 

Bi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 

α  454 909 1363 1817 2272 2726 3180 3635 4089 4543 4998 5452 5906 6361 6815 

Levels of other dimensionless numbers for every Biot number selected above 
F2 F4 F3 

0.013 0.0171 0.0213 375.1 752.2 1129.4 0.27 
Initial temperature T0  [oC] F5 F6 

778 1020 1084 0.36455 0.18182 0.12091 1.9313 
 

According to Table 3, every property has 
its own mean value and an estimated standard 
deviation. This kind of determination of steel 
properties enables the selection of property values 
at three levels, which is typical of the whole 
group of steels (the statistically lower value, the 
mean value and the statistically upper value). This 
means that it is also necessary to consider the 
dimensionless numbers F2, F4 and F5 with three 
typical levels of values (min., average and max.). 
Contrary to them, the Biot number was changed 
in a broader range of values between 0.1 and 1.5 
with the same average heat transfer coefficient for 
all surfaces of the cylinders. The plan for the 
selection of dimensionless numbers combination, 
F1, F2, F3, F4 and F5 and for numerical 
simulations is shown in Table 4. 

 
4 RESULTS AND DISCUSSION 

 
4.1 Results of Numerical Simulations 
 

Afterwards, numerical simulations were 
performed by computer programme SYSWELD, 
Fig. 2 shows the results: the calculated relative 
change in length dependent on the combinations 
of dimensionless numbers according to Table 2. 

 

 
 

a) 

 
 

b) 

 
 

c) 
Fig. 2. The relative change in length after 

transformation free cooling of cylinders made of 
austenitic steels dependent on F1 and different 

combinations of F2, F4 and F5 

a) ΔL/L =f(F1) with F2 = 0.013, F4 = (375.1; 752.2; 
1129.4), F5 = (0.36455, 0.18182, 0.12091) 

b) ΔL/L =f(F1) with  F2 = 0.0171, F4 = (375.1; 
752.2; 1129.4), F5 = (0.36455, 0.18182, 0.12091) 

c) ΔL/L =f(F1) with  F2 = 0.0213, F4 = (375.1; 
752.2; 1129.4), F5 = (0.36455, 0.18182, 0.12091) 

 

Based on Fig. 2, it can be concluded that 
all the curves which presented dependence of 
relative change in length from Biot number  
ΔL/L = f(F1) have the same behaviour towards 
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mathematical definitions of continuity, position of 
null points as well as maximum and minimum. 
This means that these curves may come from the 
same function class and can be interpolated by 
similar regression functions. 

 
4.2 Interpolation of Numerical Simulation 
Sesults by Newly Proposed ''FL3'' Model 

 
For the mathematical description of the 

relative length change of cylinders as function of 
dimensionless numbers (Fig. 2), a new parameter 
model is proposed. This model can give a unique 
analytical expression for prediction of relative 
change in length after transformation free cooling 
of cylinders made of any austenitic steel 
mentioned in Table 2. The model was named 
after the three levels of selection of materials’ 
properties used for their derivation, and the first 
letters of the names of its authors (as the Frerichs 
- Landek - Lisjak - Lübben model). The relative 
change in length after transformation-free cooling 
of cylinders made of austenitic steel (see Fig. 3) is 
analysed with the method of nonlinear least 
squares using the computer program Matlab 
equipped by the Statistics Toolbox module. The 
aim of nonlinear modelling was to analyse the 
influence of relative change in length ΔL/L 
originating from the individual change of Biot 
number F1, the dimensionless deformation 
parameter pε, as well as common influence both 
of them. After the nonlinear fitting and prediction 
of Eq. (12), a multi dimensional polynomial of 
the degree three was chosen as the most adequate 
approach to the numerical results of Fig. 2. 
Accordingly, the obtained R-square value of the 
approximation expressed by Eq. (15 a and b) is 
equal to 0.9316 with 95% confidence bounds. 
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For  the above mentioned range of 
variations of dimensionless numbers F2 to F6 the 
dimensionless parameter pε varies at the range 
from pε,min = -0.064899 to the pε,max = -0.015588. 
The Biot number F1 is varied at the range from 
0.1 to 1.5. Over the whole temperature range 
from initial temperature T0 to the space 
temperature 20 oC the dimensionless numbers F1 
to F6 remained constant, as denoted in Table 4. 

Within the proposed mathematical model, 
the relationship between the relative change in 
length calculated by Eqs. (15a and b) is compared 
to the results of numerical simulations for the 
same combination of dimensionless variables F1 
and pε (Fig. 3). It is obvious that the proposed 
mathematical model (15 a and b) might be used 
for an estimation of relative length change after 
transformation-free cooling of cylinders made of 
austenitic steels within the limits of the dimension 
numbers given in Table 4. 

 

 
Fig. 3. Correspondence between relative 

changes in length after transformation-free 
cooling of cylinders made of austenitic steels 

calculated by numerical simulations and 
predicted by regression model (15 a and b) 

 
5 CONCLUSION AND OUTLOOK 
 

The knowledge about all the relevant parameters 
which describe the geometry, material and process, 
allows the deduction of dimensionless numbers, 
which govern the distortion behaviour of the 
system. The analysis with dimensionless numbers 
brings two main advantages [6, 7, 8]: 
• Generally, the quantity of dimensionless numbers 
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 is smaller than the total amount of influencing 
parameters. 
• If the values of all the dimensionless numbers of 

two geometrical similar bodies are equal, the 
distortion behaviour of these two bodies are 
equal too. 

In this paper it was shown, that due to 
dimension analysis, the problem of the relative 
length change prediction of cylinders can be 
reduced firstly from 14 parameters down to 6 
dimensionless numbers, and then with 
introducing of deformation parameter pε it can be 
further reduced to two dimensionless numbers only: 

( )

( ) ( )

0
th 0

0

1 2 3 4 5 6 1

1, , , , ,

, , , , , , .

L V Ef T T
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    f F F F F F F f F p

σΔ α α ν
λ σ∞

ε

⎛ ⎞
= −⎜ ⎟
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(16) 
The approximation Eq. (13 a and b) for 

this task was derived by nonlinear regression 
analysis. The proposed mathematical model 
named as FL3-model can be used for the 
optimization of transformation-free cooling 
parameters, optimization of dimensions and for 
the selection of optimum steel grades, which get 
minimum relative changes in length. However, in 
some cases the differences between the regression 
model and the simulation by FE method are not 
negligible. Consequently, in the future the authors 
will study other combinations of  dimensionless 
numbers in order to receive an improved 
description of the dimensional changes. With 
these studies, a simplification of Eq. (15.a-b) 
might also be achieved. 

Furthermore, it should be clarified whether 
the results can be transferred to other geometries 
like cylinders with hole, rings and plates.  
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