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Theory and Application of Naturally Curved and Twisted 
Beams with Closed Thin-Walled Cross Sections

Aimin Yu* - Rongqiang Yang - Ying Hao 
Tongji University, School of Aerospace Engineering and Applied Mechanics, China 

A novel theory for analyzing naturally curved and twisted beams with closed thin-walled cross 
sections is presented based on the small displacement theory. By introducing the eigenwarping functions 
and expanding axial displacements or axial stress distribution in a series of eigenwarpings, the 
differential equation for determining generalized warping coordinate and the expression for eigenvalues 
can be derived from the principle of minimum potential energy. In the derivation procedure, the effects of 
the initial torsion and small initial curvature of the beams are accurately taken into account. The non-
classical influences relevant to the beams are transverse shear and torsion-related warping deformations. 
Improved solutions can be obtained by adding a series expansion in terms of eigenwarpings to the 
uncorrected solution. The present theory is used to investigate the stresses and displacements of a 
cantilevered, rectangular box curved beam subjected to a uniformly distributed load. It is observed that 
the numerical results obtained agree well with the data from FEM. 
©2009 Journal of Mechanical Engineering. All rights reserved.
Keywords: naturally curved and twisted beam, small initial curvature, small displacement theory, 
eigenwarping, generalized warping coordinate 

0 INTRODUCTION

Static and dynamic analysis of naturally 
curved and twisted beams with closed thin-walled 
cross sections has many important applications in 
mechanical, civil and aeronautical engineering 
due to their outstanding engineering properties, 
such as streamlined modeling and favorable 
loaded characteristics. The structural behavior of 
the beams is no longer appropriately modeled 
with the classical beam theory ([1] to [3]), and a 
more advanced theory is much needed to 
overcome the demerits of the classical beam 
theory. Much research has been done in the 
theories for straight beams and curved beams ([4] 
to [14]), however, much less has been done for 
naturally curved and twisted beams. Bauchau and 
Bauchau et al. ([15] and [16]) provided a 
comprehensive treatment to the problem of 
warping using variational principles to model 
thin-walled straight beams made of anisotropic 
materials, however, their modes can not be used 
for naturally curved and twisted beams straightly. 
Based on small displacement theory, the main 
contribution of the present work is to derive a set 
of orthonormal eigenwarpings and equivalent 
constitutive equations that can be used for the 
analysis of naturally curved and twisted beams. In 
addition, the correction to transverse shear 

deformations is also included in the present 
formulations. 

1 GEOMETRY AND CONSTITUTIVE 
RELATIONS OF THE BEAM 

Let the locus of the cross-sectional 
centroid of the beam be a continuum curve l in 
space, the tangential, normal and bi-normal unit 
vectors of the curve are t, n and b, respectively.  
The Frenet-Serret formula, for a smooth curve, is: 

1 1 2 2k k k kt n n t b b n , (1)

where ( )' means derivative with respect to s. s, k1
and k2 are arc coordinate, curvature and torsion of 
the curve, respectively. 

We introduce  - and  - directions in 
coincidence with the principal axes through the 
centroid O1, as shown in Fig. 1. The angle 
between the  - axis and normal n  is represented 
by , which is generally a function of  s. If the 
unit vectors of O1  and O1  are represented by i
and i , then: 

cos sin
sin cos .

i n b
i n b (2)

From Eq. (1) the following expressions are 
obtained: 
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k k

k k

t i i

i t i

i t i (3)
which 1sin ,k k 1cos ,k k 2sk k .

Fig. 1. Geometry of the beam

Fig. 2 depicts a cross section of the beam, 
where   is the curvilinear coordinate describing 
the contour of the section, denoted C. In the 
present work, the basic assumption is that the 
contour does not deform in its own plane, but is 
free to warp out of plane. This means that the 
degree of freedom of the deformation is fully 
represented by six rigid body modes us(s), u (s), 
u (s), s(s), (s) and  (s), respectively, the 
three translations and three rotations of the 
section, and any applied transverse load only 
induces membrane stresses in the structure, 
specifically an axial stress flow n, and a shear 
stress flow q. These two stress flows are acting in 
the plane of contour and are uniform across the 
thickness of the walls that form the cross-section. 
The constitutive relations are: 

n E t e
q G t , (4)

where t is the wall thickness, E is the modulus of 
elasticity and G is the shear modulus of the 
material, respectively, e and   are the membrane 
axial strain and (engineering) shear strain, 
respectively.

Fig. 2. Closed cell thin-walled beam model

2 INTERNAL FORCES, EQUILIBRIUM 
EQUATIONS AND KINEMATIC EQUATIONS 

Simplifying stress vectors to the centroid 
O1 on the cross section A, the principal vector Q
and principal moment M can be obtained, of 
which components are respectively denoted by 
Qs, Q , Q   and Ms, M , M  so: 

,

,
s

s

Q Q Q

M M M

Q t i i
M t i i

where Qs  is axial force, Q  and Q  are shear 
forces, Ms is torque, M and M are bending 
moments, as shown in Fig. 3. The external forces 
and moments per unit length along the axis of the 
beam are indicated by p and m as:

                  
,s

s

p p p

m m m .

p t i i
m t i i

Fig. 3. Stress resultants developed on a typical 
beam element

The equilibrium equations are: 

0 ,

0 ,

d Q K Q p
ds
d M K M H Q m
ds (5)

where 

,  ,

,    ,

T T

s s

T T

s s

Q Q Q Q M M M M

p p p p m m m m

0 0 0 0
0 ,   0 0 1 .

0 0 1 0
s

s

k k
K k k H

k k

                The general solutions are [17]:   
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0  0

0 0

0

,

,

s T

s T

Q A Q A p ds

M A M A H A

Q Q m ds
(6)

where {Q0} and {M0} are integration constants, 

0

s TQ A p ds .

If the base vectors of special fixed right-
handed rectangular coordinate system are ix, iy, iz,
then : 

.A
x y z

x y z

x y z

t i t i t i

i i i i i i

i i i i i i
(7)

The kinematic equations are: 
,

,

,

,

,   

,

s s

s s

s s

s s

s s

s s

u k u k u

u k u k u

u k u k u

k k

k k

k k (8)
where s, , , s, ,  are respectively 
generalized strains corresponding to the internal 
forces Qs , Q , Q , Ms , M , M  and us, u , u , s,

, , are the displacement components 
corresponding to the loads ps, p , p , ms, m ,
m . The boundary conditions should be given by 
the following prescribed qualities: 

Qs or us , Q or  u , Q  or u ,
Ms or s, M or , M  or . (9)

Eqs. (8) can be rewritten as: 

0 ,

0 ,

d K
ds
d u K u H
ds (10)

where: 

,
T

s u ,
T

su u u

,
T

s u ,
T

su u u

,
T

s ,
T

s

so the general solutions to the kinematic 
equations are [17]: 

0

0 0

0

,

,

s T

A

u A U A H A

ds
(11)

in which { 0} and {U0} are integration constants, 

0

s TA ds .

3 STRUCTURAL ANALYSIS BY THE 
EIGENWARPING APPROACH 

Eigenwarping theory is in fact to transform 
the solution of out-of-plane torsional warping of 
the cross-section into a problem for finding the 
eigenvaules and eigenvectors. The eigenvalue 
problem can be solved using a finite element 
technique where the eigenwarping function is 
discretized over the section of the beams. The 
solution to the problem will be improved by 
adding a series expansion in terms of 
eigenwarpings to the uncorrected solution. In 
addition, the correction to transverse shear 
deformations is also included in the present 
formulations. 

Assuming that the deformations of the 
beam consist of stretching, bending and torsion, 
thus the displacement field can be written as 
follows:

,W U Vu t i i         (12)
in which: 

( ) ( ) ( ),sW u s s s
(12a)

( ) ( ), ( ) ( ).s sU u s s V u s s
(12b)

The strain-displacement relations are [1]: 

11

12

13

,

2 ,

2 ,

s

s

s

ge

ge

ge
(13)

where s, , , s, ,  are the same as Eq. (8). 
For simplicity, the initial curvature k1 is assumed 
small to assure that:  

1.g
The assumption is realistic for most 

practical applications, hence it does not seriously 
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restrict the applicability of this model. In this 
development a set of orthonormal eigenwarpings 
that can be used for naturally curved and twisted 
beams is derived. An unloaded beam is now 
considered (i.e. {p},  {m},=0) and a solution of 
the following form is assumed ([1] and [15]): 

, ,W s s( ) ( ) ( ) (14a)

( ) ( ),

( ) ( ),

( ) ( ),s

s U s

s V s

s s (14b)
where ( ) and (s) are the eigenwarping modes 
of the cross-section and the generalized warping 
coordinates, respectively, and ,U V and are 
three unknown parameters. Substituting Eqs. (14) 
into the strain-displacement relations in [1], we 
obtain:

11

12 13

,

2 2

se s k s

d de e
d d

d dU s s
d d

dk s
d

d dV s s
d d

dk s
d

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

,

d d dk k
d d d

d dU V r s
d d

(

) ( )
(15)

where the variables are separated, and r is the 
distance from the centroid O1 to the tangent to the 
cross-sectional curve(see Fig. 2). The total strain 
energy in the beam is there: 

2 2
110

1 ,
2

l

C
Ete Gt d ds( )

where the product of the generalized warping 
coordinate and its derivative can be eliminated 
according to small displacement theory, and the 
differential equation defining generalized warping 
coordinates and associated eigenvalues can be 

derived by minimizing with respect to , U , V
and . The derivation is similar to that in [15]. 
The associated eigenvalues 2

i  can also be 
written in the form of a Rayleigh quotient: 

2

2
2

2
2

.

i
i

i i

C
i i

i i
s

i
iC

d dk
d d

d dk U
d d

Gt ddV r
d

E k
G

Et d

(

)

(16)
Unlike the case of straight beams, Eq. (16) 
contains the terms related to the initial curvature 
and torsion of the beam, and a set of 
orthonormality relationships for the present 
problem is: 

2,  ,i j ij i j ijC C
Et d Gt d (17)

where:  

1
2 2

2 2) .

i
i i i i

i i
i s

d d d d dk k U V
d d d d d

Er k
G

      
4 IMPROVED BEAM THEORY AND 

EQUIVALENT CONSTITUTIVE EQUATIONS 

Improved solutions will be obtained by 
using Eqs. (12a), (8) and (14) accordingly: 

,or i i
i

W W
(18a) 

,

,

,

or i i
i

or i i
i

s sor i i
i

U s

V s

s

( )

( )

( )
(18b) 

where Wor coincides with Eq. (12a), and or, or,
sor coincide with , , s in Eq. (8). Thus, the 

final strain components e and   are now:  
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11

12 13

,

2 2

i i
i

i i
s i

i

s i i
i

i i
s i

i

or or co
i

i
s i

i

i i i

e e s

k s

s

k s

d de e
d d

dd d dr k
d d d d

d d dk U V
d d d

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

(

,ir s) ( )
(19)

where e11, e12or, e13or coincides with Eq. (13). The 
strains corresponding to this displacement field 
can be used to evaluate the total potential energy 

:

2 2

0

0

1
2

,

l

C

l

s s

Ete Gt d ds

p u p u m ds

( )

( )
(20)

and taking into account the orthonormality 
relationships (17) it reads: 

2 2 2

0

1 ( ) ,
2

l

or i i i i i
i

d ds
(21)

where or is the total potential energy for the 
original problem, and:

.i i i i i s id Q U k Q V k M( ) ( ) (22)
Eq. (21) shows the solutions to be 

decoupled from the corrective terms i and the 
different corrective terms decoupled from each 
other. Minimizing or will render the equilibrium 
Eq. (5) described with the internal forces and 
minimizing the corrective terms with respect to i
gives:

2 .i i i id (23)
This differential equation is solved readily 

and yields the solution of the problem as a series 
expansion of eigenwarpings: 

, ,

, ,

,

,

or i i or i i
i i

or i i s sor i i
i i

or i i
i

i i
s i

i

i
or i i

i

i i i

W W U

V

n n Et

k Et

d d dq q Gt k k
d d d

d dU V r s
d d

( ) ( )

(

) ( )
(24)

where nor and qor are the uncorrected solutions. 
When infinite series are used, Eq. (24) give the 
theoretical solution of the problem under the 
assumption of infinite in-plane rigidity of the 
section.

Introducing the internal forces defined by: 

,           ,

,    ,

,    

s sC C

C C

C C

Q nd M qrd

dQ q d M n d
d
dQ q d M n d
d

.
(25)

In view of Eqs. (4), (19) and (25), noting 
that:

C C
Et d Et d  0,

C
Et d

we obtain the equivalent constitutive equations 
described with the generalized strains and 
generalized warping coordinates: 

,

,

,

s s i iC
i

i i
s iC

i

or or

sor iC C
i

or or

sor iC C
i

Q S Et d

k Et d

Q G A G A

d dGtr d Gt d
d d

Q G A G A

d dGtr d Gt d
d d

( ) ( )
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,

,

,

s P sor orC

or iC C
i

i iC
i

i i
s iC

i

i iC
i

i i
s iC

i

dM I Gtr d
d

dGtr d Gt rd
d

M I Et d

k Et d

M I Et d

k Et d

( ) ( )

( ) ( )
(26)

where G and G  are the shear coefficients in  - 
and  - directions for thin-walled beams [18], 

C
S Etd  is the axial stiffness, 

2

C
I Et d is the bending stiffness (similar 

definition for I ),  

2

C

dA Gt d
d

( )  is the shear stiffness 

(similar definitions for A and A ), and 
2

P C
I Gtr d  is the torsional stiffness.  

It is observed that the internal forces of the beam 
depend on not only the generalized strains but 
also the eigenwarping functions, generalized 
warping coordinates and their derivatives. 

5 EXAMPLE - A CURVED BEAM UNDER A 
UNIFORMLY DISTRIBUTED LOAD 

Some numerical results are given to 
demonstrate the theoretical formulations derived 
in previous sections, which will be directly 
applied to compute the stresses and displacements 
of a curved, thin-walled rectangular beam (see 
Fig. 4). In this case , ks and k  in Eq. (3) are zero 
and k  is 1/R. Fix the origin of the rectangular 
coordinate system at the end of the beam ( s = 0), 
the axis of the beam being on the plane Oxy. The 
load acting is 

{ } 0 0 0 ,Tm { } [0 0 ] .Tp p

If the axis of the beam is a circle with radius 
, one has 

1
1, ,

sin , (1 cos ).

s k k
a a

x a y a

Using Eqs. (6) and (11), we have: 

0 0

2
0

0 0

2
0

0

0 0

 0

 0

0 0

cos sin

(1 cos ) (sin ),

sin cos

sin (1 cos ),

,
cos sin

cos ( cos sin )

sin ( sin cos ) ,

sin cos

sin (

s s

s

s s

s

s

s

M M M

Q a p a

M M M

Q a p a

Q Q p s

a d

a d

a
0

 0

0 0 0 0

0 0

0

cos sin )

cos ( sin cos ) ,

sin cos sin

cos sin cos ,

s

s

s

s

s

d

a d

u U y x a d

a a d

a d d (27)
where M0s, M0 , Q0   are the values of Ms, M , Q ,
at the end s  = 0, and 0s, 0 , U0   are the values 
of s, , u   at s  = 0, s, ,  and  are 
described with Ms, M , Q , i and i'  by Eqs. 
(26).  

The curved beam with radius  = 400 mm 
is assumed to be fixed at one end (s = 0) and free 
at the other (s = l). Fig. 4b illustrates the cross-
section at the free end of the beam. The following 
properties of this material are: 

E = 2.106 105 MPa, G = 81.6 105 MPa. 
The first step is to calculate the 

eigenwarpings i  and the associated eigenvalues 
i. The eigenvalue problem (16) can be solved 

using a finite element technique. For this 
example, 43 nodal points are used to model the 
section and 24 eigenwarpings are extracted. 



Strojniški vestnik - Journal of Mechanical Engineering 55(2009)12, 733-741

Theory and Application of Naturally Curved and Twisted Beams with Closed Thin-Walled Cross Sections 739

(a)

       
          (b)

Fig. 4. Axis and cross-section at the free end of a 
plane curved beam

The bending and twisting behavior of the 
beam subjected to a uniformly distributed load p
in the  direction will be described. In this case 
the differential Eq. (23) to be solved for improved 
solution is: 

2

2

( )
2

( cos ).
2

i i i i

i

p aV

p a
(28)

The solution to Eq. (28) must be: 

1 2 ,i i i iC ch s C sh s (29)
in which i

*  is a particular solution to Eq. (28). 
The complete solution of  Eq. (28) becomes: 

1 2 2

2
2

2

2
2

1
2

1
2

1 cos .
1

i is s
i i

i

i
i

i

i

C e C e p aV

p a

p a

a

( )

( )

( )
(30)

The boundary conditions are: 

0 0 0

0 0 0

0( 0), 0,
0, 0,

( ), 0,

0,

s

s i

l s

i

s U U U

s l M M Q

where l = a/2, the integration constants 
determined by the aforementioned conditions are: 

2
0

2
0

0

( 1),
2
,

,
2

sM p a

M p a

Q p a

1 1
3 3 2 22 2

1 3 2 2

1
4 3 2 4 3 2

3 2 2

2 21
2 1 1

2 21 ,
2 1 1

i i

i

i

i

a a

i i i
ia

i i

a

i i i
ia

i i

a a e a eC V
e a

a a a e a
p

e a

1
2

2

1 1
3 3 2 22 2

1
2

3 2 2

1 1 1
4 3 2 4 32 2 2

3 2 2

1
2

2 2
1
21 1

2 2
.

1 1

i

i i

i

i

i i i

i

a

a a

i i i
a

ia
i i

a a a

i i i

ia
i i

C e

e a e a a
V e

e a

a e a e a e a
p

e a

(31)
So far, the solutions to this problem have 

been obtained.  
The determination of stresses and 

displacements is a significant problem in the 
static analysis of thin-walled beams. Let VA

present the displacement in the  - direction of 
point A on the cross section (  = /2) of the beam 
due to the load p shown in Fig. 4b, and s
presents the tip twist angle of the beam. 
Theoretical results for VA  and s are obtained and 
compared with a 2-D finite element analysis 
(referred as the FEM results), according to the 
ANSYS program. To analyze the beam shown in 
Fig. 4 by the finite element method, we partition 
it into 3600 shell elements (SHELL 92), and the 
total number of nodal points is 10880. These 
cases for p  (0  1000 N/m) are shown in Fig. 5 
a and b. It is evident that the theoretical results 
are close to the data from FEM. 
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Fig. 5a.  Vertical displacement VA of point A at 
the free end of the beam under a uniformly 

distributed load p (0  1000 N/m)

Fig. 5b. Tip twist angle s of the beam under a 
uniformly distributed load p (0  1000 N/m)

It is also interesting to compute the stress 
distributions of the beam. Fig. 6 shows the 
distributions of the axial stress flow n in the upper 
face at the root ( = 0) and the shear stress flow q
in the upper face at cross section ( = 45°) of the 
beam under a uniformly distributed load  
p = 1000N/m.  

6 CONCLUSIONS 

An analysis method for determining the 
stresses and displacements of naturally curved 
and twisted beams with closed thin-walled cross 
sections is developed based on small 
displacement theory. The effects of torsion-
related warping, transverse shear deformations 
and extension-shearing coupling are included in 
the proposed model. The above results clearly 
indicate that the key factor to improving the stress 
and displacement predictive capability of a theory  

Fig.6a.  Distribution of the axial stress flow n 
in the upper face at the root of the beam under 

a uniformly distributed load p = 1000 N/m 

Fig. 6b.  Distribution of the shear stress  flow q 
in the upper face at cross section ( = 45°) of 
the beam under a uniformly distributed load  

p = 1000 N/m

is to account for these non-classical effects 
correctly and find the eigenwarping modes of the 
cross-sections. The eigenwarpings depend on not 
only the material properties and geometry of the 
sections, but also the initial curvature and torsion 
of the beams. The theory suggested in this paper 
is not limited to thin-walled box beams. In the 
case of solid cross sections, the concept of 
eigenwarpings can be extended as long as the 
basic assumption remains valid, i. e., as long as 
the section can be assumed infinitely rigid in its 
own plane. 
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