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An Analytical Solution of the Navier-Stokes Equation for 
Flow over a Moving Plate Bounded by Two Side Walls 
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An exact solution of the Naiver-Stokes equation for unsteady flow over a moving plate between 
two side walls is given. This solution solves the problem that arises  calculating shear stress at the bottom 
wall when the expression of velocity presented in literature is used. The variation of the shear stress at 
the bottom wall with the distance between two side walls for various values of the non-dimensional time is 
illustrated and it is shown that when the value of  non-dimensional time is equal to unity, the shear stress 
approaches the asymptotic value. Furthermore, the volume flux across a plane normal to the flow is 
calculated and it is found that when the value of the non-dimensional time is equal to unity, the volume 
flux approaches the asymptotic value.  
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0 INTRODUCTION 

An exact solution of the Navier-Stokes 
equation for unsteady flow over a plane wall and 
between two side walls perpendicular to the plane 
is given. Obtaining the exact solutions of the 
Navier-Stokes equation is very important because 
they provide a standard for checking the 
accuracies of many approximate numerical or 
empirical methods. Furthermore, the accuracies 
of the boundary layer approximation and the slow 
flow approximations can be tested by using the 
exact solutions of the Navier-Stokes equation. 
Although computer techniques make the 
complete integration of the Navier-Stokes 
equation feasible, the accuracy of the results can 
be established by a comparison to an exact 
solution. The exact solution given in this paper is 
for an unsteady flow in a viscous fluid generated 
by a plane wall moved suddenly and by two side 
walls held stationary. In the absence of the side 
walls, the flow reduces to the flow caused by a 
plane wall moved suddenly, which is termed 
Stokes problem or Rayleigh-type flow.  

The steady flow over a plane wall moving 
at a constant speed between two side walls was 
considered in [1] to present a simple model of a 
paint-brush due to Taylor. The mathematical 
problem is of the familiar boundary value form. 
The solution which satisfies the boundary 
conditions at the bottom wall, at the side walls 
and at infinity is given in the form of a series [1]. 
This series which gives the velocity of the steady 
state flow is a convergent series, but term-by-term 

differentiation of this series, which is used to 
calculate the shear stress at wall, does not give a 
convergent series. This situation arises not only 
due to the flow extending to infinity but also due 
to the flow bounded either by a horizontal plane 
at the top or by a horizontal free surface at the top 
[2]. A similar problem occurs in the conduction 
of heat [3], since the governing equation is the 
same for both problems. 

Unsteady flows of both Newtonian and 
non-Newtonian fluids over a plane wall in the 
absence of the side walls have been investigated 
by many authors [4] to [11]. The aim of this paper 
is to investigate the unsteady flow of a viscous 
fluid generated by a plane wall between two side 
walls. By using the Laplace transform method, 
the velocity is given in a series form.  

When the distance between two side walls 
increases, the expression of the velocity reduces 
to that of the velocity for an unsteady flow of a 
fluid generated by a plane wall moved suddenly. 
When non-dimensional time moves towards 
infinity, the expression of velocity approaches to 
that of the velocity for the steady flow.   

The shear stress at the bottom wall cannot 
be calculated by the expression of the velocity 
obtained by using the Laplace transform method. 
For this reason, by using the sine transformation, 
another expression for velocity is obtained. At 
any time, shear stress at the bottom wall is at its 
minimum at the middle of the plane and increases 
towards the side walls. The volume flux across 
the plane normal to the flow is given in terms of a 
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definite integral. This integral provides a new 
function which is defined by the integral [12].   

1 UNSTEADY FLOW 

The fluid is over a plane wall and between 
two side walls perpendicular to the plane. The 
side walls extend to infinity in the x- and z-
direction as shown in Figure 1. The fluid is 
suddenly set in motion by moving the bottom 
wall at constant speed in the absence of an 
imposed pressure gradient. The governing 
equation is 

2 2

2 2

u u u
t y z

.
(1)

The boundary and the initial conditions are 
u( b, z, t) = 0,  for all  t,
u(y, 0, t) = U  for all  t > 0   and -b < y < b,
u(y, , t) = 0  for all t     and  -b < y < b,
u(y, z, 0) = 0 for -b < y < b  and   z > 0.     (2) 

Fig. 1.  Flow geometry and coordinate system 

By using the Laplace transform method 
one finds [3] 

0
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where kn = (2n + 1)  / 2b  and 
22

x

erfc x e d

is the complementary error function [13]. When t
goes to infinity the expression of the velocity 
given by Eq. (3) approaches the steady state 
which is given in the following form 

0

4 ( 1) cos
2 1

n

n
k z

n
n

u e k y
U n

.

When z/b goes to infinity u/U becomes 
zero. In the absence of the side walls, namely, 
when b goes to infinity Eq. (3) takes the 
following form 

lim
2b

u zerfc
U t

.

The variation of u/U at y = 0 with z/b for 
various values of vt/b2 is illustrated in Fig. 2. For 
vt/b2 = 0.01, z/b, is about 0.5 and for vt/b2 = 1 the 
velocity approaches the asymptotic value. 

The volume flux across the plane normal 
to the flow can be found in the following form 

3
2 3 2

0

32 (2 1)(2 1)
2n

Q n tn erf
Ub b

.      (4) 

When t goes to infinity Eq. (4) reduces to 

       
2 3 3

0

32 1
(2 1)

Q
Ub n

.

Fig. 2. The variation of u/U  at y = 0 with z/b 
for various values of vt/b2

The numerical value of the right hand side 
is about 1.0855. The flux corresponds to a mean 
thickness of the order 0.5427b. For vt/b2 = 1, the 
volume flux approaches the asymptotic value. 

The variation of the volume flux with vt/b2

is illustrated in Fig. 3. 
The shear stress at the bottom wall cannot 

be calculated by the expression of the velocity 
given by Eq. (3). For this reason, another 
expression for velocity by using the sine 
transformation is obtained. The solution of Eq. 
(1) can be written as  

u = u0(y, z) + u1(y, z, t),
where u0 and u1 satisfy the following differential 
equations 
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2 2
0 0

2 2 0u u
y z

   and  
2 2

1 1 1
2 2

u u uv
t y z

,

u0 shows the steady-state part and u1 corresponds 
to the transient part. The boundary and initial 
conditions become 

u0( b, z) = 0, 
u0(y, 0) = U,
u0(y, ) = 0, 
u1( b, z, t) = 0,  
u1(y, 0, t) = 0, 
u1(y, , t) = 0, 
u0(y, z) + u1(y, z, t) = 0. 

Fig. 3. The variation of  Q/Ub2 with vt/b2

The sine transform of u0 is [14] 

0 0
0

sinu u z dz

and the boundary condition becomes 
0 0u b .

The problem is reduced to the solution of 
the following ordinary differential equation 

2
20

02

d u u U
dy

.

The solution is 

0
cosh1
cosh

U yu
b

.

The inverse of 0u  is given by the relation 
[14] 

0 0
0

2 sinu u z d ,

and since  

0

sin
2

zd ,

u0 can be written as  
0

0

2 cosh1 sin
cosh

u y z d
U b

.

The sine transform of 1u  is 

1 1
0

sinu u z dz ,

and the conditions are 
1 , 0u b t ,

0 1 ,0 0u y u y .
The problem is reduced to the solution of 

the following partial differential equation 
2

21 1
12

u uv v u
t y

.

The boundary condition 1 , 0u b t  suggests a 
solution in the following form 

2 2

1
0

cosnv k t
n n

n
u A e k y ,

where kn = (2n + 1) /2b and An can be obtained 
by the equation 
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This equation gives 
2
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The inverse of 1u  is 
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Therefore, the application of the sine 
transform method to Eq. (1), gives 

0
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It can be shown that Eq. (5) satisfies Eq. 
(1). When t goes to infinity Eq. (5) reduces to the 
expression of the velocity in the case of the 
steady state in the following form 

0
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cosh

u y z d
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,
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or by using the integral 
1

0

cos / 2cosh sin tan
cosh 2 sinh / 2

y by z d
b z b

one finds 
1 cos / 22 tan

sinh / 2
y bu

U z b
.

When 0t  Eq.(5) gives 
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.

The expression of the velocity given by 
Eq. (5) satisfies the following conditions: when 
z/b goes to infinity u/U vanishes and in the 
absence of the side walls u/U reduces to the 
expression that is given by the Stokes problem. 
Eq. (5) can be written in the following form 
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When t goes to zero, Eq. (6) gives 
1

0
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sinh( / 2 ) 2 1
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.

The volume flux across a plane normal to 
the flow is 

2
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or by using the integral 
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one finds 
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where F( ) is given by an integral  

3
0

tanh( )F d

and the numerical value of e F( ) is 
1.0855090289 correct to ten decimal places [12]. 
If one uses the equality 

3
3

0

8( ) (2 1)
n

F n ,

then, this expression of the volume flux reduces 
to Eq. (4). 

The shear stress at the bottom wall can be 
calculated by Eq. (5). Taking the derivative of Eq. 
(5) with respect to z and then putting z = 0 one 
finds 
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and by using the integral 
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where 
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are the integrals of the complementary error 
functions [13], one obtains 
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When t goes to infinity, since ierfc( ) = 0, 
Eq. (8) reduces to the expression for the steady 
state

0 1
/ cos / 2

xz z

U b y b
.

The variation of 
0

/ /xz z
U b  with 

y/b for various values of t/b2 is illustrated in 
Figure 4. When t/b2 = 1, the shear stress 
approaches the asymptotic value. 
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Fig. 4. The variation of ( xz)z=0 /( U/b) with y/b 
for various values of t/b2

From Fig. 4 it can be seen that the shear 
stress at the bottom wall is at its minimum at the 
middle of the plate and increases towards the side 
walls and at the side walls, namely, y=b, since 
cos knb = 0 and since  [15]  

0

cos ( )zd z ,

where (z) is the Dirac delta function, becomes 

( )
/

xz y b z
U b

.

It is can be clearly seen that this result is 
independent of time and it shows the corner 
singularity of the solution. This situtation is 
remarked in the second of the boundary 
conditions given by Eq. (2). 

2 CONCLUSIONS 

An analytical solution for an unsteady 
flow generated by a plane wall moved suddenly 
and by two side walls held stationary is given. In 
the absence of the side walls, the flow reduces to 
the flow caused by a flat plate moved suddenly, 
which is termed Stokes problem or Rayleigh-type 
flow. When non-dimensional time moves towards 
infinity the solution tends to that of the steady 
flow in the same geometry. The steady and the 
unsteady flows in the geometry considered are 
investigated to give a correct result for shear 
stress at the bottom wall. The shear stress at the 
bottom wall can be calculated from the velocity 
obtained by using the sine transformation. It is 

shown that the shear stress at the bottom wall is at 
its minimum at the middle of the plate and it 
increases towards the side walls. Furthermore, the 
volume flux across a plane normal to the flow is 
calculated and it is shown that when value of non-
dimensional time is equal to unity, the volume 
flux approaches the asymptotic value. 
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