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This paper presents an experimental modal analysis of a damped multi-degree-of-freedom 
mechanical system using a continuous wavelet transform. An approximation of the wavelet transform of 
the impulse response function is deduced, which serves as a basis for the extraction of the natural 
frequencies, the damping ratios and the mode shapes. Due to an approximation with a finite Taylor 
series, a computational error in the identified oscillatory amplitude occurs and  is observed for the 
simulated system response. The presented approach of modal identification is applied to real mechanical 
systems, such as a steel beam and the horizontal tail of an ultralight aircraft. Using the proposed 
measurement methodology, it is possible to reconstruct the spatial mode shapes of any dynamic linear 
system with an arbitrary geometry. 
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0 INTRODUCTION 
 
One of the key steps in the development of 

a numerical model is its validation, where the 
modal analysis of a numerical model and the 
experimental modal analysis (EMA) of the real 
system are compared. With the results of the 
comparison it is possible to determine the 
adequateness of the numerical model. 

The most common way to undertake a 
modal analysis is by measuring the frequency 
response-functions (FRF) [1] and [2]. This is 
done by signal transformation from the time 
domain to the frequency domain using a Fourier 
transformation. With the use of a fast Fourier 
transform (FFT) algorithm, the calculation of the 
FRF is a simple and useful method used to 
perform an EMA [3] to [5]. The described 
method is suitable for analyzing stationary 
signals, since it averages the signal in time 
domain. For an analysis of non-stationary signals 
it is convenient to use transformations in the time 
or time-frequency domain, for instance, least-
squares complex exponential (LSCE) [1], 
continuous wavelet transform (CWT)  [6], etc. 

The impulse response of a mechanical 
system is a typical non-stationary process where 
the oscillation amplitude decreases exponentially 
with time. Generally, the modal identification, 
based on non-stationary signals, is usually done 
with time-domain methods [1], e.g. LSCE for 
impulse response function or Ibrahim time 

domain (ITD) for free decay response. The idea 
of applying a CWT to a dynamic system response 
for damping identification was first introduced by 
Staszewski [7]. While Staszewski used the Morlet 
wavelet function, Slavič et al. [8] to [10] 
developed their idea using the Gabor wavelet 
function and focusing it on the edge effect and the 
relatively short signals. The properties of the 
Gabor wavelet have been studied in detail by 
Simonovski and Boltežar [11], who also used it 
for fault detection in DC electro-motors [12]. 

Le and Argoul [13] extended the work of 
precendent researchers and identified all the 
modal parameters by applying a CWT to the 
theoretical impulse response of a spatial 4-degree-
of-freedom (DOF) model with the Morlet, 
Cauchy and harmonic wavelet functions. They 
also explored the problem of the edge-effect and 
time-frequency localization.  

Furthermore, Lardies and Gouttebroze 
[14] applied a CWT to analyze real signals 
measured on a tower excited by the wind and 
determined its natural frequencies, damping ratios 
and one-dimensional mode shapes. They 
compared the results, obtained with a CWT to 
those obtained by an autocorrelation method. 
Their work was extended by Huang and Su [15], 
who applied a CWT to discrete equations of 
motion in order to identify the modal parameters 
of a steel frame subjected to an earthquake 
excitation. As a result, they obtained the frame 
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mode shapes by a determination of the planar 
displacements in a horizontal plane.  

 To continue their work, Česnik et al. [16] 
tried to extract the spatial mode shapes of a 
mechanical system with an arbitrary geometry. 
This work represents a continuation and 
enhancement of that research. 

In this paper, a procedure for the 
identification of the modal parameters is 
introduced, based on a CWT of the impulse 
response function. Due to the low-order 
approximation, a computation error of the 
oscillatory amplitude occurs when dealing with 
systems with high damping, which is presented in 
a numerical example. The method is also tested 
on a real system of a steel beam The method is 
also tested on a real system of a steel beam where 
the estimated mode shapes are compared with the 
theoretical ones. With the identification of the 
spatial mode shapes of the horizontal tail of an 
ultralight aircraft, the feasibility of the developed 
method is proven. 

 
1 CONTINUOUS WAVELET TRANSFORM 

 
The introductory part of CWT theory will 

be summarized according to Mallat [6] and 
Tchamitchian et al. [17]. The continuous wavelet 
transformation of the time function f ( t) , that 
satisfies f ( t )∈L 2 (ℜ )  is defined as 

*
,( , ) ( ) ( ) d ,u sWf u s f t t tψ

+∞

−∞

= ⋅∫             (1) 

where ψ(t) represents the wavelet 
function, the superscript * denotes the complex 
conjugate, u is the translation parameter related to 
time and s is the scale parameter that serves as an 
inverse of the frequency. Fig. 1 shows the 
influence of the parameters u and s  on the 
wavelet function.  

 The function f ( t )∈L 2 (ℜ )may be treated 
as a mother wavelet function when satisfying 
oscillatory, energy preservation and admissibility 
conditions [6]. A modified wavelet function 
ψu,s(t), translated in the time domain and dilated 
in the frequency domain also has to satisfy the 
energy-preservation condition, and so we obtain 

( ),
1 ,u s

t ut
ss

ψ ψ −⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

                     (2) 

( ) ( )i
,ˆ ˆ ,u

u s s e sωψ ω ψ ω− ⋅ ⋅= ⋅ ⋅                (3) 

where ( ),ˆu sψ ω   denotes the integral Fourier 
transformation of the wavelet function ψu,s(t) in 
the frequency domain.  

 The impulse response of a multi-degree-
of-freedom (MDOF) system is expected to be a 
summation of N mutually independent function 
pairs [7] 

 ( ) ( ) ( )i

1

,i
N

t
i

i

f t A t e ϕ

=

=∑                     (4) 

where A i ( t )  denotes the amplitude and 
ϕ i ( t )  the phase (9). Therefore, the linearity 
property of the CWT [6] can be used 

( ) ( )( )
1 1

, , .
N N

i i i i
i i

W f u s Wf u sα α
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑        (5) 

 
1.1 Gabor Wavelet Function 

 
The Gabor mother wavelet function is 

defined as [6] 

( )
( )

2

2 i2
1 42

1, , .
t

t
Gabor t e e ησψ σ η

π σ

−

= ⋅ ⋅
             (6) 

By introducing the translation and dilation 
parameters into (6), we obtain a family of Gabor 
wavelet functions, defined in the time and 
frequency domains as [11] 
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Fig. 1. (─) mother ( ), 0,  1Gabor t u sψ = =  and       
(▬) modified ( ), , , 4,  0.5Gabor u s t u sψ = =  
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1.2 Approximation of the CWT of the 
Asymptotic Function  
 

The impulse response of a viscously 
damped single-degree-of-freedom (SDOF) 
system can be written as [8] 

( ) ( )0
0d 0cos ,tf t A e tζ ω ω ϕ−= ⋅ +        (9) 

where ζ  denotes the damping ratio, ϕ 0   is the 
phase shift, ω0   is the undamped angular 
frequency and 2

0d 0 1ω ω ζ= −  is the damped 

angular frequency. In order to separate the 
amplitude and the phase information of the 
response function it can be written in a more 
general form as an analytic function [17] 

( ) ( ) ( )i .f t
a ff t A t e ϕ=                     (10) 

Similarly, a wavelet function may also be 
given in the form of an analytic function as 

( ) ( ) ( )i t
a t A t e ψϕ

ψψ = ⋅ . With regards to the relation  

( ) ( ), 1 2 ,aWf u s Wf u s= ⋅  [6] we can deduce that 
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 In order to solve the equation (11), a few 
approximations have to be made: the function 
S f ( t )  is approximated with a zero-order Taylor 
series (i.e., a constant value A), and the function 
ϕ f ( t )

 
is approximated with a first-order Taylor 

series. By using these approximations, a general 
solution of the CWT can be deduced [8] 

 

( ) ( ) ( )( )
( ) ( )( )

i1 ˆ( , ) ' , ,
2

'' , ' ,

f u
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where ( ) ( )( )'' , 'f fEr A u uϕ  denotes the error 

function due to the use of the finite Taylor series. 
On the basis of the linearity property of the CWT 
(5) we can apply an approximation (12) to multi-
component functions, such as the impulse 
response of the MDOF system (4) in order to 
identify the modal parameters of a particular 
natural frequency. 
 

1.3 Modal Parameter Identification 
 

Due to the nature of a CWT it is possible 
to transform the measured signal in form of a 
time series to the frequency domain without the 
loss of time-domain information. Furthermore, a 
CWT offers very good resistance to the noise in 
the measured signal. Regarding the nature of the 
CWT, it is possible to observe the development of 
natural frequencies with time. In order to apply 
the CWT to modal analysis it is essential to 
analytically describe the distinctive properties of 
the impulse response’s wavelet transformation. 
The deduction of the impulse-response CWT will 
be presented according to Staszewski [7] and 
Slavič [8], who analyzed the Morlet and Gabor 
wavelets, respectively. 

 From equation (11) we can see that the 
essential contribution to the magnitude is 
provided by the stationary points of the argument 
of the integrand [16], i.e., the points ts, such that 

   ( ) 1' ' .s
f s

t ut
s sψϕ ϕ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

               (13) 

 The canonical pairs ( ),u s , which satisfy 

the condition t s (u,s)=u  define the ridge of the 
wavelet transform [17]. The ridge can be detected 
with different approaches, and Staszewski 
presented three: the cross-section method, the 
amplitude method and the phase method [7]. In 
this work, the phase method, which is based on a 
frequency match (13), is used. In order to 
determine the ridge an initial estimation of the 
instantaneous frequency ω1  has to be made. It is 
then entered into the recursive equation  

        
( ) ( )1 1

1
1 1

, ,
,i i i i

i
i i

u u
u u

φ η ω φ η ω
ω + −

+
+ −

−
=

−
 (14)  

which gradually converges to an instantaneous 
frequency in the signal (Fig.2). 

The values of the wavelet transform 
restricted to its ridge are called the skeleton of the 
wavelet transform; they serve for the modal-
parameter identification (16, 17). 

When considering an impulse response 
function (9) an assumption of constant frequency 
can be made. 
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Fig. 2. Ridge detection using the phase method 

with the recursive equation (14) 
 

Due to the linear relation between frequency and 
scale for the Gabor wavelet φ ' (u ,s)=η /s   we 
can conclude that the scale variable on the ridge 
s(u) is constant  s(u)=s0 . 

By introducing the Gabor wavelet function 
into equation (12), regarding the frequency match 
and neglecting the error function, it follows that 
[6] 

        ( ) ( )0d
1 42 2

0 0
1, 4 .
2

uWf u s Ae sζ ω π σ−=   (15) 

 Finally, we can deduce equations for the 
direct identification of the damping ratio ζ and 
the initial amplitude A 
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1.4 ( )A t Variation Influence on the Identified 
Amplitude 
 

An approximation for the theoretical CWT 
of the impulse response is deduced by 
approximating an impulse response (9) as a finite 
Taylor series. An approximation of  A(t) = const. 
is exact only for asymptotic signals, like the 
undamped response, where the phase variations 
are considerably faster than the amplitude 
variations 

   ( )
( ) ( )
'

' .f
f

f

A t
t

A t
ϕ<<                           (18) 

 When considering signals by which the 
asymptotic condition is not entirely satisfied, e.g., 
a highly damped impulse response, an error 
occurs during the amplitude A identification.  

 The presented error represents a 
deviation of the reconstructed amplitude Areconstr  
from the real amplitude in the system response 
Areal. It can be observed from a numerical 
example of a highly damped impulse response 
and depends on the damping ratio ζ and the 
parameter σ (Fig. 3 and Fig. 4); however, it is 
independent of the real amplitude value Areal. 
Consequently, the ratio between the real 
amplitude Areal and the reconstructed amplitude 
Areconstr which serves for the mode-shape 
reconstruction, is constant 

   1 real 2 real

1 reconstr 2 reconstr
const.

A A
A A

= =          (19) 

 

 
Fig. 3. Reconstructed initial amplitude at variable 

parameter σ  and Areal(t = 0) =1. 
 

 
Fig. 4. Reconstructed initial amplitude at  

( )1 real 0 1A t = =  and  ( )2 real 0 2A t = = . 
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This finding is important when a 
reconstruction of the mode shape is made only by 
comparing the amplitudes of the displacements at 
different measurement positions (Section 2.1). 
 
1.5 Spatial Mode Shapes – Geometry 

  
In order to reconstruct the spatial mode 

shapes the spatial vibrations have to be measured 
with accelerometers at pre-defined measurement 
positions. When performing a modal analysis on 
simple geometry such as a steel beam (Section 
2.1), the response accelerometers can be oriented 
in the same direction and no issues arise from the 
geometry point of view. When analyzing a system 
with three-dimensional geometry, the orientation 
of the response accelerometers in the same 
direction as the reference one is not always 
possible (Fig. 5). To overcome this problem, the 
local coordinate system of each accelerometer is 
referenced to the global coordinate system of the 
measured sample.   

One possibility of describing this linkage 
is with the Euler angles (Eqs. 20 to 22). 

 

 
 

Fig. 5. Problem of spatial vibration 
measurements 

 

To reconstruct a single spatial mode shape, 
the identified displacements need to be  
transformed from the local coordinate systems (as 
measured) into the global coordinate system with 
the use of the rotational matrices 

 

( ) ( )
( ) ( )

,

1 0 0
0 cos sin
0 sin cos

xR α α α
α α

⎡ ⎤
⎢ ⎥= −⎢ ⎥
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,    (20) 
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( ) ( )
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β β

β β

⎡ ⎤
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( ) ( )
( ) ( ),

cos sin 0
sin cos 0

0 0 1
zR γ

γ γ
γ γ

⎡ ⎤−
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 ,    (22) 

 
where α, β and γ denote the Euler rotation 

angles about the x, y or z axis, respectively. 
 
 

1.6 Identification of the Spatial Mode Shapes  
 

The procedure to perform the experiment 
and reconstruct the single spatial mode shape is 
presented in the following steps: 

 
a) Experiment 

1. Definition of the excitation position. 
2. Definition of the global coordinate 

system, n response positions with n local 
coordinate systems on the measured 
sample’s geometry. 

3. Selection of the reference position and 
the reference direction (this should be 
the position/direction where high 
oscillations of the identified modes are 
expected). 

4. Excitation of the system with the 
impulse hammer, acceleration 
measurement on the reference 
position/direction and on the response 
position(s) in the chosen direction(s). 

b) Reconstruction 
5. Identification of the ridge (14) and of the 

initial amplitudes Aref,j and Aresp,i,j (17) for 
the reference and response signals, 
respectively; j denotes the consecutive 
number of the impulse excitation and i is 
the number of the response position 
(i=1,…, n). 

6. Computation of the normalized response 
amplitude Anorm,i with respect to the 
reference amplitude Aref,j with the ratio 
Anorm i = Aresp i,j/ Aref, j.   
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7. Transformation of the normalized 
displacements Anorm,i from the local to the 
global coordinate system (Eqs. 20 to 22). 

8. Graphical presentation of the spatial-
mode shape. 

 
2 EXPERIMENT 

 
For a relatively simple steel beam, the 

presented approach for modal identification is 
experimentally compared to the beam’s 
theoretical mode shapes. Furthermore, to 
demonstrate an experimental identification of the 
spatial modal analysis, the horizontal tail of an 
ultralight aircraft is presented. 

 
2.1 Experimental Validation 

 
In order to perform a specific numerical 

manipulation, custom programs and algorithms 
were developed by the authors. Custom-made 
programs offer a higher flexibility and provide 
the  author with an insight into the computation 
process. To check the correctness of the 
developed programs a simple experiment with 
well-defined theoretical mode shapes was carried 
out. With algorithms that are verified on simple 
models, it is possible to perform a reliable modal 
analysis on more complex spatial structures.  

 A simple validation experiment for 
method verification was performed on a free-free 
supported steel beam with dimensions of 
5x40x1000 mm, excited by an impulse hammer at 
a pre-defined "excitation" position. The 
experiment was made with several impulse 
excitations; during  each excitation the response 
accelerometer was at a different position, as 
described in the following. 

 For the sake of experimental simplicity, 
only two accelerometers were used for the 
measurements. One accelerometer was denoted as 
the "reference" sensor and was always placed in 
the "reference" position. The second 
accelerometer, denoted as the "response" 
accelerometer was placed at a different 
"response" position during each impulse 
excitation.  

When carrying out the described 
experimental procedure a precaution should be 
taken; due to changing of position of the response 
accelerometer a mass matrix of the whole beam 

system is changing. As a result some errors of the 
reconstructed mode shapes and belonging natural 
frequencies could occur, especially when using 
accelerometers with considerable mass and when 
identifying high-order mode shapes with local 
nature. With application of a lightweight 
accelerometer with a mass of 1g and at 
identification of global mode shapes only 
negligible errors are expected at the validation 
experiment.  

Eleven measuring positions were set along 
the beam: position 1 was defined as the 
"reference" position, and the remaining positions 
were defined as the "response" positions, as 
shown in Fig. 6. 

 

 
 

Fig. 6. Measuring-position placement on the 
analyzed beam 

 

 After the whole set of measurements was 
carried out, we could obtain the impulse response 
from any pre-defined position along the beam. 

 

 
 

Fig. 7. The validation-experiment configuration  
set-up 

 

With the use of a CWT on the measured 
responses it is possible to identify the modal 
parameters according to the theoretical 
backgrounddescribed in Section 1.3. The Eq. (14) 
is used to define the time development of an 
observed natural frequency. Once the value of the 
natural frequency is known, Eqs. (16) and (17) 
are used to define the damping ratio ζ of the 
system and the initial amplitude A at the location 
of the measurement.  

Based on the ratio between the 
displacements at the reference and selected 
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positions (Section 1.6), the first nine normalized 
mode shapes were reconstructed and compared to 
the theoretical mode shape by computing the 
Modal Assurance Criterion MAC (ΦX, ΦA) [1], 
shown in Figure 8 and stated in Table 1. Table 2 
shows the associated natural frequencies fi  and 
the damping ratios ζi. 
 
2.2 Horizontal Tail Experiment 
 

An experiment similar to the one 
described in Section 2.1. was carried out on the 
horizontal tail of an ultralight aircraft. Since the 
tail geometry is described using spatial curves 

(Fig. 9), a spatial vibration measurement had to 
be performed. 

In order to reduce the experimental 
complexity and the number of nonlinearities in 
the system, the tail was supported free-free. 
Twenty-eight measuring positions were defined 
on the tail’s surface, as shown in Fig.10. 

Altogether, 28 local coordinate systems 
were defined in such a way that the z axis was 
normal to the surface and the x axis followed 
obvious lines in the tail geometry. As a reference, 
measurement position 11 was chosen (Figs. 10 
and 11), oriented in the local direction z.

 

Table 1. MAC(ΦX, ΦA) matrix 
Mode 1 2 3 4 5 6 7 8 9 

0.9994 0.0001 0.0815 0.0000 0.0765 0.0001 0.0742 0.0001 0.0553 
0.0001 0.9996 0.0000 0.0750 0.0000 0.0751 0.0000 0.0708 0.0000 
0.0695 0.0001 0.9995 0.0001 0.0751 0.0000 0.0751 0.0000 0.0588 
0.0002 0.0700 0.0000 0.9992 0.0000 0.0762 0.0002 0.0758 0.0000 
0.0672 0.0000 0.0709 0.0000 0.9995 0.0001 0.0781 0.0000 0.0668 
0.0001 0.0701 0.0000 0.0728 0.0001 0.9992 0.0002 0.0839 0.0000 
0.0683 0.0000 0.0706 0.0000 0.0757 0.0001 0.9997 0.0001 0.0885 
0.0001 0.0692 0.0001 0.0716 0.0002 0.0807 0.0000 0.9992 0.0000 

 
 
 

MAC 
 (ΦX, ΦA) 

 
 

0.0554 0.0000 0.0582 0.0000 0.0639 0.0000 0.0851 0.0001 0.9997 
 
Table 2. Beam’s natural frequencies and damping ratios 

i 1. 2. 3. 4. 5. 6. 7. 8. 9. 
fi  [Hz] 26.08 71.60 140.63 232.73 347.88 486.25 647.93 832.62 1040.7 
ζi .104 3.567 1.895 20.649 1.311 1.035 0.9178 1.502 0.8018 0.5266 

 

 
Fig. 8. Modal assurance criterion matrix 

 

 
Fig. 9. Horizontal tail in isometric view 

 

 
 
Fig. 10. Measuring positions’ placement and the 
global coordinate system of the horizontal tail 
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In each measurement two signals were 

sampled: 
- the acceleration at the reference position 

in the reference direction, 
- the acceleration at the response position 

in one of the defined local axes.  
Altogether, 84 separate measurements 

were made (28 measuring positions in 3 
directions). 

 

 
Fig. 11. A horizontal tail with 

accelerometers placed at the reference position 
(left) and at the i-th response position (right) 

 
In order to transform the identified 

displacements from the local to the global 
coordinate system, special software was 
developed by the authors, to which an arbitrary 
geometry can be imported. The geometrical 
characteristics are imported into the software in 
the form of a finite-element-method mesh that 
consists of volume elements. The user defines the 
positions and the orientations of the local 
coordinate systems and the corresponding 
identified displacements of the single mode 
shape. The software generates a script which can 
be run in ANSYS and gives a reconstructed mode 
shape in the form of a static problem solution.  

The identified natural frequencies and the 
damping ratios are shown in Table 2, and the 
experimentally reconstructed normalized mode 
shapes are shown in Fig. 12. 

 
Table 2. Horizontal tail’s natural frequencies and 
damping ratios 

i fi  [Hz] ζi .104 

1. 22.8 63.17 
2. 43.4 83.89 
3. 75.5 141.8 

 

 
 

a) First mode shape 

 
b) Second mode shape 

 
 

c) Third mode shape 
 

Fig. 12. Reconstructed normalized horizontal 
tail’s mode shapes 

 
3 DISCUSSION 

 
From the validation experiment, which 

served as an ideal, real system, it is obvious that 
the identified mode shapes agree with theoretical 
mode shapes to a high degree, although some 
changes in mass matrix occured due to the 
displacement of a response accelerometer. With 
the simple beam experiment the applicability of 
the continuous wavelet transform to determine the  
modal parameters is confirmed. A measurement 
approach with the introduction of a reference 
accelerometer was shown to be suitable.  

According to the experiment realization 
and the results, performed and obtained in Section 
2.2, the presented approach provides a simple and 
feasible method for an experimental 
determination of the modal parameters. Although 
a mechanical system, such as a horizontal tail, is 
not an ideal system without nonlinearities, the 
extraction of its modal parameters with a CWT 
was shown to be a robust and effective method. 
 

4 CONCLUSIONS 
 

 In this paper a modal parameter 
identification of a dynamic system using a 
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continuous wavelet transformation of system 
impulse response was presented. The computation 
error due to the finite Taylor series was indicated 
and its influence on the mode-shape 
reconstruction was shown. Steel beam mode 
shapes were reconstructed and compared to the 
theoretical mode shapes. The spatial mode shapes 
of a free-free supported horizontal tail of an 
ultralight aircraft were reconstructed.  
 A comparison among the theoretical and 
experimental mode shapes of the beam confirmed 
the suitability of the proposed method for mode-
shape reconstruction. The main contribution of 
this paper is an enhancement of known methods 
for EMA using a CWT for one-dimensional cases 
with a new method for the reconstruction of 
spatial mode shapes for an arbitrary geometry. In 
this case it is a horizontal tail. The experimental 
results can be used for the validation of the 
numerical model. 
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