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In the presented model of the utilization process of parallel systems, the inherent characteristics of 
system reliability and maintainability as well as repair shop capacity are included. For the system 
required to perform a desired function and produce certain yield an achieved reward level is proposed as 
a measure of the utilization process quality by introducing a referent reward concept. System modeling is 
accomplished by applying Markov Techniques, and several elements are incorporated: failure and repair 
rates as well as repair shop capacity. By getting closed-form mathematical expressions for system state 
probabilities and the achieved reward level, an investigation of reliability, maintainability and repair 
shop capacity on the achieved reward level and system availability is done. 
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0 INTRODUCTION 
 

In production, power supply, 
manufacturing and processing there are plenty of 
operations that involve the use of systems 
composed of components or subsystems which 
are mutually independent in accomplishing the 
same function. Each of these components 
participates in the overall output result with their 
own characteristics and in case several 
components fail, the entire system continues to 
function. These systems can be treated as parallel 
systems and are usually considered as 1-out-of-
n:G systems, i.e. the entire system continues to 
function as long as at least one of its n 
components (units) is working. 

However, in this case failures of 
components reduce a system capability and the 
application of classical parallel reliability models 
for overall output result evaluation is limited. 
Considering a stochastic nature of system state 
change process, modeling and evaluation of such 
a system can be more appropriately achieved by 
the application of Markov Techniques [1]. 
Besides, an extension of continuous time Markov 
chains with reward model results in very useful 
tools for system performance analysis [2]. 

In this paper, an application of reward 
model for overall system output result evaluation 
is shown. By introducing a referent reward 
concept, measures of instantaneous and achieved 
reward level are proposed. For a system in 
continuous operation process, an analysis of the 
influence of reliability and maintainability as well 

as repair shop capacity on reward level and 
availability is done. 

 
1 REWARD MODEL 

 
All technical systems can fulfill their 

purpose only when engaged in an utilization 
process, which involves several different 
processes like operation process and maintenance 
process. During the operation process, a system 
performs a desired function and produces certain 
yield and gain, and during the maintenance 
process system functionability is 
maintained/restored [3]. According to its specific 
purpose the result of the system operation process 
can be expressed by various physical measures 
and many other operational characteristics. 

Most often, these measures express system 
performances, which depend on system state. In 
other words, each system state has a certain 
performance level expressed by an appropriate 
reward rate. It can be interpreted as the rate at 
which reward is accumulated during the sojourn 
time of the system in the given state. The set of 
rewards associated with the individual system 
states compose the reward structure. There are a 
few different ways of assigning rewards in the 
reward structure. Rewards can be applied for the 
analysis of dependability in which case rewards 
are 0 or 1 depending on the availability of the 
overall system. Moreover, the rewards can enable 
a mixed evaluation of performance and 
dependability, and generally speaking the reward 
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function is intended to be a measure of 
performance per unit time [2]. 

By accepting a concept of referent reward 
as the criteria of system utilization process quality 
in the following achieved reward level f(t) is 
interpreted as the ratio between the accumulated 
reward Φ(t) and referent reward Φ0(t) after 
operating time interval (0,t) in the utilization 
process: 

0

( )( )
( )
tf t
t

Φ
Φ

= . (1)

Similarly, the instantaneous reward level 
ϕ(t) is regarded as the ratio between the 
instantaneous reward rate φ(t) and the referent 
reward rate φ0(t) in the given time instant: 

0

( )( )
( )
tt
t

φϕ
φ

= . (2)

According to the interpretation of the 
reward rate as the rate of reward accumulation in 
the given time instant accumulated and referent 
rewards can be expressed by: 

0

( ) ( )
t

t t dtΦ φ= ∫ ,   and   0 0
0

( ) ( )
t

t t dtΦ φ= ∫ . (3)

In other words, the achieved reward level 
(1) can be presented as the ratio between areas of 
regions under the curves of φ(t) and φ0(t) in the 
given operating time interval, and treated as 
overall measure of goodness of the system 
utilization process in relation to the accepted 
referent reward. 

The introduction of the referent reward 
concept is directly associated with the selection of 
criteria of system utilization process quality. One 
of plausible criteria is the assumption perfect 
system, and the acceptance of the perfect system 
as a criterion is present in some theoretical 
considerations of the system effectiveness [4] to 
[6]. The assumption of the perfect system implies 
a system with perfect components in terms of 
absolute reliability and fault free operation. 

 
1.1 Systems with a Discrete State Space  

 
In general, the system state depends on its 

component states and the system structure. By 
assuming that system components in relation to 
their ability to perform the required function with 
specified performances can only have one of two 

possible states, then the state of i-th component 
can be defined by binary variable xi as: 

- th component is able to
1,

performs its function (Up state)
- th component is not able to

0,
performs its function (Down state).

i

i

x
i

⎧
⎪
⎪= ⎨
⎪
⎪⎩

 

(4)

Similarly, the state of system with n 
components is described by the so called 
structural function Z: 

system is able to
1,

performs its function (Up state)
system is not able to

0,
performs its function (Down state).

Z

⎧
⎪
⎪= ⎨
⎪
⎪⎩

 (5)

As the system state is thoroughly defined 
by components states in the system structure, 
then: 

( )Z Z x= , (6)

where 1 2[ , , , ]nx x x x= K  is the vector of the 
system state, with 2n possible values. In a 
theoretical consideration of perfect system, binary 
variable for i-th component has constant value xi 
= 1 for (i = 1,2,…,n) and the structural function of 
the system state is always ( )Z x = 1. 

The structural function of the system state 
depends on the system structure, links between 
components and components reliability. For a 
parallel system it can be written: 

( )
1

1 (1 )
n

i
i

Z x x
=

= − −∏ . (7)

Parallel systems are usually considered as 
a 1-out-of-n: G systems, i.e. overall system 
continues to function as long as at least one of its 
n components is in Up state. However, 
component failures lead to a deterioration of 
system capability and reduction of the output 
result, and for system performances an analysis is 
necessary to include reward level evaluation. 

As the system is composed of n mutually 
independent components and as i-th component 
participates in the overall result by its component 
reward rate ri(t) and its state by variable xi, the 
instantaneous reward rate φ(t) and the referent 
reward rate φ0(t) of the entire system are: 

1

( ) ( )
n

i i
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t r t xφ
=

= ∑ ,   and   0
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t r tφ
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= ∑ . (8)
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As the system is composed of n identical 
components (homogeneous system) and 
components reward rates are time independent 
and equal: r1(t) = r2(t) =…= rn(t) = r, then: 

1
( ) ( )

n

i i
i

t r t x r kφ
=

= = ⋅∑ ,   and 

0
1

( ) ( )
n

i
i

t r t r nφ
=

= = ⋅∑ , 
(9)

where k is number of components in Up state in 
the given time instant. 

Based on given relations (2) and (9) the 
instantaneous reward level of the system is: ϕ(t) 
= k/n. In other words, for previous assumptions it 
can be concluded that, in  simple case, the 
instantaneous reward level of the entire system 
depends mainly on the number of components in 
Up state. However, for an achieved reward level 
f(t) it is necessary to evaluate an accumulated 
reward during the operating time with certain 
value of instantaneous reward level. 

Thus, below the next assumption is 
introduced: Up time of i-th component; when the 
given component is able to perform the desired 
function, it is also its operating time. In other 
words, the entire system is in a continuous 
operation process, and there is plenty of systems 
with a similar demand in manufacturing, power 
supply, processing and transportation. 

 
1.2 Systems in a Continuous Operation Process 

 
As previously shown, the accumulated 

reward for a system in continuous operation 
depends on the number of components in Up state 
k, which can be presented by a discrete stochastic 
process. Thus, the components reward rates ri(t) 
and the instantaneous reward rate φ(t) of system 
can also be presented as a discrete stochastic 
process (Figure 1). For further analysis, different 
fixed rewards are associated with each system 
state, and they are assigned at the moments of the 
system state transition's occurrence. 

Thereby, the number of components in Up 
state determines the system state. The system 
state space is limited by the system capacity in 
reference to the number of components n and 
during the utilization process the system can 
reach one of the (n+1) possible states. In other 
words, j-th state of system for (j = 0, 1, 2,…, n) is 
determined by the number of components in Up 
state kj or more exactly: kj = j. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  Sample paths of reward functions for a 
system of n = 4 components 

 
In this case, for homogeneous systems 

component reward rates are r1(t) = r2(t) = … = 
rn(t) = r and the instantaneous reward level of the 
system in the given time instant for j-th state ϕj is: 

j j nϕ = . (10)

It is evident that instantaneous reward 
level can reach the value ϕj = 1, in the time 
instant when all the components are in Up state, 
i.e. the system in continuous operation process is 
in n-th state, but with restrictions of previously 
accepted assumptions. 

According to the described discrete 
process and the path of reward functions, the 
accumulated reward Φ(t) and the referent reward 
Φ0(t) in operating time interval (0,t), can be 
expressed by relations: 

0 0
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0
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n
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j
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(11)

where tj is sojourn time of system in the j-th state 
in the given operating time interval (0,t). 

Thus, the achieved reward level f(t) in the 
given interval (0,t) according to (1) and (11), is: 
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φ(t) 
φ0(t) 



Strojniški vestnik - Journal of Mechanical Engineering 55(2009)9, 542-548 

 

Reward Level Evaluation of Parallel Systems 545
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The limiting value of the achieved reward 
level for the steady state condition for the 
described utilization process by (10) and (12) can 
be expressed by the weighted sum of state 
probabilities pj: 

0

lim ( )
n

j jt j
f f t pϕ

→∞
=

= = ⋅∑ . (13)

It should be noted that the obtained 
expression for the limiting value of the achieved 
reward level (13) corresponds to relation (14) of 
effectiveness E for some class of technical system 
[7]: 

s s
S

E e p= ⋅∑ , (14)

where es is the conditional indicator of 
effectiveness for s-th system state, ps is 
probability of s-th system state and S is state 
space. 

For homogeneous systems, the 
instantaneous reward level (10) can be treated as 
the relative number of components in Up state 
that is determined by a transition process of 
system states as a discrete stochastic process with 
continuous time. Despite the introduced 
simplifications, this number involves many 
factors of the utilization process, and some of the 
most important are failure rate λ and repair rate μ 
as parameters of system reliability and 
maintainability. 

Certainly, a major problem in reward level 
calculation by using the previous equation is 
determination of the system state probabilities, 
based on reliability and maintainability 
parameters. In such cases, the system modeling 

and reward level evaluation can be achieved by 
applying Markov Techniques. 

 
2 MARKOV MODEL DEVELOPMENT 

 
By defining the system state space and 

knowing the characteristics of transitions between 
system states, a model of system utilization 
process with state transition diagram can be 
formed. Below, a homogeneous system with n 
components in a continuous operation is 
considered and for the purpose of model 
development, some assumptions are introduced. 

Assumptions: 
1) Failure rates λ and repair rates μ of system 

components are mutually equal: λ1 = λ2 = … 
= λn = λ and μ1 = μ2 = … = μn = μ. 

2) Repair shop capacity, i.e. number of service 
channels m is: 1 m n≤ ≤ . 

3) After component failure, if m<n and there is 
free service channels, repair of component 
starts immediately. Else, if all of m service 
channels are busy, component waits for 
repair. 

4) After repair, component starts operation 
immediately. 

Based on the previous assumptions, state 
transition diagram is formed (Figure 2). 

According to the state transition diagram, 
linear equations that represent system steady state 
condition (i.e. balance equations) for t→∞, λ = 
const and μ = const, can be written as: 

 

A) [ ]1 1( 1) ( ) ( 1) 0j j jj p n j j p n j pλ μ λ μ+ −+ ⋅ − − + ⋅ + − + ⋅ =  
 for n j n m> > − , and 
 

B) 1 1( 1) ( ) 0j j jj p m j p m pλ μ λ μ+ −+ ⋅ − + ⋅ + ⋅ =  
 for 0.n m j− ≥ >  

 
 
 
 
 
 

 

Fig. 2. System state transition diagram 
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A) Closed-form analytic expression of system 
state probability pj for 1 1:n j n m− ≥ ≥ − +  

 
Let 1( 1) ( )j j jx j p n j pλ μ+= + ⋅ − − ⋅ . As 1j jx x −=  
and 1 0nx − =  then 0jx = . Thus: 

1 2
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Let λρ
μ

= . After some algebraic manipulations: 

n j
j n

n
p p

j
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⎝ ⎠

. (15)

B) Closed-form analytic expression of system 
state probability pj for 0 :n m j− ≥ ≥  

 

Let 1( 1)j j jy j p m pλ μ+= + ⋅ − ⋅ , that satisfies 
interval 0n m j− ≥ ≥ . Similarly to the previous, 
as 1j jy y −=  and 0 0y =  then 0jy = . Thus: 
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After some algebraic manipulations: 
1 !

! !
n j

j n n m j

np p
m jm

ρ −
− −= . (16)

By using  
0

1
n

j
j

p
=

=∑ , according to (15) and 

(16) probability pn is expressed (Table 1). 
According to (16) closed-form analytical 

relations of system states probabilities are 
expressed for m = 1, as the first special case of 
repair shop capacity (Table 1). Also, relation (15) 
satisfies  m = n, as a second special case of repair 
shop capacity (Table 1). 

Thereby, based on relation (13) and 
according to expressions of system state 
probabilities (Table 1), relations of the achieved 
reward level for a steady state condition are 
shown (Table 2). 

It should also be noted that the acquired 
equation of the achieved reward level f for the 
case of m = n (Table 2), is the same as the well 
known equation of limiting or steady state 
availability. However, it is important to 
emphasize that this equation for the proposed 
model does not present availability but a reward 
level for a particular case of continuous operation 
of a system with previous assumptions.

Table 1. Closed-form analytic expressions for system states probabilities 
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Table 2. Closed-form analytical expressions for achieved reward level f 

f 
1m =  1 m n< <  m n=  

1

1
1

0

( 1)!1
( 1)!

!1
!

n
n j

j
n

n j

j

n
j
n
j

ρ

ρ

−
−

=
−

−

=

−
+

−

+

∑

∑
 

1

1 1

1

0 1

11 1 ( 1)!1
1! ( 1)!

1 1 !1
! !

n m n
n j n j

n m j
j j n m

n m n
n j n j

n m j
j j n m

nn
jm jm

nn
jm jm

ρ ρ

ρ ρ

− −
− −

− −
= = − +

− −
− −

− −
= = − +

−⎛ ⎞−
+ + ⎜ ⎟−− ⎝ ⎠

⎛ ⎞
+ + ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑
 

1

1

1

0

1
1

1 1
1

1

n
n j

j

n
n j

j

n
j
n
j

ρ

ρ
ρ

−
−

=

−
−

=

−⎛ ⎞
+ ⎜ ⎟−⎝ ⎠ =

+⎛ ⎞
+ ⎜ ⎟

⎝ ⎠

∑

∑
 

 



Strojniški vestnik - Journal of Mechanical Engineering 55(2009)9, 542-548 

 

Reward Level Evaluation of Parallel Systems 547

Moreover, this signifies the importance of 
availability as a measure, which quantitatively 
summarizes reliability as well as maintainability 
and indicates the relation that exists between 
availability and the achieved reward level. 

 
3 A NUMERICAL EXAMPLE 

 
According to previous relations, the paths 

of reward level f function and system availability 
A function in dependence of the ratio ρ between 
failure rate λ and repair rate μ (i.e. ρ = λ/μ), as 
well as repair shop capacity m, are established. 
Considering availability as the probability that a 
system is operational (Up and running) at any 
random time t, for a considered 1-out-of-n:G 
system and system state space, steady state 
availability is given by: 

01A p= − . (17)
where p0 is the probability of outage state, i.e. all 
of n system components are in Down state. 

Based on the expressions for states 
probabilities (Table 1), the achieved reward level 
(Table 2) and the relation (17), a numerical 
example is given for a system with n = 21 
components and repair shop capacity 1 ≤ m ≤ 21, 
for different values of parameter ρ (Figure 3). 

In general, it can be noted that the reward 
level as well as system availability rise with a 
decrease of ratio ρ, i.e. with the decrease of 
failure rate and/or increase of repair rate. Besides, 
the reward level and availability also rise with an 
increase of repair shop capacity, as result of 
repair time reducing and increasing of the number 
of operating system components.  

The upper limit of the reward level can be 
achieved for the case of m = n, i.e. the repair shop 
capacity is equal to the number of system 
components, and in this case the reward level 
depends only on parameter ρ. 

However, for a system of a certain size 
with given reliability and maintainability 
characteristics, expanding repair shop capacity is 
reasonable only if the reward level is achieved 
below enough its upper limit. In other words, for 
a given number of system components n and ratio 
ρ, with the increase of repair shop capacity m, the 
growth of the achieved reward level depends on 
the slope of reward level function. Thus, after 
some value of m, the reward level reaches a 
nearly constant value close to its upper limit, and 
further expanding or repair shop capacity is not 
reasonable. 

Furthermore, availability is always higher 
than the reward level as according to (17) it 
excludes only the probability of outage state 
which may result in a false conclusion about 
system effectiveness. Regarded by state space 
diagram (Figure 2), by transition to lower states 
(n-1),(n-2),…,2,1 system retains its ability to 
perform the desired function, but with a gradual 
reduction of achieved yield and gain. This 
problem can be partially resolved by increasing 
the size of the system, i.e. increasing the number 
of system components, whereby the required bulk 
of yield is provided. Nevertheless, this approach 
leads to a significant reduction of the achieved 
reward level and surely upgrading of system 
reliability, maintainability and utilization process 
quality is preferable. 
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Fig. 3. Paths of reward level f and system availability A 
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4 CONCLUSIONS 
 
The benefit that can be obtained from this 

model is the ability to research effects of different 
parameters and demands on system output 
characteristics. The introduction of the referent 
reward concept is directly associated with the 
selection of criteria of system utilization process 
quality, and the proposed model brings a 
possibility of applying different criteria of reward 
level estimation and various policy in the system 
utilization process. 

In this paper, the reward level of systems 
in continuous operation process is considered. 
However, it is evident that in many cases an 
achieved reward is proportional to time during 
which the given system performs a stream of 
operational tasks, and usually these tasks arrive 
according to some random processes. Thus, in 
this case, when considering the utilization process 
and the achieved reward level, it is necessary to 
include the interaction between system reliability 
and maintainability as well as the input and 
output flow of operational tasks. 

Certainly a more complete model should 
include additional parameters as operational task 
arrival rate, duration of operational tasks, time 
depended reward rate, different types of tasks, 
more complex system behaviors, etc. However, 
an inclusion of a large number of parameters 
might cause difficulty in getting closed-form 
mathematical expressions as well as high 
computational complexity, but a simulation 
technique can be used to obtain a solution. 
Thereby, further research will be related to 
development of a more generalized and complete 
simulation model of the described utilization 
process. 
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