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An Approach to the Optimization of a Thin-walled Z-beam 
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One approach to the optimization of a thin-walled open section Z-beam subjected to bending and 
to the constrained torsion is considered. For given loads, material and geometrical characteristics the 
problem is reduced to the determination of minimum mass i.e. minimum cross-sectional area of a 
structural thin-walled beam of a chosen shape. The area of the cross section is assumed to be the 
objective function. The stress constraints are introduced. A general case when bending moments about 
two centroidal axes and the bimoment are acting simultaneously is derived, and then some particular 
loading cases are considered. A method of solving the optimal relation of the parts of the considered 
cross-section is described. Applying the Lagrange multiplier method, the equations, whose solutions 
represent the optimal values of the ratios of the parts of the chosen cross-section, are formed. The 
obtained results are used for numerical calculation.  
© 2009 Journal of Mechanical Engineering. All rights reserved.  
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0 INTRODUCTION 

Many modern metal structures (motor and 
railroad vehicles, naval structures, turbine blades) 
are manufactured using thin-walled elements 
(shells, plates, thin-walled beams) which are 
subjected to complex loads. In most structures it 
is possible to find the elements in which, 
depending on loading cases and the way they are 
introduced, the effect of constrained torsion is 
present and its consequences are particularly 
evident in the case of thin-walled profiles.  

Investigations of the behaviour of thin-
walled members with open cross-sections have 
been carried out extensively since the early works 
of S. P. Timoshenko [1], who was among the first 
to publish a number of books on materials 
strength, the theory of elasticity and the theory of 
stability, and who also developed the theory of 
beams and plates bending. V. Z. Vlasov [2] 
contributed largely to the theory of thin-walled 
structures by developing the theory of thin-walled 
open section beams. Kollbruner and Hajdin 3] 
and [4  expanded the field of thin-walled 
structures by a range of their works. 
Exceptionally valuable among them are two 
monographs 3] and [4  which with a series of 
contributions originally describing the authors' 
area of interest, constitute a unique work in terms 
of content,. Also, Murray 5  and Rhodes et al. 
6  should be mentioned as the authors who 

introduced the theoretical aspects of the 

behaviour of thin-walled structures. Due to their 
low weight, thin-walled open section beams are 
widely applied in many structures. Thin-walled 
beams have a specific behaviour, which is the 
reason why their optimization is a particular 
problem. 

Analyzing the process of designing 
various types of structures, it can be observed that 
the classical procedure of defining dimensions of 
a structure based on the theory of the strength of 
materials provides sufficient, however, not the 
optimum geometric parameters. In general, the 
optimization is a mathematical process through 
which a set of conditions, which give the 
maximum or minimum value of a specified 
function as a result, are obtained. In the ideal case 
the perfect solution for the considered design 
situation is supposed to be obtained but in reality 
only the best solution although not the perfect 
one, can be found. Among the authors who 
developed theoretical fundamentals of the 
optimization method, Fox [7], Brousse [8], Prager 
[9] and Rozvany 10  should be given the most 
prominent place.  

Many studies have been conducted on 
optimization problems, treating the cases where 
geometric configurations of structures are 
specified and only the dimensions of structural 
members and the areas of their cross-sections are 
determined in order to attain the minimum 
structural weight or cost 11] and [12 . Tian et al. 
13  present a combined theoretical and 
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experimental study on the minimum weight and 
the associated optimal geometric dimensions of 
an open-channel steel section.  

Many authors, including Farkas [14], 
applied mathematical problems to the conditional 
extreme of the function with more variables onto 
the cross-sectional area of the structure and 
defined optimum cross-section from the aspect of 
load and consumption of the material. Then, a 
series of works appear where the problem of 
optimization of various cross-sections, such as 
triangular cross-section [15], I-section [16] and 
[17] or channel-section beams [18] are solved by 
using the Lagrange multiplier method. 

The main purpose of this paper is to 
present one approach to the optimization of a 
thin-walled Z-section beam.  

1 PROBLEM FORMULATION 

The starting points during the formulation 
of the basic mathematical model are the 
assumptions of the thin-walled-beam theory, on 
one hand, and the basic assumptions of the 
optimum design on the other. 

During the process of structure 
dimensioning, apart from defining the requested 
dimensions necessary to permit the particular part 
of the structure to support the applied loads, it is 
often of significance to determine the optimal 
values of the dimensions. The Z - cross section as 
a very often used thin-walled profile in steel 
structures is in this paper considered as the object 
of the optimization. The determination of its 
optimal dimensions is a very important process 
but not always the simplest one. The aim of the 
paper is to determine the minimum mass of the 
whole beam, i.e. the minimum area A of the 
cross-section of the considered beam for the 
given loads and material properties. 

The cross-section of the considered beam 
(Fig. 1) with principal centroidal axes Xi (i = 1, 2) 
has the centre and not the axis of symmetry. It is 
assumed that its flanges have equal widths b1 = b3,
and thicknesses t1 = t3, and that its web has the 
width b2 and thickness t2. The ratios of 
thicknesses and widths of flanges and web are 
treated as non-constant quantities.  

Fig. 1.  Cross-section 

It is also assumed that the loads are 
applied in two longitudinal planes, parallel to the 
centroidal axes x and y at the distances i bi (i = 1, 
2) (Fig. 1). If applied in such a way, the loads will 
cause the bending moments acting in the above 
mentioned two planes parallel to the longitudinal 
axis of the beam, and consequently the effects of 
the constrained torsion will occur in the form of 
the bimoment, causing the stresses that depend on 
the boundary conditions [3] and [19]. 

The aim of the paper is to determine the 
minimal mass of the beam or, in other words, to 
find the minimal cross-sectional area 

minAA (1)
for the given loads and material and geometrical 
properties of the considered beam, while 
satisfying the constraints. 

The formulation of the structural design 
optimization problem plays an important role in 
the numerical solution process 6 . A particular 
choice of the objective function and constraints 
affects the final solution, and the efficiency and 
robustness of the solution process. 

1.1 Objective Function

The process of selecting the best solution 
from various possible solutions must be based on 
a prescribed criterion known as the objective 
function. In the considered problem the cross-
sectional area will be treated as an objective 
function and it is evident from the Fig. 1 that 

,     1, 2, 3i iA b t i

  or (because b1 = b3)

221121 2),( tbtbbbAA . (2)
The thickness-length ratios of the cross-

sectional walls are assumed to be non-constant 
variables (Fig. 1) 
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where ti and bi are thickness and widths of flanges 
and web. 

1.2  Constraints 

The formulation is restricted to the stress 
analysis of thin-walled beams with open sections.  

Only normal stresses will be taken into 
account in the consideration that follows and the 
constraints treated in the paper are the stress 
constraints. The expressions (4) and (5) for 
equivalent bending moments [20] taking into 
account the influence of the bending moments 
around centroidal axes x and y, denoted as Mx and
My  respectively, will be used  
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where Ix, Iy are the moments of inertia of the 
cross-sectional area about the centroidal axes x
and y, and Ixy is the product of inertia. 

The normal stresses are caused by the 
bending moments xM  and yM  and by the 
bimoment B that appears in the case of 
constrained torsion, and they will be denoted as 

x  and y and  respectively [3] and [19]. 
Bimoment is not a static value, and can not 

be defined by static equilibrium conditions. When 
the bending moments act in planes parallel to the 
longitudinal axis (Fig. 1) at the distances ibi
(i = 1, 2) the bimoment will appear as a 
consequence, and it can be expressed as the 
function of the bending moments and the 
eccentrities of their planes ibi (i = 1, 2) in the 
following way [3] and [19]   

yx MbMbB 2211 . (6)

For the allowable stress 0 the constraint 
function can be written as  

0maxmaxmax yx . (7)
The maximal normal stresses, are defined 

in the form [3] and [19] 
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,
(8)

W
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max ,

(9)
where Wx and Wy are the section moduli for the 
longitidunal axes, and W  is the sectorial section 
modulus for the considered cross-section.  

After the introduction of Eqs. (8) and (9) 
into Eq. (7), the constraint function becomes 

0
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(10)

The constraint function Eq. (10) is reduced 
to: 
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(11)
The expression (10) represents the 

constraint function corresponding to the given 
stress constraints. 

2 RESULTS AND DISCUSSION 

2.1 Analytic Solution 

The Lagrange multiplier method [6] to [7] 
and [21] to [22] is a powerful tool for solving 
these kind of problems and represents a classical 
approach to constraint optimization. Lagrange 
multiplier, labeled as , measures the change of 
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the objective function with respect to the 
constraint. The Lagrange multiplier method is a 
powerful tool for solving this class of problems 
without the need to explicitly solve the conditions 
and use them to eliminate extra variables. It is a 
method for finding the extremum of the function 
of several variables when the solution must 
satisfy a set of constraints, and for the analogous 
problem in the calculus of variations. 

Applying the Lagrange multiplier method 
to the vector which depends on two parameters bi

(i = 1, 2) the system of equations 

1 2 1 2, , 0,     1, 2
i

A b b b b i
b

,
(12)

will be obtained and after the elimination of the 
multiplier , it will become  

1

21

2

21

2

21

1

21 ,,,,

b

bb

b

bbA

b

bb

b

bbA
.

(13)

Let the ratio  

12 bbz (14)

be the optimal ratio of the parts of the considered 
cross-section and let 

12 tt , (15)

be the ratio of the flange and web thicknesses. 
After the introduction of the Eq. (6) for the 

bimoment into the Eq. (11), the Eq. (13) can be 
reduced to an equation whose solutions give the 
optimal values of the ratio (14). The solutions are 
in the form of the sixth order 

6
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k zc .

(16)
The coefficients ck in (16) are defined as: 
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It is obvious that the coefficients ck (k = 1, 
2, …, 6) depend on the ratio of the bending 
moments My /Mx and on the eccentrities 1 and 2
of their planes. 

The results that follow were obtained by 
an analytical approach. 

2.2 Optimal Values 

From the general case, when bending 
moments about both axes appear simultaneously 
with the bimoment, some particular cases can be 
considered, depending on the ratio My /Mx.

The optimal ratios b2 / b1 defined by (14) 
and obtained from the Eq. (16) are calculated for  

My /Mx=0, 0.1, 0.5, 1;  = 0.5, 0.75, 1 and 
1, 2 = 0, 0.2, 0.4, 0.6, 0.8, 1.0, or in other way, 

for 0 1 1; 0 2 1.
The optimal values of z for My /Mx=0 and 

 = 0.5, 0.75 and 1.0, are shown in Tables 1, 2 
and 3 as the functions of 1 and 2.

The highest and the lowest optimal values 
z = b2 /b1 for My /Mx = 0.1, 0.5, 1 are given in a 
shortened form in Table 4. 

From Tables 1 to 4 it is evident that the 
quantity z is decreasing when the eccentricities 1
and 2 are increasing. Also, it can be concluded 
that the values of z are decreasing when the ratio 

t2 /t1 is increasing and that they are decreasing 
when the load ratio is increasing. 
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Table 1.  Optimal z for My /Mx =0,  = 0.5 

1

2
0 0.2 0.4 0.6 0.8 1 

0 8.99 6.33 4.27 3.53 3.15 2.92 
0.2 7.55 4.62 3.66 3.21 2.96 2.79 
0.4 5.20 3.82 3.29 2.99 2.82 2.69 
0.6 4.03 3.38 3.05 2.85 2.71 2.62 
0.8 3.48 3.10 2.88 2.73 2.63 2.55 
1 3.16 2.92 2.76 2.65 2.57 2.50 

       
Table 2.  Optimal z for My /Mx =0,  = 0.75

1

2
0 0.2 0.4 0.6 0.8 1 

0 6.04 4.22 2.85 2.35 2.1 1.95 
0.2 5.99 3.08 2.44 2.14 1.97 1.86 
0.4 3.47 2.55 2.19 2.00 1.88 1.80 
0.6 2.69 2.25 2.03 1.90 1.81 1.74 
0.8 2.32 2.07 1.92 1.82 1.75 1.70 
1 2.11 1.94 1.84 1.77 1.71 1.67 

       
Table 3.  Optimal z for My /Mx =0,  = 1

1

2
0  0.2  0.4  0.6  0.8   1 

0 4.53 3.17 2.14 1.77 1.58 1.46 
0.2 4.49 2.31 1.83 1.61 1.48 1.40 
0.4 2.60 1.91 1.64 1.50 1.41 1.35 
0.6 2.02 1.69 1.52 1.42 1.36 1.31 
0.8 1.74 1.55 1.44 1.37 1.32 1.28 
1 1.58 1.46 1.38 1.32 1.28 1.25 

Table 4. Optimal z = b2 /b1 for My /Mx = 0.1, 0.5, 
1 and  = 0.5; 0.75; 1

My /Mx                       z 

0.1 
0.5 

0.75 
1

2.61   z 5.54 
1.75 z 4.38 
1.31 z 3.70 

0.5 
0.5 

0.75 
1

2.53   z . 2.74 
1.70   z 2.19 
1.28   z 1.86 

1
0.5 

0.75 
1

2     z 2.49 
1.60   z 1.67 
1.26   z 1.37 

2.3 The Loading Cases 

The obtained results are used for the 
calculation that follows. Some particular cases 
can be considered, depending on the loading case. 
In the present section, a cantilever Z-beam is 
fixed at one end and subjected to the concentrated 
bending moments Mx = 100 Nm, My = 0 Nm (My /Mx
= 0). 

The loading cases were considered when 
concentrated bending moments were applied at 
the free end for three positions of the load plane 
with respect to the shearing plane (Fig. 2). The 
optimal values zopt are calculated as previously 
explained. 

3 NUMERICAL EXAMPLE AND ANALYSIS 
OF RESULTS 

As a numerical example, the considered 
cantilever beam with the length l = 1500 mm, 
fixed at one end, is subjected to the bending 
moments Mx = 100 Nm, My = 0. 

The initial cross-sectional geometrical 
characteristics are calculated taking into account 
the initial dimensions of the Z-section beam. It is 
assumed that the considered section has the initial 
cross-sectional geometrical characteristics: b1 =
51.75 mm, b2 = 92 mm, t1 = 8 mm, t2 = 6.5 mm. 
It represents the Initial model with the “Initial 
area” of the cross-section. For the given loads 
(Figs. 3 and 4) and the defined geometry of the 
profile, the initial stresses are calculated. 

Starting from the initial relation zinitial and 
for the initial wall thicknesses t1 and t2 the 
optimal relation zoptimal is calculated defining the 
“Optimal area” of the cross-section.  

3.1 Determination of the Minimum Cross 
Sectional Area 

The problem is considered in two ways: 
1) The optimal dimensions of the cross-section 
b1optimal and b2optimal are obtained by equalizing the 
“Initial” and the ”Optimal area” ( initial= optimal)
and by using the calculated optimal relation z. In 
that case the normal stress lower than the initial 
one is obtained ( optimal< initial). It represents the 
Optimal model no. 1 (Table 5).  
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Fig. 2. a) Loading case 1: 1 = 0, 2 = 0, b) Loading case 2: 1 = 0.5, 2 = 0,  
c) Loading case 3: 1 = 1, 2 = 0

Table 5. Normal stresses and saved mass: t1 =0.8 cm and t2 =0.65 cm, z initial = 1.78
Loading       z optimal        initial       optimal no.1      optimal no.2      A initial = optimal  no.1      Amin= optimal  no.2   Saved mass  
 Case                            [MPa]          [MPa]            [MPa]                    [mm2]                        [mm2]                  [%] 
     1               5.58         13.4               7.5                13.4                      1426                          1033                   27.56 
     2               4.18         15.9             12.7                15.9                      1426                          1398                     1.96 
     3               1.54         38.2             37.9                38.2                      1426                          1418                     0.56 

2) From the condition prescribing that the stresses 
must be lower than the allowable one, i.e. the 
“Initial stress”, the optimal values b1optimal and 
b2optimal are obtained by using the calculated 
optimal relation z and by comparing the stress 
defined by the optimal geometrical characteristics 
to the “Initial stress”. It represents the Optimal 
model no. 2. Starting from the optimal cross 
sectional dimensions (b1optimal and b2optimal), the 
optimal – minimum cross-sectional area min is 
calculated for each loading case and the results 
including the saved mass of the material are given 
in Table 5. From the Table 5 it can be seen that 
for all the loading cases the level of stresses is 
decreased in the Optimal model no. 1 with the 
area of the cross-section having the same value as 
in the Initial model, and the saved mass of 
material is increased with respect to the initial 
stress limits in the Optimal model no. 2 where the 
area is smaller than the initial one. The 
calculation showed that the maximum saved 
material is obtained in the Loading case 1 and the 
minimum in the Loading case 3. This allows the 
conclusion that if the distance of the loading 
plane from the shearing plane is increased, the 
optimization of the cross-section is less 
necessary. 

4 CONCLUSIONS 

The paper presents one approach to the 
optimization of the thin-walled Z – section 
beams, loaded in a complex way, using the 
Lagrange multiplier method. 

Accepting the cross-sectional area as the 
objective function and the stress constraints as the 
constrained functions, it is possible to calculate 
the optimal ratios of the webs and the flanges of 
the considered thin-walled profiles in a very 
simple way.  

In addition to the general case, some 
particular loading cases are considered. As a 
result of the calculation the modified constrained 
functions are derived as the polynomials of the 
sixth order.  

Particular attention is directed to the 
calculation of the saved mass using the proposed 
analytical approach. It is also possible to calculate 
the saved mass of the used material for different 
loading cases. 

The aim of the paper is the optimization of 
thin-walled elements subjected to the complex 
loads, and it may be concluded that the paper 
gives the general results permitting the derivation 
of the expressions that can be recommended for 
technical applications. 
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