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Predicting the errors of a large optical mirror processing robot (LOMPR) is very important when studying a feedforward control error 
compensation strategy to improve the motion accuracy of the LOMPR. Therefore, an end trajectory error prediction model of a LOMPR based 
on a Bayesian optimized long short-term memory (BO-LSTM) was established. First, the batch size, number of hidden neurons and learning 
rate of LSTM were optimized using a Bayesian method. Then, the established prediction models were used to predict the errors in the X and Y 
directions of the spiral trajectory of the LOMPR, and the prediction results were compared with those of back-propagation (BP) neural network. 
The experimental results show that the training time of the BO-LSTM is reduced to 21.4 % and 15.2 %, respectively, in X and Y directions 
than that of the BP neural network. Moreover, the MSE, RMSE, and MAE of the prediction error in the X direction were reduced to 9.4 %, 30.5 
%, and 31.8 %, respectively; the MSE, RMSE, and MAE of the prediction error in the Y direction were reduced to 9.6 %, 30.8 %, and 37.8 %, 
respectively. It is verified that the BO-LSTM prediction model could improve not only the accuracy of the end trajectory error prediction of the 
LOMPR but also the prediction efficiency, which provides a research basis for improving the surface accuracy of an optical mirror.
Keywords: Bayesian optimization, BO-LSTM, error prediction, optical mirror processing, hybrid manipulator, hyperparametrics

Highlights
•	 An end trajectory error prediction model based on a Bayesian optimized long short-term memory was established. 
•	 The established prediction models were used to predict the spiral trajectory errors of the large optical mirror processing robot.
•	 The batch size, number of hidden neurons and learning rate of LSTM were optimized using a Bayesian method.
•	 The experimental results showed that the Bayesian optimized long short-term memory error prediction model could improve 

not only the accuracy of the end trajectory error prediction of the large optical mirror processing robot but also the prediction 
efficiency.

0  INTRODUCTION

With the development of the information age, modern 
optical systems are rapidly developing towards 
features including large aperture, high precision, high 
resolution, and high power. The requirements for 
LOMPS are also increasing. In order to realize the 
rapid development of modern optics and keep up with 
the development trends of advanced optical systems, 
LOMPS suitable for large-scale, aspherical, efficient 
and precise optical mirror processing have become a 
key technology to be solved urgently. Optical mirror 
processing includes four steps: rough grinding, 
milling forming, fine grinding, and polishing [1] and 
[2]. A fixed trajectory is used for the large optical 
mirror processing robot (LOMPR) in these four steps, 
with a grid trajectory, concentric circle trajectory, 
or spiral trajectory commonly used. The dynamic 
characteristics and control parameters of the LOMPR 
under a specific trajectory also show periodic changes 
[3] and [4]. Moreover, the processing of optical 
mirrors requires multiple iterations. The process of 
fabricating a large finished optical mirror from a blank 
can last from several days to several months [5] to 
[7]. Determining the long-term periodic movement 

would aid in the mathematical statistical analysis 
of the non-linear error and predicting the direction 
and size of the error in the future, which will allow 
countermeasures to be taken in advance based on the 
predicted results [8] and [9]. Therefore, it is necessary 
to predict the trajectory error of the LOMPR based on 
the previous processing parameters to compensate for 
the uncertainty of the model and improve the surface 
accuracy and processing efficiency of the optical 
mirror [10] to [12].

Deep learning has rapidly developed in recent 
years, and many algorithms are suitable for non-linear 
fuzzy data processing. In fact, many scholars have 
applied deep learning and some intelligent analysis 
methods to the research field of traditional robots. 
Dai et al. applied a long short-term memory (LSTM) 
model to vehicle trajectory prediction [13]. Mici et 
al. [14] predicted the future instructions of a motor 
using a neural network structure to compensate for the 
delay error. To solve the trajectory tracking problem 
of a wheeled mobile robot under non-holonomic 
constraints and in the presence of model uncertainties, 
Mirzaeinejad et al. [15] derived and optimized a control 
law by minimizing a pointwise quadratic cost function 
for the predicted tracking errors of a wheeled mobile 



Strojniški vestnik - Journal of Mechanical Engineering 68(2022)3, 175-184

176 Jin, Z. – Cheng, G. – Xu, S. – Yuan, D.

robot. Wang et al. [16] proposed an adaptive Jacobian 
controller based on the prediction error to realize an 
adaptable kinematic and dynamic parameters driven 
by the prediction error. Las Casas et al. [17] established 
a fully connected feedforward artificial neural 
network with supervised learning to predict the error 
between the welding parameters of a welding robot. 
In order to predict the motion direction of a robot’s 
end tool path in real time, Wang et al. [18] proposed 
that the robot’s end tool path be guided by a human in 
off-line training of the LSTM to generate a trajectory 
predictor. Zhang et al. [19] predicted the torque of a 
six-degrees-of-freedom (6-DOF) cooperative robot 
based on a compensated cooperative robot dynamic 
model of an LSTM. Yang et al. [20] predicted the fault 
of a robot in a dynamic working state based on deep 
learning. Chebbi et al. [21] carried out a sensitivity 
analysis and positioning error limit prediction for a 
3-DOF translational parallel robot. Zatout et al. [22] 
analysed the optimal output problem of a fuzzy logic 
controller for quadrotor attitude stabilisation through 
particle swarm optimization, bat algorithm and cuckoo 
search, and obtained the optimal performance of bat 
method. The above scholars applied deep learning to 
the fields of robot parameter optimization, trajectory 
prediction, fault diagnosis, and robot positioning, and 
achieved good results. However, few scholars have 
conducted relevant research on the error prediction 
of the end execution point of a hybrid robot with 
large load and coupling characteristics [23] to [25]. 
The trajectory error of the end execution point of a 
robot can be predicted using deep learning, which can 
provide feedforward compensation data for the servo 
control system.

However, not all deep learning models can be 
applied to different engineering fields. In order to cope 
with the characteristics of different engineering states 
and give deep learning algorithms a better fusion effect, 
many scholars have improved or optimized them. Li 
et al. [26] proposed an LSTM training method based 
on evolutionary attention and a competitive random 
search, which was applied to multivariate time series 
forecasting. Ahmad et al. [27] proposed a predictive 
control strategy for a four-degree-of-freedom half-
car model in the presence of an active pneumatic 
surface to improve the attitude control ability of the 
vehicle. Ullah et al. [28] proposed model predictive 
control and H∞ control of a 6-DOF manipulator to 
improve the trajectory accuracy of the robot. Ali et al. 
[29] used a particle swarm optimization algorithm to 
optimize the gain of proportional-integral-derivative, 
the weighting matrices of linear quadratic regulator, 
and their ratio of contributions, so as to improve the 

performance of the controller and obtain the accurate 
trajectory tracking ability of the controller. Bai et 
al. [30] analysed the performances of linear model 
predictive control, linear error model predictive 
control, non-linear model predictive control, and non-
linear error model predictive control for mobile robot 
path tracking. To solve the time delay compensation 
problem for a non-linear teleoperation system, Shen 
et al. [31] proposed a motion prediction method based 
on a cascaded structure state observer. Tang et al. 
[32] predicted the wind speed range through particle 
swarm optimization of a deep learning network. Wang 
et al. [33] designed a high-performance detection 
model based on a superimposed LSTM to realize 
unmanned aerial vehicle real-time fault detection 
using a statistical threshold. Mei et al. [34] proposed 
a one-dimensional convolutional LSTM based on a 
vibration terrain classification method to learn both 
the spatial and temporal characteristics of dampened 
vibration signals. Wu et al. [35] predicted the health 
state of an aviation turbofan engine using a vanilla 
LSTM. Focusing on the unique attributes of the 
engineering field studied, the above scholars improved 
the existing deep learning algorithm, optimized the 
search algorithm, optimized the parameters, adjusted 
the deep learning framework to predict the data, and 
achieved ideal results. This background provides a 
reliable theoretical basis for predicting the error of the 
end execution point of a LOMPR using a Bayesian 
optimized long short-term memory (BO-LSTM).

Effectively predicting the end execution 
trajectory error of a LOMPR is very important when 
compensating for the robot’s feedforward error 
and improving the surface accuracy of an optical 
mirror. This study established an end trajectory error 
prediction model for a LOMPR based on the Bayesian 
hyperparametric optimization of an LSTM. It can 
effectively predict the errors of the LOMPR in X and 
Y directions under different processing trajectories. 
Based on the above introduction, the structure of this 
paper is as follows. Section 1 introduces the structure 
of the LOMPR and the tool path of the robot when 
a computer controlled optical surfacing (CCOS) 
grinding system is used. Section 2 shows how the 
LSTM deep learning model was constructed based 
on Bayesian optimization. Section 3 shows how the 
effectiveness of the prediction model under the spiral 
trajectory was verified using an experimental analysis. 
Finally, Section 4 gives the conclusion of this paper.
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1  LARGE OPTICAL MIRROR PROCESSING ROBOT

Based on the requirements of the optical mirror 
grinding process, the LOMPR needs at least five 
degrees of freedom (5-DOF). The LOMPR used in 
this study was a 5-DOF hybrid robot developed using 
a 3-DOF parallel (UPS+UP) manipulator combined 
with a 2-DOF serial manipulator. The topology of the 
LOMPR is shown in Fig. 1. Among them, the parallel 
part of the moving platform and fixed platform 
were connected by three UPS driven branches and 
one UP constrained branch. A world coordinate 
system (O-XYZ) was established, where O was the 
intersection of the horizontal axis of the fixed platform 
centre point and the vertical axis of the optical mirror. 
The X-axis pointed in the negative direction of point 
O1, the Z-axis was vertically downward, and the 
Y-axis was determined according to the right-hand 
rule. The rotation axis of the primary rotary head was 
collinear with the UP branch chain, and the rotation 
axis of the secondary rotary head was perpendicular 
to the primary rotary head and parallel to the Y-axis. 
A reference coordinate system OAi – xAiyAizAi is 
established on the Ai, where OAi is the central hinge 
point of the Hooke hinge of the fixed platform, the 
zAi-axis is downward along the driving branch chain, 
the yAi-axis is perpendicular to the driving branch 
chain along the internal axis of Hooke hinge, and the 
xAi-axis follows the right-hand rule. The grinding tool 
used the CCOS grinding system. The CCOS grinding 
system consists of a rotating motor and a revolving 
motor. Among them, a pneumatic suspension device 
is designed above the rotation axis. When the LOMPR 
produces a position error in the Z-axis direction, it will 
push the suspension axis up and down to compensate 
for the error. Therefore, the error caused by the end 
trajectory of the LOMPR in the Z-axis direction will 
not affect the surface processing accuracy of the 
optical mirror.

Fig. 1.  Topology of LOMPR

The position error of the end execution point of 
the LOMPR is the result of the coupling of multiple 
influencing factors. The serial manipulator of the 
LOMPR has a relatively stable structural size, low 
motion speed and small stroke, so the error caused by 
the serial manipulator is very small. Here, the position 
error caused by the parallel module UPS branch chain 
is considered. The main factors affecting the error of 
a single UPS branch chain are the friction of moving 
pair, elastic deformation and servo system error, so the 
error of a single UPS branch chain can be expressed 
as:

 e e e e eli fi di ci oi i� � � � � 1 2 3, , ,  (1)

where eli is the comprehensive error of UPS branch 
chain i, efi is the error caused by friction of moving 
pair, edi is the error caused by force deformation of 
branch components, eci is the error of servo system, 
and eoi is other errors.

The friction of the moving pair of the mechanism 
is mainly the friction generated during the movement 
of the Hooke hinge, composite ball hinge and ball 
screw of the UPS, resulting in insufficient driving 
force. Moreover, the posture of the mechanism in 
the motion space is different, the force state of each 
motion pair is also different, and the friction of the 
motion pair of the UPS is also related to its spatial 
posture. Therefore, the error caused by the friction of 
the moving pair can be expressed as:

 e Mfi fi fiF x y z= ( , , , ),  (2)

where Ffi is the conversion function between friction 
and position error of moving pair, Mfi is the friction of 
the moving pair, and (x, y, z) is the spatial coordinate 
of the LOMPR. The kinematic pair friction is analysed 
by introducing viscous friction based on the Coulomb 
friction model. So, the friction of the UPS can be 
obtained as:
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where Mfix, Mfiy, and Mfiz are the friction torque around 
xAi, yAi and zAi axis, respectively; M fix

u , M fiy
u , and 

M fiz
u  are the friction torque of Hooke hinge around 

xAi, yAi, and zAi axis, respectively; M fix
s , M fiy

s , and  
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M fiz
s  are the friction torque of composite ball hinge 

around xAi, yAi, and zAi axis, respectively; Ffiz
p  is the 

friction force of the ball screw along the zAi axis; M fiz
p   

is the friction torque of ball screw around zAi axis; α, 
β, and γ represents the RPY angle of the moving 
platform relative to the fixed platform.

The position error caused by the elastic 
deformation of UPS can be expressed by the kinematic 
constraints of a parallel mechanism under elastic 
deformation:

 e J qdi di i= , (4)

where Jdi is the kinematic constraint matrix, and qi 
is the displacement and rotation of UPS under elastic 
deformation.

When the speed feedforward control model is 
adopted, the servo system error function of UPS can 
be expressed as:

e
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where J is the load moment of inertia of the motor, B is 
viscous resistance, Kpv is the proportional coefficient 
of the speed loop, KT is the torque coefficient, Ksvs is 
the speed feedforward transfer function, Kpv2 = Kpv / τv, 
τv is the time constant of the velocity loop, Xi is the 
input signal, b1 = J, b2 = B + KpvGiKt, b3 = Kpv2GiKt + 
KpKpvGiKt, b4 = KpKpv2GiKt.

2  BO-LSTM

2.1  LSTM Deep Neural Network

The LSTM was developed using recurrent neural 
networks (RNNs) and is mainly used to solve the 
problem of long-term data dependence in RNNs. 
An LSTM can remember the information and its 
correlation over a long period of time and can easily 
be recalled so that the information does not decay. 
An LSTM consists of three steps: a state forward 
calculation, error back propagation, and a weight 
update.

1) State forward calculation
The input value of an LSTM is network input 

value Xt at the current time and network state St-1 at 
the previous time. These flow through forgetting gate 
F, input gate I, hiding unit H, and output gate O.
(1) Forgetting gate

 F U X W S bt
F

t
F

t
Fg� � �� ��1

,  (6)

where UF, WF, and bF represent the input connection 
matrix, feedback connection matrix, and offset term 
of the forgetting gate, respectively, g is the sigmoid 
function.

(2) Input gate

 I U X W S bt
I

t
I
t

Ig� � �� ��1
,  (7)

where UI, WI, and bI represent the input connection 
matrix, feedback connection matrix, and offset term of 
the input gate, respectively.

(3) Hiding unit

 H U X W S bt
H

t
H

t
H� � �� ��tanh ,

1
 (8)

where UH, WH, and bH represent the input connection 
matrix, feedback connection matrix, and offset term of 
the hiding gate, respectively.

(4) Storage element status update

 C FC I Ht t t t t� ��1
.  (9)

(5) Output gate

 O U X W S bt
O

t
O

t
Og� � �� ��1

,  (10)

where UO, WO, and bO represent the input connection 
matrix, feedback connection matrix, and offset term of 
the output gate, respectively.

(6) LSTM hidden layer output
The information, Ct, of the storage element is 

multiplied by the result of the tanh transfer function 
and the output gate to obtain the LSTM hidden layer 
output.

 S O Ct t t� � �tanh .  (11)

(7) Network output
The hidden layer output of the LSTM is sent to 

the softmax output layer through connection matrix V 
to obtain the actual output of the network.

 Y VS b

t tf� �� �.  (12)

2) Error back propagation
Based on the actual network output obtained 

by the forward calculation, the error function can be 
defined as follows:

 E Y Y� �� �� 1

2

2

t
t t
 ,  (13)

where Yt is the annotation signal from the data. 
For time step t, the corresponding error is found as 
follows:
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In other words, the downstream error at a certain 
time, t, can be divided into two parts: the error of the 
backflow in the later time step, t+1, and the error of 
the same time step, t. The errors of these two parts are 
expressed as follows:
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where δ is the neural node error. The expressions of 
the transfer function sigmoid and hyperbolic tangent 
function are as follows:
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Further calculation shows that the errors are as 
follows:
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3) Weight update
Based on the errors of the forgetting gate, input 

gate, and output gate in each time step, the connection 
weight parameters associated with these components 
can be updated and combined with the output values 
of each neuron obtained in the forward calculation.

The formula for updating the connection 
parameters of a forgetting gate is as follows:
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where β is the learning rate, and n is the number of 
iterations.

The formula for updating the connection 
parameters of the input gate is as follows:
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The formula for updating the connection 
parameters of the hidden layer is as follows:
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The formula for updating the connection 
parameters of the output gate is as follows:
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2.2  Bayesian Optimized Hyperparameters

During the training of the LSTM, there are many 
hyperparameters in the model, including the data 
length, number of iterations, learning rate, number of 
hidden neural units, and forgetting coefficient, which 
can be set at will. Appropriate super parameters are 
vital to improving the performance of the model. 
Bayesian optimization can not only set continuous 
hyperparameter values but also has a high search 
efficiency and accuracy.

Bayesian optimization uses the approximate 
global optimization algorithm to find the 
hyperparametric combination that minimizes the 
objective function:

 p f D
p D f p f

p D
� � � � � � �

� �
,  (22)

where f represents the objective function; D = {(x1, y1), 
(x1, y1), … (xn, yn)} is the data set; p(  f  |D) and p(  f  ) 
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are the a posteriori probability and a priori probability, 
respectively; p(D|  f  ) is the likelihood distribution of y; 
and p(D) is the boundary likelihood distribution of f.

Assuming a set of super parameter combinations, 
X = (x1, x2, …, xn), each super parameter is evaluated, 
and the evaluation result is f(xn). Then, the optimal 
hyperparameter is found as follows:

 x f x
x X

�

�
� � �arg min .  (23)

1) Probabilistic agent model
The probability agent model adopts a Gaussian 

process, and the Gaussian distribution can be 
expressed as follows:

 f x GP x k x x� � � � � �� � � , , ,  (24)

where μ(x) is the mean function, k(x, x) is the positive 
definite covariance function, and f(x) is the average 
absolute error.

According to the nature of the Gaussian process, 
ft and ft+1 obey a joint Gaussian distribution:
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where K is the covariance matrix,
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2) Acquisition function
The acquisition function can prevent the Bayesian 

optimization from falling into a local optimal solution. 
The excepted improvement (EI) acquisition function 
can find the next sample point with the greatest 
improvement expectation. The EI sampling function 
is as follows:
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where Φ is the probability density, φ is the standard 
normal distribution function, and f(x+) is the existing 
maximum. In addition, the following is true:
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��

�
.  (28)

Then, the flow of the BO-LSTM is shown in Fig. 
2.

Fig. 2.  Flow of BO-LSTM

3  EXPERIMENTAL ANALYSIS

The prototype of the LOMPR is shown in Fig. 3. In 
mirror processing, grid trajectory, concentric circle 
trajectory, and spiral trajectory are commonly used. 
The curvature of spiral trajectory constantly changes, 
which severely tests the dynamic characteristics of 
LOMPR, and the end trajectory error generated by the 
processing robot is also relatively large. Therefore, the 
spiral trajectory is used as a representative to predict 
the error in the X and Y directions of the end trajectory 

Fig. 3.  Prototype of LOMPR
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of the LOMPR. Because the optical mirror needs to 
complete an iterative cycle before surface detection, it 
is impossible to collect the error of the mirror surface 
in real time for prediction. Therefore, the training data 
used are the end execution point position parameters 
calculated from the collected motion branch chain 
parameters into the forward kinematics model. 
Then the actual trajectory error collected from the 
experimental mirror is compared with the prediction 
results. On the one hand, it can verify the effectiveness 
of the BO-LSTM prediction model; on the other hand, 
it can verify the accuracy of the forward kinematics 
model. The technical route is shown in Fig. 4.

The experiment was based on the deep 
learning framework Keras library written in the 
Python language to complete the BO-LSTM model 
construction, data loading, training, and testing. 
Firstly, the data is pre-processed, including time 
stitching, missing data processing, abnormal data 
processing and data normalization. In the process 
of data prediction, the learning rate, batch capacity, 
and the number of hidden neurons directly affected 
the convergence speed and prediction accuracy 
of the model. Then, the above hyperparameters 
were optimized, and the appropriate parameters 
were input into the model for training. In order to 
compare the effectiveness of this hyperparametric 
optimization, a set of default values were used based 
on engineering experience, including a batch size of 
1500, 35 hidden neurons, and a learning rate of 0.01. 
Considering the influence of the hyperparameters on 
the model performance and the interaction between 
hyperparameters, the value range of the batch size was 
set at (200, 600, 1000, 1500), the number of hidden 
neurons was (5, 15, 35, 50), the learning rate was 
(0.1, 0.01, 0.001), the optimizer was “Adam,” and the 
activation function was “Relu”.

Bayesian optimization was used to search the 
above hyperparameters, and the following optimal 
combination of hyperparameters was obtained: a 

batch size of 1000, 15 hidden neurons, and a learning 
rate of 0.001. The experimental data were imported 
into the established LSTM error prediction model 
using 90 % as training data samples and 10 % as test 
samples. The end execution point errors of the optical 
mirror machining robot under different trajectories 
were then predicted using the BO-LSTM. In order to 
verify the effectiveness of the BO-LSTM model in 
the prediction of optical mirror processing trajectory 
error, the BP neural network prediction model is used 
for prediction and analysis, and the prediction results 
are compared with those of BO-LSTM.

The trajectory equation of the robot during spiral 
processing is as follows:
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The LOMPR was controlled to process 
continuously, the motion period is 40 s and the 
sampling period is 40 ms. And the motion data of each 
rotating axis were collected, and the trajectory error of 
the end execution point was calculated. According to 
the collected data, the prediction results of BO-LSTM 
prediction model and BP neural network prediction 
model are shown in Fig. 5.

The data collected during the experiment and 
the trajectory error prediction results of the spiral 
trajectory in the X and Y directions are shown in Fig. 
5. As the spiral trajectory is a trajectory with gradually 
increasing curvature, the errors of the LOMPR in 
the X and Y directions accumulates, resulting in the 
trajectory error in the X and Y directions gradually 
increasing amplitude and periodically changing in the 
form of a sinusoidal function curve. The prediction 
parameters of the BP neural network are shown in 

Fig. 4.  Technical route of error prediction
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the two models are analysed through the error integra-
tion criterion. It can be seen that the IAE, ISE, ITAE, 
and ITSE of the prediction error of BO-LSTM in the 
X direction are reduced to 56.44 %, 33.33 %, 53.63 
%, and 30.47 %, respectively compared with the pre-
diction error of the BP neural network; the IAE, ISE, 
ITAE, and ITSE of the prediction error of BO-LSTM 
in the Y direction are reduced to 57.87 %, 37.84 %, 
54.79 %, and 34.27 % respectively compared with the 
prediction error of BP neural network. In summary, 
the prediction accuracy of the established BO-LSTM 
end trajectory error prediction model is significantly 
higher than that of the traditional BP neural network, 
which further verifies the accuracy and effectiveness 
of the established model.

          

          
Fig. 5.  Spiral trajectory error prediction; a) data samples on X-axis; b) prediction results on X-axis;  

c) data samples on Y-axis; d) prediction results on Y-axis

Table 1. The training time in the X and Y directions 
is 42 min and 46 min, respectively. The MSE, RMSE, 
and MAE of the prediction error in X direction are 
0.96 %, 9.80 %, and 7.29 %, respectively; the MSE, 
RMSE and MAE of the prediction errors in Y direction 
are 1.04 %, 10.18 %, and 6.51 %, respectively. When 
using the BO-LSTM prediction model for trajectory 
error prediction, the training time in X and Y directions 
are reduced to 9 min and 7 min, respectively.

Further analysis of the prediction results shows 
that the MSE, RMSE, and MAE of the prediction error 
in the X direction were 0.09 %, 2.99 %, and 2.32 %, re-
spectively; the MSE, RMSE, and MAE of the predic-
tion error in the Y direction were 0.10 %, 3.14 %, and 
2.46 %, respectively. Moreover, through the predicted 
trajectory error data of 14.6 s, the prediction results of 

Table 1.  Analysis of spiral trajectory error prediction results

Direction Model Training time [min] MSE [%] RMSE [%] MAE [%] IAE ISE ITAE ITSE

X
BP 42 0.96 9.80 7.29 0.6176 0.0402 5.0697 0.3547

LSTM 9 0.09 2.99 2.32 0.3486 0.0134 2.7187 0.1081

Y
BP 46 1.04 10.18 6.51 0.5920 0.0370 4.7360 0.3131

LSTM 7 0.10 3.14 2.46 0.3426 0.0140 2.5754 0.1073
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4  CONCLUSION

This study investigated a method for predicting 
the trajectory error of the end execution point of a 
LOMPR. The hyperparameters were optimized using 
a Bayesian method, and a BO-LSTM deep neural 
network was established to optimize the learning 
rate, batch capacity, and number of hidden neurons 
to improve the efficiency and accuracy of the model 
search. Considering the working characteristics of 
the CCOS grinding system as a tool, the collected 
kinematic data of the LOMPR were processed, 
including time stitching, missing data processing, 
abnormal data processing, and normalization 
processing, to improve the learning efficiency of the 
deep learning network. Finally, in end trajectory error 
prediction experiments using a spiral trajectory, the 
trajectories in X and Y directions were predicted. At 
the same time, BP neural network prediction model is 
used to predict the end trajectory error of LOMPR. The 
prediction results had high accuracy, and the training 
time of the model was greatly reduced. Compared 
with the prediction results of a BP neural network, 
the training time of BO-LSTM prediction model in 
X and Y directions are reduced to 21.4 % and 15.2 
%, respectively; The MSE, RMSE, and MAE of the 
prediction error in the X direction are reduced to 9.4 
%, 30.5 %, and 31.8 %, respectively; MSE, RMSE, 
and MAE of the prediction error in Y direction were 
reduced to 9.6 %, 30.8 %, and 37.8 %, respectively. 
The validity and accuracy of the model were verified, 
which provides a reliable theoretical basis and data 
support for the feedforward compensation of the 
end trajectory error of a future LOMPR. In addition, 
the BO-LSTM error prediction model proposed in 
this paper could be widely used in kinematic error 
prediction for other parallel and hybrid robots.
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