
Strojniški vestnik - Journal of Mechanical Engineering 55(2009)9, 549-554 Paper received:   04.10.2007 
UDC 620.178   Paper accepted:  16.09.2009 

*Corr. Author's Address: University of Kragujevac, Faculty of Mechanical Engineering, Sestre Janjic 6, 
Kragujevac, Serbia, njovicic@kg.ac.rs  549

Numerical Simulation of Crack Modeling using Extended 
Finite Element Method 

 
Gordana Jovičić - Miroslav Živković - Nebojša Jovičić 

University of Kragujevac, Faculty of Mechanical Engineering, Serbia 
 

For numerical simulation of crack modeling in Fracture Mechanics the eXtended Finite Element 
Method (X-FEM) has recently been accepted as the new powerful and efficiency methodology. Following 
the new approach, a discontinuous function and the asymptotic crack-tip displacement functions are 
added to the conventional finite element approximation. This enables the domain to be modeled by finite 
elements with no explicit meshing of the crack faces. In the paper we present the details of 
implementation of the X-FEM algorithm in our in-house finite elements based software. Also, we 
investigated the impact of the node enrichment variations on results of the developed numerical 
procedure. In order to evaluate computational accuracy, numerical results for the Stress Intensity 
Factors (SIF) are compared with both theoretical and conventional finite element data. For the 
calculation of the Stress Intensity Factors, we used the J-Equivalent Domain Integral (J-EDI) Method. 
Computational geometry issues associated with the representation of the crack and the enrichment of the 
finite element approximation are discussed in detail. Obtained numerical results have shown a good 
agreement with benchmark solutions. 
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 
  

The X-FEM, attempts to improve 
computational challenges associated with mesh 
generation by not requiring the finite element 
mesh to conform to cracks, and in addition, 
provides using higher-order elements or special 
finite elements without significant changes in the 
formulation. The basis of the method proposed by 
Belytchko and Black [1], was presented in [2] for 
two-dimensional cracks. 

The essence of the X-FEM lies in sub-
dividing the model problem into two distinct 
parts: mesh generation for the geometric domain 
(cracks not included), and enriching the finite 
element approximation by additional functions 
that model the flaw(s) and other geometric 
entities. Modeling damage and crack growth in a 
traditional finite element framework [3] and [4] is 
cumbersome due to the need for the mesh to 
match the geometry of the discontinuity. Many 
methods require remeshing of the domain at each 
time step. In the X-FEM there is no need for the 
remeshing, because the mesh is not changed as 
the crack growths and is completely independent 
of the location and geometry of the crack. The 
discontinuities across the crack are modeled by 
enrichment functions.    

1 LEVEL SET REPRESENTATION OF THE 
CRACK 

 
In this paper a crack is presented using a 

set of the linear segments. The crack is described 
by means of the tip position and level set of a 
vector valued mapping. A signed distance 
function ( )ψ x is defined over computational 
domainΩ  using: 

* *

x
(x) n (X X ) min X X

c

signψ
∈Γ

⎡ ⎤= ⋅ − −⎣ ⎦ , (1) 

 where n is the unit normal to cΓ  and *X  is the 
closest point to the X, see Fig. 1.  
 

 
 

Fig. 1. Illustration of the values of Heavisade 
function above and below of the crack 

 
The crack is then represented as the zero 

level set of the function ψ(X), i.e.: 
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ψ(X) =0. (2) 

The position related to the crack tip is 
defined through the following functions: 

γ(X) = (X -XCT)⋅t, (3) 

where t is the unit tangent to ΓC at the crack tip 
ΛC and XCT is the coordinate of ΛC. The value 
γ(X) = 0 corresponds to the crack tip. We defined 
LS functions ψ(X) and γ(X) in all the 
computational domain. The crack and the crack 
tip are represented as: 

{ }X : (X, ) 0 (X, ) 0c t tψ γΓ = = ∧ ≤ . (4) 

 
 

Fig. 2. Definition of the Level Set Functions ψ(X) 
and γ(X) around the crack 

 

In Fig. 2, definition of the ψ(X) and γ(X) 
around the crack is shown. For the crack 
representations linear interpolation has been used. 

 
2 EXTENDED FINITE ELEMENT METHOD 

 
In this paper, the method of discontinuous 

enrichment is presented in general framework. 
We illustrate how 2D formulation can be enriched 
for crack modeling. The concept of incorporating 
local enrichment in the finite element partition of 
unity was introduced in Melenk and Babuska [5]. 
The essential feature is multiplication of the 
enrichment functions by nodal shape functions. 

 The displacement approximation u(x) in 
the X-FEM is decomposed into a continuous and 
enrichment part, as: 

con enrhu(x) u (x) u (x)= + . (5) 

The second addond in Eq. 5 is:                                                                                                       

N M
h α
enrh I α I

I 1 α 1
u (x) (x) (x) bN F

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∑ , (6) 

where: the continuous displacement 
approximation h

con I Iu (x) (x)uN= ∑  is standard 
approximation in the FEM, and enrhu (x)  is 
enrichment part of displacement approximation 
near the crack, (Fig. 3). The NI, I = (1, N) are the 
finite element shape functions, Fα(x), α = (1, M) 
are the enrichment functions and α

Ib  is the nodal 
enriched degree of freedom vector associated 
with the elastic asymptotic crack-tip function that 
has the form of the Westergaard field for the 
crack tip. 
 
2.1. Enrichment Functions 

 
The enrichment is able to take a local form 

only by enriching those nodes whose support 
intersects a region of crack. Two distinct regions 
are identified for the crack geometry, precisely, 
one of them is the crack interior and the other is 
near tip region as it is shown in Fig. 3. In Fig. 3 a 
region of a crack for enrichment by H and NT 
functions is shown. The circled nodes are 
enriched with a discontinuous function, while the 
squared nodes are enriched with NT functions. It 
can be noticed that this shape of enriching near 
the crack tip ( Fig. 3), is used in [6] and [7].  

 

 
 

Fig. 3. Regions for the standard enrichment near 
the edges of the crack 

 
The interior of the crack is modeled by the 

generalized Heavisade enrichment function H(X), 
where H(X) takes the value +1 above the crack 
and –1 below the crack [6] to [8]: 
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*1 if (X X ) n 0
(X)

*1 if (X X ) n 0
H

⎧ − ⋅ ≥⎪= ⎨
⎪ − − ⋅ <⎩

, (7) 

where X is a sample (Gauss) point, X*(lies on the 
crack) is the closest point to X, and n is unit 
outward normal to crack at X* (Fig. 1). It can be 
seen that in the first published works [1] and [2] 
above shape modeling of the discontinuity was 
not used. The formulation (7) begins to use it due 
to practical numerical reasons. 

The crack tip enrichment functions in 
isotropic elasticity have the form of the 
Westergaard field for the crack tip:  

1 2 3 4( ) { , , , }

cos , sin , sin sin ,
2 2 2

cos sin
2

F F F F F

r r r

r

θ θ θ θ

θ θ

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x

, (8) 

where is r and θ denotes polar coordinates in the 
locale system at the crack tip. It can be noted that 
the second function of the set (8) is discontinued 
over the crack faces [1] and [2]. The discontinuity 
over the crack faces can be obtained using other 
functions like Heavisade function (7), which have 
discontinuity. Let the element which contains the 
crack tip is denoted as CT element. In papers [6] 
and [7] the discontinuity behind the tip in the CT 
element is accomplished by the second function 
of the set (8). In this paper we have achieved the 
discontinuity in the CT element with Heavisade 
function (7).  

The Heavisade step function (7) is 
modified using LS function γ (X, t): 

1 if (X) 0
( (X))

1 if (X) 0
H

γ
γ

γ
− <⎧

= ⎨ + >⎩
. (9) 

The Near tip functions Fα(r, θ), α = 1.4, 
that have the form of the Westergaard field for 
the crack tip [5], should also be defined using the 
LS functions [8] to obtain polar coordinates in the 
local system at the crack tip (see Fig. 3): 

 

2 2

1

(X) (X) (X) ,
(X)(X) tan .
(X)

r ψ γ
γθ
ψ

−

= +

=
 (10) 

Since NT functions are used for the cracks 
in the linear-elastic materials, we have considered 
the results in case when the enricment is done 
only by H function. Enrichment by H function is 
applied only behind the crack, hence 
discontinuity is occured.  

 
3 DETERMINATION OF THE SIF USING  

J-EDI METHOD 
 

The contour J-integral [9] is not in the 
best-suited form for finite element calculations. 
Therefore, we transform the contour integral into 
an equivalent domain form. The equivalent 
domain integral method (EDI) is an alternative 
way to obtain the J-integral. The EDI approach 
has the advantage in that the effect of body forces 
can be included very easily. The contour integral 
is replaced by an integral over a finite-size 
domain, [10] to [12]: 

( )1 ,1 1 , , 1,2ij i j jAJ u W q dA i jσ δ= − =∫ , (11) 

where W  is the strain energy density given by: 

1 1
2 2ij ij ijkl kl ijW Cσ ε ε ε= = , (12) 

where: σij  is stress tensor, εij is strain tensor, Cijkl  
is constitutive tensor, ui are components of the 
displacement vector, where the qj is the derivate 
of the weight function per coordinates x. With the 
isoparametric finite element  formulation the 
distribution of q within the elements is 
determined by a standard interpolation scheme 
with the use of the shape functions NI.The spatial 
derivatives of q can be found by the use of the 
usual procedures for isoparametric elements.  

The equivalent domain integral in 2D can 
be calculated as a sum of the discretized values of 
Eq. (11), [10] to [13]:  

1
det

i
ij kj

P k j
k p

elements p
min A

n p

u qW
X X

J w
X

σ δ

η

=

⎡ ⎤⎛ ⎞∂ ∂
−⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥= ∑ ∑ ⎢ ⎥⎛ ⎞∂⎢ ⎥⋅ ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦

,   

, , , , 1, 2i j k m n = . 

(13) 

The terms within [.]p   are evaluated at the 
Gauss points with the use of the Gauss’s weight 
factors wp. The above formulation (Eq. 13) is for 
a structure of homogeneous material in which no 
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body forces are present. The J-integral evaluation 
in this paper is used for the calculation of SIF in 
both FEM and X-FEM frameworks. 

 
4 NUMERICAL EXAMPLES 

 
In Fig. 4, a benchmark plate model with an 

edge crack is shown. The plate is subjected to 
load along the crack faces. Both, geometrical as 
well material data for test case are presented in 
Fig. 4. Numerical calculations of SIF are carried 
out by using the X-FEM method, with the H and 
H+NT enrichment options. Obtained numerical 
results are compared to the theoretical values. 

 
E = 3⋅106 MPa, v = 0.29, a = 20 mm 

P = 1 N, W = 40 mm, s = 80 mm, B = 0.5 mm 
 

Fig. 4.  The edge crack subject to the 
concentration load along the face of the crack 

 
Within the X-FEM calculations, the 

numerical grid consisting of 1600 elements 
(80⋅20) was used. The simulation of the 
discontinuous displacement field on the crack 
sides, as well singularly stress field near the crack 
tip, are performed by using the enrichment 
functions.  

Theoretical values of SIF can be calculated 
as follows: 

I
2( , )s aK F a
W W

σ π= ,   (14) 

where 

2

6 6
2

M Ps
BWW

σ = = .   (15) 

The correction factors for the specified 
geometrical parameters (2 s/W = 4 and  a/W = 
0.5) are F(2 s/W, a/W) = 1.41, while σ = 0.3 MPa. 
Theoretical value of SIF for the test case is: 

teor
I 3.35 MPa mmK = .  (16) 

The simulations were performed within 
two versions of the presented numerical 
algorithms:  
− Nodes are enriched by only using the H 

function (XFEM (H)); 
− Nodes are enriched by using the H+NT 

function (XFEM (H+NT)). 
In Figs. 5 and 6, both, the stress and strain 

field around the crack, obtained by using the X-
FEM, are shown, respectively. The crack overlaps 
the element edges, and there is no physical 
separation of the joint sides of the elements. In 
this case, the discontinuity at the crack faces is 
modeled by using enrichment functions. In Fig. 5, 
it can be noticed that within the extended X-FEM 
framework the stress concentration is located 
well, i.e., placed at the real crack tip.  The 
displacement field around the central crack 
obtained by extended X-FEM is shown in Fig. 6. 
It is worth stressing that we have obtained 
discontinuity in the displacement field over the 
crack faces by using the Heavisade function, 
without explicitly geometrical crack modeling. 

In Table 1, values of SIF for the number of 
the integration domains are shown. These values 
are obtained by using the X-FEM, with the H, as 
well H+NT enrichment in the nodes that are cut 
by crack. The results for the SIF are shown in 
Table 1, obtained by the integration of the J-
integral using the J-EDI method, corresponding 
to the different integration domain cr . The radius 
of the integration domain cr is defined as % of the 
length of the crack a .  

 

Table 1. The SIF corresponding to the different 
integration domain obtained by the H and H+NT 
enrichment 

rc 
(% a) 30 35 40 45 50 55 60 65 

KI 
XFEM 

(H) 
3.22 3.22 3.24 3.26 2.92 3.28 3.29 3.31 

KI 
XFEM

(H+NT)
3.26 3.25 3.27 3.29 3.29 3.29 3.29 3.29 

 

Comparing the numerical data with the 
theoretical results, it can be noticed that the error 
was 4%≤ for the case of the H enrichment. With 
using the H+NT enrichment, discrepancy was 

3%≤  which leads to the conclusion that the 
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variation in the results, obtained by both 
approaches, is relatively small. On the other hand, 
a decrease in error for the numerical results of 
SIF could be achieved by grid refinement, 
particularly in the location of the crack tip. 
     

 
Fig. 5.  The stess field arround the model with the 

edge crack  
 
 

 
 

Fig. 6.  The displacement  field arround the model 
with the edge crack 

 
5 CONCLUSION 

 
The essential idea in the X-FEM method is 

to add enrichment functions to the approximation 
that contains a discontinuous displacement field. 
The crack is presented as discontinuity in 
displacements within the element. The X-FEM 
does not require projection between mesh and 
crack geometry, and allows arbitrary crack in the 
finite element mesh.   

In this paper we demonstrated the 
modeling of enriched nodes near the crack within 
an existing finite element numerical algorithm. 
The methodology adopted for the crack modeling 
belongs to a branch of the extended finite element 
method (X-FEM). The developed finite element 
software was used in this study, and the 
implementation for the crack modeling in 

isotropic media was described. The crack is 
described by means of the position of the tip and 
level set of a vector valued mapping. In this 
paper, the developed LS functions are used to 
determine the values of the NT functions. We 
also modified the enriching of the corresponding 
elements. Numerical results obtained in this way 
are compared with the theoretical values, and 
good agreement is achieved. This study presents 
the wide capability of the X-FEM approach that 
can be incorporated in standard finite element 
packages. 
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