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Automatic condition monitoring application for the detection of spring faults during assembling of 

reciprocating compressors is presented in this paper. Spring faults are characterized by incorrect 
positioning of compressor body on the supporting springs. Consequently, compressors with such faults 
should be detected and eliminated from the production. The paper describes development and application 
of a condition monitoring (CM) system for the production line. The CM system is composed of a 
mechanical pneumatic system and a software for the analysis and detection of failures. The mechanical 
system is designed to push toward the body of the compressor and simultaneously measure the pressing 
force. Spring faults are characterized by an increased force, therefore force signals are used to extract 
features, appropriate for an automatic condition monitoring. The system was tested during regular 
production in the company, with additional sets of compressors with built-in spring faults. The main 
contribution of this paper is the development and testing of various decision strategies for the recognition 
of faulty compressors. Standard 3-sigma decision strategy is compared to optimized stationary decision 
strategy and two adaptive strategies: adaptive strategy with constant deviation and adaptive strategy with 
adaptive deviation. Results show that adaptive decision strategy with adaptive deviation yields the best 
fault recognition rate and is, therefore recommended for the application on the industrial production line. 
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0  INTRODUCTION 
 

Increasingly demanding and competitive 
market enforces constant improvement of 
production quality of reciprocating 
compressors for domestic appliances.  
Therefore appropriate condition monitoring 
(CM) is becoming more and more important [1] 
and [2]. During the production process, various 
mechanical faults can occur due to production 
and assembly intolerances, or due to material 
defects. It is very important for the company to 
timely catch such faults in order to prevent end 
users receiving such products. The need to 
increase machine reliability and decrease 
production loss due to faulty products in highly 
automated production lines requires accurate 
and reliable CM techniques [3]. Various 
condition monitoring approaches have been 
described in the recent years [4] to [8]. The key 
to successful CM applications is in the 
selection of proper signal processing 
techniques and robust operation [9]. Industrial 
CM applications are subject to time variations, 

drift, and numerous noise and other influential 
sources. Therefore, suitable normalizations 
and/or adaptive tunings should be applied for 
successful implementation [10]. 

A specific group of mechanical faults is 
discussed in this paper, namely faults that occur 
during the assembly operation where a 
compressor body is positioned into the housing. 
During the correct positioning compressor body is 
set on four supporting springs that compensate 
vibrations transmitted from the compressor to the 
housing. If positioning is not correct, one or more 
supporting springs can be dislocated and such 
defects are critical for the operation of the 
compressor. Compressors with this type of defect 
should be eliminated from the production but 
spring positioning defects are difficult to detect. 
Fig. 1 shows a side view of a complete 
reciprocating compressor and Fig. 2 presents 
supporting springs at the bottom of the 
compressor housing with spring locations 
(A,B,C,D) and possible dislocation directions 
(1,2,3). Examples of correct and incorrect spring 
positioning are shown in Figs. 3 and 4. 
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Fig. 1.  Typical reciprocating compressor 

 
 

 
Fig. 2.  Locations of supporting springs (A,B,C,D) 

and directions of possible dislocations (1,2,3) 
 
 
 

Fig. 3.  Correct spring positioning 
 

Fig. 4.  Spring positioning fault C2 
 
The paper describes a method for 

automatic detection of spring faults. An 
experimental condition monitoring system was 
developed and applied to the production line of 
the company. Our objective was to investigate the 
possibilities of automatic detection of spring 
faults based on measured force signals during 
vertical pressing of the compressor body from the 
top. It was discovered that spring faults cause 
increased force signals during the pressing 
operation. Force signals were used to extract 
features, appropriate for automatic detection of 
spring faults during assembling of compressors. 
Various decision strategies, presented in section 
1, were designed and their efficiency was 
evaluated by an appropriate objective function. 
The experimental setup is described in section 2 
and the results of applying various decision 
strategies are presented in section 3. Discussion 
of results and recommendations for the industrial 
application are summarized in section 4 and 
finally, some conclusions are drawn in section 5. 

 
1  THEORY 

 
Generally, a condition monitoring system 

requires an input in a form of measured variables 
or extracted features, and a decision strategy to 
diagnose the outcome. Decision strategy can be 
expressed through a decision threshold which 
divides inputs into categories such as “OK” and 
“NOT_OK”. Decision threshold has an essential 
influence on the diagnostic accuracy and 
sensitivity of the CM system [11]. Decision 
threshold can be constant or adaptive. Automated 
fault detection in changing industrial conditions 
often requires adaptive adjustment of decision 
threshold [10]. Undesirable behaviours can be 
roughly classified into two major classes: 
degraded functioning known as performance 
problems, and failures, i.e., a total inability to 
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carry out certain function [12]. In both cases, the 
decision threshold can be overdrawn. By using 
adaptive thresholds, the decision strategy can be 
more tightly adjusted to the current production 
population [13] and [14]. 

In this paper, various decision 
thresholds are compared to the objective of 
automatic detection of spring faults on 
compressors. As a basis, a 3-sigma strategy is 
applied. Then, this basic approach is improved 
by optimizing the single stretching parameter. 
Besides the constant decision thresholds, two 
adaptive strategies are proposed. The adaptive 
approaches are based on exponential 
smoothing methods [15] that emphasize the 
importance of new data and attenuate the 
contribution of old data. In order to compare 
decision strategies, an evaluation method is 
proposed in the next section. 

 
1.1  Evaluation of Decision Thresholds 

 
When applying decision strategy in a 

company with the objective to recognize defected 
compressors, two types of false recognitions are 
possible: 

A) defected compressor was recognized as OK,  
B) normal compressor was recognized as 

NOT_OK.  

The importance of each false recognition 
depends on company’s business priorities. 
Therefore, the proper weighting for each false 
recognition must be addressed according to these 
priorities. We propose the following criterion 
function J that addresses the problem of weighted 
false recognitions: 

�
�

�
	�

�
N

NN
J nf  (1)

The criterion function J is composed of 
weighted number of type (A) false recognitions 
Nf, number of type (B) false recognitions Nn, 
number of total monitored compressors N, 
weighting factor �, and parameter � for 
adjustment of the criterion function range. For the 
case study presented in this paper, the weighting 
factor � = 10 was selected. This corresponds to 
company’s policy striving to minimize defects at 
the end user level. Parameter � = 1000 was 
arbitrarily chosen to shift criterion values into the 
appropriate range. Smaller criterion function 

value corresponds to better decision strategy. The 
criterion function was applied to evaluate the 
following decision strategies, presented in 
subsequent sections: 

1. constant decision threshold, 
2. optimized constant decision threshold, 
3. adaptive decision threshold with 

constant deviation, 
4. adaptive decision threshold with 

adaptive deviation. 
 

1.2  Constant Decision Threshold 
 
As the first decision strategy, the standard 

3-sigma method was applied. This method 
requires computation of mean m and standard 
deviation �, as shown in Eqs. (2) and (3). Only 
normal compressors were used to compute m and 
�. The scalar samples, measured or extracted from 
a population of N compressors, are denoted as zi,  
i = 1...N. 
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The computed mean and standard deviation are 
then combined to yield decision thresholds 
according to Eqs. (4) and (5) where high decision 
threshold Th and low decision threshold Tl are 
calculated: 

.�
�

���
�	�

kmT
kmT

l

h  (4)
(5)

Both thresholds are obtained by properly 
selecting the stretching parameter k. According to 
the 3-sigma strategy, the parameter k = 3 is 
selected. 

 
1.3  Optimized Constant Decision Threshold 

 
The standard 3-sigma decision strategy 

can be further optimized with respect to the 
applied criterion function J. In this case, the 
stretching parameter k can be chosen to yield 
minimum value of criterion function J. By using 
optimized value of parameter k, some 
improvement in fault recognition accuracy is 
expected. 
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1.4  Adaptive Decision Threshold with Constant 
Deviation 

 
Another improvement can be achieved by 

substituting stationary decision thresholds (4) and 
(5) with adaptive decision thresholds. In the first 
approximation, population mean m is substituted 
by time-dependent mean m(t) that follows the 
exponential smoothing based adaptive low: 

)()1()()1( tmtztm ��	��	 �� . (6)

Parameter ][ 1,0��  controls adaptive behaviour. 
Deviation � is left stationary as in constant 
decision strategies. The decision thresholds can 
be expressed as: 

.)()(
)()(
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���
�	�

ktmtT
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l

h  (7)
(8)

Adaptive decision threshold with constant 
deviation requires selection of the following 
parameters that can be calculated by numerical 
optimization: �, k. 

 
1.5  Adaptive Decision Threshold with 
Adaptive Deviation 

 
Adaptive decision threshold with constant 

deviation can be further improved by adding 
adaptive deviation s(t). In this case, both mean 
m(t) and deviation s(t) become time dependent. 
Adaptive mean is expressed by Eq. (6) and 
adaptive deviation is expressed as follows: 

)()1()()()1( tstmtzts ��	���	 

  (9)

Parameter ][ 1,0�
  regulates adaptive behaviour 
of deviation, similarly as � for adaptive mean. 
Adaptive decision thresholds with adaptive 
deviation can be expressed as: 

).()()(
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(11)
This strategy requires optimization of three 
parameters: �, �, k. 

 
 

2  EXPERIMENTS 
 

2.1  Experimental System 
 
Experimental CM system is schematically 

shown in Fig. 5 and a picture of an installed 
system on the production line is shown in Fig. 6. 
The CM system consists of a mechanical 
pneumatic subsystem and a computer based 
subsystem. The mechanical system is designed to 
push toward the body of the compressor and 
simultaneously measure the pressing force. The 
computer based subsystem is responsible for data 
acquisition (DAQ), data analysis and control of 
the pneumatic subsystem. The mechanical 
subsystem consists of a mechanical frame which 
supports the pneumatic cylinder (FESTO DNC-
32-60-PPV-A). The pneumatic cylinder is 
equipped with force sensor (HBM U3/5kN) and a 
specially designed pressing tip that corresponds to 
the shape of the compressor body. During the 
pressing operation, the force signal is acquired. 
The force signal is fed through the amplifier 
(HBM AE301) into the data acquisition (DAQ)

 

Amplifier

Force sensor

Pneumatic cylinder

Compressor

Controls

Force

Mechanical pneumatic system

DAQ and 
control unit

Inputs

 
 

Fig. 5. Experimental system design 
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Fig. 6. Installed experimental system 
  

card (National Instruments NI PCI-6232) and 
analysed on the computer. The software for 
analysis and user interface was developed on the 
platform National Instruments LabView 8.2 in the 
Laboratory of Synergetics, Faculty of Mechanical 
Engineering. 

 
2.2  Feature Extraction 

 
Examples of force measurements during 

the pressing operation for normal compressor and 
compressor with spring fault are shown in Fig. 7.  
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Fig. 7.  Time series of force signals for normal 
and faulty spring position 

Increased force level in the stationary part 
(0.2 to 1.0 s) can be noticed. In order to reduce 
the dimensionality of the acquired time series, the 
scalar feature is extracted from force signals for a 
simplified comparison of measurements. Only the 
stationary part of the force curve is relevant for 
the recognition of spring faults, therefore the 
feature is extracted as an average of the stationary 
force signal:  
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Indexes N1 and N2 indicate the appropriate time 
window (0.2 to 1.0 s). By using the extracted 
features for each measurement, only scalar values 
must be evaluated and this significantly simplifies 
the condition monitoring analysis.  

 
 

2.3  Measurements 
 
Industrial testing of the proposed CM 

system was accomplished in the company 
Danfoss Compressors, d.o.o. in the time period 
from 5 to 7 February 2008. Testing was 
performed during the regular production 
operation, with additional inserted faulty 
compressors with well defined built-in spring 
faults. During testing 10400 compressors were 
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monitored and 115 of them included built-in 
spring faults. The overview of measurements is 
shown in Fig. 8 where the time series of extracted 
features for each measurement is presented. The 
presentation is split into two subsequent plots due 
to high density of presented data. Compressors 

with built-in spring faults are marked with x. It 
can be observed that features for faulty 
compressors generally exceed the feature values 
of normal compressors. The exact analysis is 
presented in the next section. 

18:00 00:00 06:00 12:00 18:00
0

50

100

150

200

250

300

Time (5�6 Feb 2008)

F
or

ce
 [N

]

 

 
Measurements
Built�in faults

18:00 00:00 06:00 12:00 18:00
0

50

100

150

200

250

300

Time (6�7 Feb 2008)

F
or

ce
 [N

]

 

 
Measurements
Built�in faults

 
Fig. 8. Extracted features measured with the experimental CM system during testing on the production 

line 
 

3  RESULTS 
 
Measurements presented in the previous 

section (10400 compressors) were used to test the 
selected condition monitoring strategies. Four 
different CM strategies discussed in section 1 
were applied. Each CM strategy is defined by the 
decision threshold that differentiates between OK 
and NOT_OK samples. The success of the 
decision threshold is evaluated by the criterion 
function J (Eq. 1). Our goal was to find the 
optimal decision threshold that yields minimum 
value of the criterion function J. 

 
3.1  Constant Decision Threshold 

 
As the first strategy candidate, the 

standard 3-sigma approach was applied. Mean m 

and standard deviation � were calculated 
according to Eq. (2-3) where only normal 
compressors were taken into consideration. Mean 
and standard deviation were applied with 
stretching parameter k = 3 to calculate the 
decision threshold Th according to Eq. (4). The 
result is shown in Fig. 9 and expressed in Table 1. 
Criterion function J = 5.49 was obtained. This 
strategy fails to correctly recognize 30 samples, 
27 OK and 3 NOT_OK. It should be noted that 
the Lilliefors normality test [16] rejects the 
assumption of normal distribution of samples. 
However, if the complete data set is divided into 
two subsequent parts, samples in both subsets are 
normally distributed. 
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Fig. 9. Condition monitoring with constant 3-sigma decision threshold 

 
 

Table 1.  Summary of CM with a constant 3-
sigma decision threshold 

 
Parameter Value 
Mean m 25.7 N 
Standard deviation � 7.4 N 
Stretching parameter k 3 
Decision threshold Th 47.8 N 
Criterion function J 5.49 

 
 

3.2  Optimized Constant Decision Threshold 
 
Due to non-normal distribution of a 

complete data set and custom criterion function J, 
some improvement in decision accuracy can be 
expected by optimizing the stretching parameter 
k. In optimized constant decision threshold 
strategy, parameter k is numerically optimized to 
yield the minimum value of the criterion function 
J. In this case, the optimal value k = 3.1 is 
obtained, which results in a slightly improved 
criterion function J = 4.72. The result for 
optimized constant decision threshold strategy is 
summarized in Table 2. 

Table 2.  Summary of CM with optimized  
constant decision threshold (k = 3.1) 

 
Parameter Value 
Mean m 25.7 N 
Standard deviation � 7.4 N 
Stretching parameter k 3.1 
Decision threshold Th 48.5 N 
Criterion function J 4.72 

 
 

3.3 Adaptive Decision Threshold with Constant 
Deviation 

 
Further improvement of the condition 

monitoring accuracy can be expected by 
switching to adaptive mechanisms where 
statistical parameters (mean, deviation) are online 
adaptively adjusted. Such an approach constantly 
adapts the decision threshold according to the 
fluctuations of extracted features and, therefore in 
general improves the decision accuracy. In the 
first adaptive strategy, only the mean is expressed 
as a time-dependant variable m(t). Deviation is 
kept constant as in previous two decision 
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strategies but the stretching parameter k is 
optimized to yield the optimal result J. The time 
dependant mean is calculated according to Eq. (6) 
and the decision threshold Th according to Eq. (7). 
The parameters � and k are optimized numerically 
with the objective to find the minimum value of 
the criterion function J. This strategy yields 
considerable improvement in the final result with 
criterion function value J = 2.51. The result is 
shown in Fig. 10 and expressed in Table 3. 

 

Table 3.  Summary of CM with adaptive decision 
threshold with constant deviation 

 
Parameter Value 
Mean m adaptive 
Standard deviation � 7.4 N 
Stretching parameter k 3.1 
Adaptive parameter � 0.01 
Decision threshold Th adaptive 
Criterion function J 2.51 
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Fig. 10. Condition monitoring with adaptive decision threshold with constant deviation. Parameters are 

set as k = 3.1 and � = 0.01 
 

 
3.4  Adaptive Decision Threshold with Adaptive 
Deviation 

 
As the last strategy, adaptive decision 

threshold with adaptive deviation is applied. 
Compared to the adaptive decision threshold with 
constant deviation, this strategy contributes to the 
condition monitoring accuracy with additional 
adaptiveness in the calculation of deviation. 
Besides the time dependent mean m(t) according 
to Eq. (6), also deviation is now calculated 
according to Eq. (9) in time dependent fashion as 

s(t). With both parameters m(t) and s(t) calculated 
online, tighter accordance with production 
process can be gained. The adaptive decision 
threshold with adaptive deviation is calculated by 
Eq. (10). Three parameters must be determined 
for this strategy, namely k, � and �. The selection 
of parameters is preferably optimized by 
numerical optimization. The result obtained by 
this strategy amounts to J = 0.96, which 
considerably exceeds all the previous results. The 
condition monitoring result is shown in Fig. 11 
and expressed in Table 4. 
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Fig. 11. Condition monitoring with adaptive decision threshold with adaptive deviation. Parameters are 

set as k = 4.3, � = 0.008, � = 0.008 
 

 
Table 4.  Summary of CM with adaptive decision 
threshold with adaptive deviation 

 
Parameter Value 
Mean m adaptive 
Deviation s adaptive 
Stretching parameter k 4.3 
Adaptive parameter � 0.008 
Adaptive parameter � 0.008 
Decision threshold Th adaptive 
Criterion function J 0.96 

 
 

4  DISCUSSION 
 
Comparison of results with various 

condition monitoring strategies is summarized in 
Table 5. An improvement in criterion function 
value J obviously grows proportionally with the 
effort and sophistication of the CM strategy 
applied. The most sophisticated method, adaptive 
decision threshold with adaptive deviation, yields 
the most promising result. The method requires a 

numerical optimization of three free parameters, 
namely k, � and �, which is quite feasible for an 
industrial application without creating extra 
complications. Consequently, this method is 
suggested as a preferable implementation for the 
industrial CM system. 

The results in Table 5 also comprise the 
numbers of misclassified compressors for each 
method. The following false classifications are 
presented: 

Ne – overall number of false classifications, 
Nn – number of false classifications of normal 

compressors, 
Nf – number of false classifications of de-

fected compressors.  

It can be observed that method 3 yields 
less overall number of false classifications then 
method 4 but the latter method correctly 
recognizes all the defected compressors and, 
therefore results in smaller value of criterion 
function J.  
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Table 5.  Summary of results with various condition monitoring strategies 
 Strategy Ne Nn  Nf  k � & � J
1. Constant decision threshold 30 27 3 3 / 5.49 
2. Optimized constant decision threshold 22 19 3 3.1 / 4.72 
3. Adaptive decision threshold with constant deviation 8 6 2 3.1 0,001 2.51 
4. Adaptive decision threshold with adaptive deviation 10 10 0 4.3 0,008 0.96  

 
 

5  CONCLUSIONS 
 
A strategy for automatic condition 

monitoring of spring faults during the assembly 
are evaluated: 

1. constant decision threshold, 
2. optimized constant decision threshold, 
3. adaptive decision threshold with 

constant deviation, and  
4. adaptive decision threshold with 

adaptive deviation.  

The approaches increase in complexity 
and also in the adaptive ability to follow the non-
stationary production processes. Industrial 
experiments show that the most complex 
approach, namely adaptive decision threshold 
with adaptive deviation yields best fault 
recognition results. The implementation cost of 
this approach is very affordable, therefore this 
strategy is recommended for industrial 
implementation. The strategy was applied in the 
company to solve the problem of detection of 
spring faults. Nevertheless, the proposed method 
is very general and can be recommended for the 
implementation in broad range of production 
industries. 
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