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Adequate assessment of solar radiation data is crucial for planning and designing solar energy systems. However, a major challenge facing 
solar energy technologies is the availability of solar radiation data at the specific area of interest. In this paper solar radiation and sunshine 
duration data from 29 stations in Zimbabwe were used to generate both monthly and annual Angstrom-Prescott (A-P) type coefficients, a and 
b, that are location based. The coefficients were developed using linear correlation between the clearness index and sunshine duration. The 
adaptation relationship between satellite and ground-measured irradiation had an R2 of 0.6738. The correlation between the clearness index 
and the sunshine duration in most of the stations was fairly high with the highest coefficient of determination, R2, of 0.9030. The A-Pregression 
coefficient, a, generated using the data from each station ranged between 0.2252 and 0.3976, whereas the regression coefficient, b, ranged 
between 0.3218 and 0.6265. The estimated and measured values of global solar radiation, He, and Hm, respectively from each station were 
compared using the mean absolute percentage error (MAPE), the root mean square error (RMSE), the mean absolute error (MAE) and the 
relative standard error (RSE). The MAE values for the models ranged from 0.5438 MJ/m2 to 2.2845 MJ/m2. The MAPE indicated a range 
between 2.5642 % and 10.334 %. The RSE ranged between 0.0346 % and 0.1537 % while the RMSE for the models ranged from 0.7360  
MJ/m2 to 2.9454 MJ/m2. The statistical indicators showed results that were within the recommended range for solar radiation predicting 
models from similar studies. 
Keywords: empirical coefficients, Angstrom-Prescott models, solar irradiation, sunshine duration

Highlights
•	 Location-specific empirical coefficients from solar radiation data in Zimbabwe were generated.
•	 Angstrom-Prescott type models for solar irradiation prediction were developed.
•	 Analyzed model performance and validity using measured data. 

0  INTRODUCTION

The world has witnessed substantial negative effects 
of climate change on water resources, agriculture, 
biodiversity, human and animal health, forest systems, 
and socioeconomic sectors [1] and [2]. Global warming 
which is somewhat proportional to the increase 
in the concentration of greenhouse gases (GHG) 
in the atmosphere, is one of the major observable 
outcomes of climate change [3] and [4]. Increased use 
of fossil fuels in the energy and industrial sectors is 
considered one of the main causes of the growth in the 
concentration of GHG in the atmosphere, particularly 
carbon dioxide (CO2) [5].

According to scientists, by the end of the current 
century, global warming may exceed an increase by 4 
°C [6]. By limiting mean global warming to less than 
2 °C above preindustrial levels (1850 to 1900) and 
pursuing efforts to keep the temperature increase to 
1.5 °C, the Paris agreement was established to proffer 
a solution [7] to this challenge of global warming. 
To limit the amount of GHG released into the 
environment as a result of burning conventional fuels, 
the world's energy sector is currently concentrating on 

encouraging naturally replenished renewable energy 
sources particularly solar energy [8]. 

As a desirable replacement for fossil fuels, solar 
energy is viewed as a natural, sustainable, clean, and 
ample source of energy that has potential to meet the 
world's energy needs [9] and [10]. Many studies have 
been undertaken to explore this abundantly available 
sustainable energy source [11] and [12]. To fully 
and optimally deploy solar energy, there is need for 
accurate data to assist in the design and performance 
analysis of solar energy systems [13]. Over the years 
the need for accurate and readily available solar 
radiation data has led to great efforts in development 
of numerous methods of varying complexity by 
scientists to estimate solar radiation [14] and [15]. The 
various methods developed to forecast solar radiation 
include stochastic weather models, satellite imaging, 
linear interpolation, artificial neural networks, 
physical transfer processes and empirical relations 
using other meteorological variables [16] to [20]. 
For example, recent models have been developed to 
predict different solar radiation components using 
different techniques including; machine learning 
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approach with physics-based models, statistical 
machine learning and numerical models [21] to [23].

Among prediction methods, the simple empirical 
models are still being used as the fundamental tool 
for estimating solar radiation, mainly due to low 
computation costs, accessibility of data and simplicity 
[24]. Many solar irradiation predictive models are 
data driven and hence classified as empirical.  These 
empirical models are grouped into extensive categories 
according to their input meteorological parameters 
such as sunshine duration based models, cloud cover 
based models, latitude and temperature based models 
[25]. The main types of empirical models are based on 
sunshine, temperature and relative humidity [26] to 
[28].

Machine learning models have also been used in 
predicting solar radiation. These are trained artificial 
systems that combine various meteorological input 
variables like sunshine duration, temperature, 
relative humidity and cloud cover from both satellite 
imaging and ground measurements to predict solar 
radiation [29]. Robust linear regression, support vector 
machines, artificial neural networks, extreme gradient 
boosting (XGBoost), and random forests are some 
of the machine learning models that have recently 
emerged as sophisticated methods for constructing 
more precise correlations between inputs and outputs 
[30] to [34]. Machine learning models perform well 
when estimating solar irradiation, but their ease of use 
and transferability from the development site to the 
intended areas is totally dependent on the geographic 
and climatic condition [27]. ARIMA-GP evolutionary 
models were recently developed by Nwokolo et al. 
[21] and [22] and these were found to be sufficiently 
accurate in the prediction of solar irradiation in 
different locations. 

Many other attempts have been made to develop 
models to predict solar irradiation. For example, 
Sabbagh et al. [35] proposed a model for use in dry 
arid or semi-arid regions, such as Iran, where the 
average sea level is higher. The model considered 
the effect of relative humidity (RH), and maximum 
temperature (Tmax) on solar radiation. Kasten and 
Czeplak [36] developed a cloud cover based model 
that correlated the ratio of global solar radiation (H) 
to the total amount of cloud cover and global radiation 
at cloudless sky (Ho). Nwokolo [37] performed a 
comprehensive review of empirical models used 
for estimating global solar radiation in Africa and 
West Africa. The study indicated that hybrid models 
performed better than single-parameter based models 
in the prediction solar radiation. In a different study, 
Nwokolo and Ogbulezie [38] undertook a quantitative 

review and classification of empirical models used 
for predicting global solar radiation in West Africa. 
The study recommended the need to make use of soft 
computing as an alternative approach to estimating 
global solar irradiation with high precision in West 
Africa.

Temperature based models are also popular and 
some of these assume that the difference between the 
maximum and minimum temperature is directly linked 
to solar radiation received at the surface [39]. Bristow 
and Campbell [40] proposed a temperature based 
model that relates solar irradiation to maximum and 
minimum temperature cognisant of the transmissivity 
of the atmosphere. In a different study, Donatelli and 
Campbell [41] devised a model that takes into account 
the average air temperature and minimum temperature 
functions, as well as the atmosphere's transmissivity 
coefficient to predict solar radiation. A study by 
Nwokolo eand Ogbulezie [42] investigated a single 
hybrid parameter-based model for optimizing the 
Hargreaves-Samani coefficient in Nigeria. The study 
indicated that the same approach could also be applied 
in the prediction of global solar radiation.

Sunshine duration-based models have been 
found to be equally important and applicable to 
solar irradiation prediction. The Angstrom-Prescott 
(A-P) model is the first linear correlation relating 
solar radiation to sunshine duration and is the 
most commonly employed model for predicting 
global solar radiation as a result of availability and 
reliable sunshine duration measurements in most 
meteorological stations [43]. Many modifications 
of this model have been proposed in literature. For 
example, the Glover and McCulloch model which is 
a modification of the A-P model further incorporate 
the latitude into the linear A-P model [44]. Likewise, 
the modified A-P model established by Page [45] 
is considered a model that can be used anywhere in 
the world; however, it should be noted that it was 
developed for a latitude of 40 degrees, thus it is 
preferable to recalculate the correlation coefficients 
of, a and b, [27], [46] and [47].

The Bahel model is also based on sunshine 
duration and is a relationship between sunshine 
duration and solar radiation data obtained from 48 
weather stations around the world, under various 
geographical and meteorological conditions [48]. 
On the other hand, Dehkordi et al. [49] developed 
modified coefficients of the A-P model for six 
meteorological stations across the arid and semi-arid 
regions of Iran. The study generated A-P models for 
each station using meteorological data recorded from 
1992 to 2017. 
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Mostafazadeh et al. [50] developed two modified 
A-P models for predicting solar radiation using both 
sunshine duration and solar radiation data from Urmia 
and Tabriz stations in Iran from the period of 2014 
to 2017. In order to evaluate the models’ accuracy, 
the study employed root mean square error (RMSE), 
mean absolute bias error (MABE) and Nash-Sutcliffe 
efficiency indices. The statistical analysis of the 
models indicated that the modified models of Urmia 
and Tabriz stations produced very good prediction 
values. The conclusion was that since sunshine 
duration is an important variable for estimating solar 
radiation then the modified A-P models can be used 
to predict solar radiation in Iran [49] and [50]. Mejia 
et al. [51] developed an algorithm for predicting solar 
radiation in Ciudad Juarez Chihuahua, Mexico based 
on a modified A-P model. The modified prediction 
model was developed using data from NASA's World 
Energy Resources forecast database for Ciudad 
Juarez, Chihuahua, including daily average radiation 
and sunlight duration. 

Lewis [52] used two empirical models to estimate 
solar irradiation over Zimbabwe using measured 
data from a station based in Harare. The first model 
was a correlation between clearness index and the 
fraction of sunshine hours based on the A-P model and 
the second model was based on a linear correlation 
between clearness index and maximum temperatures 
and RH. The study generated correlation coefficients 
for the first model and used similar data from Nigeria 
by Swartman and Ogunlade [53], then generated 
correlation coefficients for the second model and used 
similar data from Iran by Sabbagh et al. [35] to test and 
analyse the applicability of both models. The analysis 
concluded that the first model based on sunshine 
duration data was the better of the two models as it 
estimated solar radiation values that were close to the 
measured values. The study also concluded that the 
use of the first model to predict solar irradiation over 
Zimbabwe was less accurate as only data from Harare 
was used to generate the model, hence the study 
recommended the use of data from other stations 
across Zimbabwe to generate more location specific 
models which would perform much better than a 
model based on data from a single location.

Chagwedera and Sendezera [54] developed two 
correlation models of the Angstrom type to predict 
the monthly average daily global solar radiation 
incident on a horizontal surface using meteorological 
data from two locations (Bulawayo and Harare) in 
Zimbabwe. The study used the models to generate 
estimated solar radiation values which were compared 
to measured solar radiation data. The results showed 

good agreement between measured and predicted 
solar radiation values and the authors concluded from 
the findings that modifying the Angstrom type model 
to generate location-based models produces improved 
solar radiation predictions. 

Chiteka and Enweremadu [55] developed 
an artificial neural network model for predicting 
horizontal irradiation for important sites in Zimbabwe, 
which included a seven input layer, one hidden layer, 
and a single output layer. The inputs of the neural 
network developed by the authors consisted of 
geographical data of altitude, latitude and longitude 
and meteorological data of humidity, pressure, 
clearness index and average temperature. The best 
predictive model of all the models studied was a 
network with 10 neurons and a tansig transfer function 
in both the input and output layers. The network had 
a coefficient of determination of 99.894 %, a RMSE 
of 0.223 kWh/m2/day, a mean absolute error (MEA) 
of 0.17 kWh/m2/day, and a mean absolute percentage 
error of 2.56 %, according to the evaluations. 

The A-P model is an economic, meteorological 
and geographic empirical model that has been applied 
in different locations around the world to predict 
the proportion of solar irradiation incident on the 
horizontal surface in all sky conditions anywhere 
on the globe [27] and [39]. Studies agree on its 
simplicity and remarkable performance due to the 
strong correlation between sunshine duration and 
solar radiation. Despite its low performance compared 
to machine learning models, it is a powerful hybrid 
estimation technique, and this attribute gives the 
A-P model an advantage or preference over other 
linear and nonlinear functional forms to improve the 
accuracy of the model's performance, making it a 
reference model.

Understanding and measuring the solar radiation's 
spatial-temporal distribution is crucial for optimizing 
solar energy harvesting in many applications. At 
numerous meteorological stations and individual 
weather stations, measurements of solar radiation 
are taken on the ground using two different types of 
instruments i.e., a pyrheliometer and a pyranometer. 
Adequate assessment of solar radiation data is crucial 
for planning and designing solar energy systems 
[56]. However, a major challenge facing solar energy 
technologies is the availability of solar radiation data 
at the specific area of interest. There are three main 
ways in which this deficiency in solar radiation data 
manifests itself: low spatial coverage, a short record 
and a lack of both global radiation data and sunshine 
duration [57]. The shortage of solar radiation data 
arises as a result of a finite number of observation 

https://www.sciencedirect.com/topics/engineering/clearness-index
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stations mainly due to financial and technical 
limitations especially in developing countries [17].

In Zimbabwe station-based meteorological solar 
radiation data still remains scant as there are only a 
few weather stations that measure solar irradiation. 
At these stations data recording on solar irradiation 
is measured by pyranometers and is monitored by 
the Meteorological Services Department (MSD) [58]. 
Pyranometric measurements are difficult to obtain due 
to high costs of setting up the measuring equipment. 
This unavailability of measured solar irradiation data 
in developing countries is a major limitation when 
assessing solar energy potential in various areas [59]. 
As a result, a continual mapping of solar radiation via 
estimation is required [57]. 

Solar radiation at the surface of the earth is a 
complex parameter to accurately estimate due to 
varying weather conditions across the globe, therefore 
this limits the A-P model to a location specific 
model. The A-P model’s accuracy can be enhanced 
by introducing into the initial model, site specific 
meteorological data and parameters [51]. It is against 
this background that models are developed based on 
the A-P model for predicting solar irradiation specific 
for the environment in Zimbabwe. In many studies 
in which the different empirical models have been 
compared, it has been observed that the sunshine 
duration based models perform better than the other 
empirical models and most of the sunshine based 
models generated to estimate solar radiation are 
modifications of the A-P model [60]. As such, the 
model has become a reference and fundamental model 
for estimating solar radiation in any location in the 
world.

Meteorological stations in Zimbabwe that 
measure, and record ground solar radiation are sparsely 
distributed over a landscape with dynamic climate 
and weather shifts. Furthermore, the solar radiation 
data available at the few stations in Zimbabwe is 
historical data ranging between 1975 to 1999, hence 
it is not applicable to current solar radiation research 
as the data does not incorporate atmospheric changes 
that have occurred over the years. Solar radiation 
data from solar resource maps and spatial solar 
radiation data sets is more consistent than the ground 
measured data but its limitation is that the data is 
less accurate due to exclusion of atmospheric impact 
on solar irradiation received on the ground. The use 
of outdated and/or less accurate solar data from the 
meteorological stations and satellite database results 
in overestimation or underestimation of both research 
and design outputs which can affect the financial 
decisions of solar radiation-based projects and research 

significantly. Moreover, geostationary satellites often 
have no coverage in some areas on the globe [61] and 
hence various authors have tried to overcome this 
drawback by correlating the satellite derived data with 
corresponding ground measurements, thus generating 
a correction factor for the satellite data.

It is therefore imperative to develop a solar 
irradiation predicting model adapted from the 
consistent satellite data and both current and historical 
ground measured solar radiation data specific to 
the environment in Zimbabwe. Developing a solar 
radiation predicting model based on the A-P model will 
reduce the need to establish expensive solar radiation 
measuring equipment since the solar irradiation 
will easily be estimated by the model. In this study, 
location-specific empirical coefficients were generated 
from solar radiation data from locations in Zimbabwe. 
This was followed by developing an A-P model for 
estimating solar irradiation. The model was analysed 
and validated for its applicability by comparing with 
measured data. The rest of this study is structured 
as follows; section 1 focuses on the materials and 
methods used in the study while section 2 outlines 
the results and discussion of the results. Section 3 
highlights the major conclusions of the study. 

1  METHODOLOGY

1.1  Study Location

Zimbabwe is a landlocked country in the Southern 
part of Africa surrounded by countries like Zambia 
in the north, South Africa in the south, Botswana in 
the west and Mozambique in the east. This country 
is located in the tropics between latitude 15.61 ̊ S to 
22.42 ̊ S and longitude 25.24 ̊ E to 33.05 ̊ E [62]. The 
climate is subtropical in general, however, it may be 
divided into five distinct climatic zones according to 
the Koppen-Geiger classification [63]. The north and 
east are particularly warm and wet, and are classified 
as humid and subtropical, with a highland zone in the 
centre-east. In the shadow of the eastern highlands, the 
high elevation plateau in the west experiences milder 
temperatures and is protected from rain, resulting in a 
climate that is closer to semi-arid. This semi-arid zone 
stretches from the country's southernmost point to the 
southeast, where a tiny area of near-desert conditions 
exists [63].

1.2  Meteorological Datasets

The data sets used comprised of three different data 
sources including ground measurements from 29 
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meteorological stations in Zimbabwe, measurements 
from a University of Zimbabwe observation station 
as well as solar radiation satellite-based observational 
data obtained from NASA POWER Data Access [64]. 
Historical pyranometer measurements of monthly 
mean solar radiation measurements were obtained 
from the MSD. The data range was from January 
1971 to June 2000 but only nineteen of the 29 stations 
measured monthly solar radiation. Recent ground 
measured monthly solar radiation data from 2006 to 
2020 was also obtained from a mini-meteorological 
station at the University of Zimbabwe Physics 
Department. 

Satellite-based global solar radiation data on a 
horizontal surface for the 29 stations over a period of 
15 years (2006 to 2020) was also obtained from NASA 
POWER Data Access. These datasets are enhanced 
meteorological datasets developed with the Goddard 
Earth Observing System (GEOS) atmospheric model 
and Data Assimilation System (DAS) with a spatial 
resolution of 0.5° longitude and 0.5° latitude [28], [65] 
and [66]. The datasets have been used over the years 
in many studies where ground measurements are not 
available, to obtain daily global solar radiation data 
[67] and [68]. The monthly average sunshine duration 
measurements recorded by sunshine recorders was 
obtained from the MSD for the 29 meteorological 
stations in Zimbabwe from the period of 1971 to 2020.

1.3  Satellite Data Correction

The evaluation of satellite data performance has 
been found to possess significant biases, which can 
be attributable to potential errors in the satellite data 
measurements of ground parameters due to changes 
in tropospheric features and surface environmental 
conditions as well as measuring methods [69] to 
[72]. Hence, applying a correction factor to satellite-
derived data in order to obtain corresponding ground 
based measurements results in a comprehensive solar 
radiation database [73] to [75].

The mini station at the University of Zimbabwe 
Physics Department was the only station with recently 
recorded monthly ground measurements of solar 
radiation from the year 2006 to 2020. Therefore, the 
ground measured data at the mini-station were used 
to calibrate the satellite-based measurements in order 
to make the data sets compatible through a correlation 
plot between ground-based and satellite-based solar 
radiation measurements.

1.4  Meteorological Parameters 

The computation of the extra-terrestrial solar radiation 
(Ho) is shown in Eq. (1) as a function of the latitude 
(φ) [76].
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The solar constant, Isc, is the energy from the 
sun per unit time received on a unit area of a surface 
perpendicular to the direction of the radiation at the 
mean Earth-Sun distance outside the atmosphere 
and is given by 1367 W/m2 as adopted by the World 
Meteorological Organisation [77]. Eo, is the relative 
earth-sun distance or the eccentricity correction factor 
of the earth’s orbit and its value is given by the Eq. (2) 
where n is the day of the year starting from 1 to 365 
and 366 on a leap year [78].
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The solar declination angle, δ, and the sunset 
hour angle, ωs, are computed using Eqs. (3) and (4), 
respectively [79].
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The maximum possible sunshine duration in 
hours is given by Eq. (5) [76]:

Table 1.  Computed meteorological parameters for selected locations

Station Latitude [°] Elevation [m] So [h] S [h] S/So H [MJ/m2] Ho [MJ/m2] H/Ho
Beitbridge -22.22 457 8.503 11.998 0.7135 21.319 33.774 0.6380
Grand Reef -18.98 1019 8.193 11.998 0.6878 21.234 34.406 0.6529 
Gweru -19.45 1429 8.316 11.998 0.7001 22.301 34.318 0.6638
Mt Darwin -16.78 953 8.209 11.998 0.6900 21.696 34.781 0.6383
Nyanga -18.22 1679 7.675 11.998 0.6458 21.250 34.541 0.6288
Victoria Falls -17.93 1062 8.890 11.998 0.7494 24.075 34.590 0.7107
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Ho, and, So, where thus computed using Eqs. (1) 
and (5) respectively per station for each month and 
their averages per station are shown in Table 1.

1.5  Data Quality Control

The data for modelling was reliant on solar radiation 
and sunshine data and therefore it was imperative to 
check the quality of both ground and satellite-based 
data in order to minimise errors in the models. The 
scatter envelope technique was used to check the 
quality of data between the clearness index, H/Ho, 
and the fraction of the sunshine duration, S/So. The 
scatter envelope technique is a statistical method that 
quantifies the boundaries and number of data outliers 
using standard statistics such as standard deviations 
and averages [80]. The input data were the fraction of 
sunshine duration and the clearness index, therefore 
the clearness index was divided into ten equal bands, 
each with a fraction of sunshine duration value of 0.1. 
In each band, the standard deviation, σ, and mean 
value of the clearness index, H/Ho, shown in Fig. 
1. were assessed, and the dispersion envelope was 
defined by the limits (H/Ho ± 2σH/Ho). The dispersion 
envelope is the area bordered by the two curves that 
represent the upper and lower bounds, with the higher 
limit representing (H/Ho + 2σH/Ho) and the lower limit 
representing (H/Ho – 2σH/Ho) [81]. 

Fig. 1.  Data quality control of clearness index and sunshine 
duration fraction

Outliers were defined as data points that were 
outside of the envelope and were rejected before the 
data was used in the study. After the analysis, 0.276 
% of the data was rejected and deemed unsuitable. 
Similar studies including that of Nwokolo et al. [27]
most government meteorological stations are unable 
to continuously set-up or measure this radiometric 
parameter in most metropolitan cities and remote 
villages where there is a severe need for electricity. 
This is because most locations are not connected to 
the national grid due to high cost implications. Global 
solar radiation (H) applied this technique on clearness 
index and sunshine duration fraction data from 
meteorological stations in Nigeria and observed a 0.34 
% data reduction in the sample data.

1.6  Development of A-P Type Models

1.6.1  Computation of Regression Coefficients

The regression coefficient, a, in Eq. (6) indicates the 
fraction of extra-terrestrial radiation on a maximum 
overcast day, and the regression coefficient, b, 
represents the rate of increase of clearness index 
with respect to sunshine hours. Monthly and annual 
regression coefficients, a and b, were computed from 
the monthly values of clearness index, H/Ho, and 
sunshine duration fraction, S/So, by means of scatter 
plots. 

Table 2.  Annual A-P coefficients for selected stations

Station
A-P coefficients 

R2
a b

Beitbridge 0.29 77 0.4770 0.6394
Grand Reef 0.2765 0.5108 0.9030
Gweru 0.2252 0.6265 0.8849
Mt Darwin 0.3066 0.4807 0.7986
Nyanga 0.2362 0.6080 0.8601
Victoria Falls 0.2677 0.5912 0.8391

Notes. The regression coefficients, a and b, represent the 

y-intercept and the gradient of the regression equation respectively 

and R2 represents the coefficient determination for each station.

The monthly regression coefficients developed 
for selected locations are shown in Table 2 which 
were developed from monthly clearness index and 
sunshine duration fractions from each station. For the 
annual A-P coefficients linear regression lines were 
plotted for each station which expressed the regression 
coefficients, a and b, as the linear y-intercept and 
gradient of each line respectively. 
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The variations of the A-P type regression 
coefficients, a and b, with geographic variables like 
elevation, latitude and longitude were computed as 
shown in Table 5 in order to determine and illustrate 
the effect of these variables on the coefficients.

1.6.2  Generation of Estimated Solar Radiation Values

The developed monthly regression coefficients, a and 
b, together with the sunshine duration measurements, 
S, monthly extra-terrestrial solar radiation, Ho, and 
maximum sunshine duration values, So, from each 
station, were used to estimate monthly global solar 
radiation, He, using the A-P type models for each 
station. For the nineteen stations with both historical 
solar radiation data and current calibrated solar 
radiation data, both sets of data were combined to 
generate estimated values of, H, for the period of 
1971 to 2000 (historical) and 2006 to 2020 (current). 
The remaining ten stations without ground measured 
historical solar radiation data, only the calibrated 
solar radiation data from 2006 to 2020 was utilised to 
generate estimated solar radiation values.

1.7  Model Validation and Statistical Analysis

1.7.1  Model Validation

To evaluate the model, estimated solar radiation 
values generated by the general model were compared 
with measured solar radiation values for each 
individual station. The estimated and measured values 
of global solar radiation, He and Hm, respectively 
from each station were compared using statistical 
analysis methods. The coefficients of Determination, 
R2, obtained from the plots between measured 
and estimated solar radiation values were used to 
determine the relation between the two values. The 
relationship increases positively when the correlation 
coefficient increases from 0 to 1 [82] and [83].

1.7.2  Model Performance Analysis

Performance analysis of the models was done using 
the approaches which include the coefficient of 
determination R2, mean absolute percentage error 
(MAPE), residual mean square error (RMSE), mean 
absolute error (MAE) and the relative standard error 
(RSE) respectively shown by Eqs. (7) to (11). The 
acceptable range for MAPE and RSE is between 0 % 

and 10 % and for RMSE and MAE is between 0 MJ/
m2 and 10 MJ/m2 when comparing estimated and 
measured solar radiation values, and these statistical 
evaluation methods are the most commonly used to 
evaluate empirical models [27], [67], [68], [84] to [87]. 
MAPE values less than 10 % indicate a good precision 
model [17] and [88]. The closer the RMSE values are 
to zero the more accurate the model is and a value of 
RMSE equals zero is the ideal value [17], [51] and [89].
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where, RSS is the residuals sum of squares and TSS is 
total sum of squares, i, is the, ith, value and, n, is the 
total number of measured or estimated values.

2  RESULTS AND DISCUSSIONS

2.1  Satellite Data Correction

Each satellite-based measurement was paired with a 
corresponding ground measurement for each month 
measured between the years 2006 to 2020. As a result, 
a correction equation was generated relating ground-
measured data, Hgrn, to satellite based data, Hsat, as 
shown by Eq. (12) and Fig 2.

 H Hgrn sat� �3 7114 0 7568. . .  (12)

In Fig. 2 the coefficient of correlation r = 0.8209 
(R2 = 0.6738) shows a high positive relationship 
between, Hgrn, and, Hsat, hence, r, was regarded a 
high enough coefficient of correlation to support the 
use of Eq. (12). The satellite-based solar radiation 
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Fig.  2.  Ground and satellite measured data correlation,  
University of Zimbabwe (2006 to 2020)

According to the World Meteorological 
Organization (WMO) [90], the fraction of sunshine 
duration (S/So) classifications are as follows: cloudy 
sky 0 ≤ S/So < 0.3, scattered clouds 0 ≤ S/So < 0.7 and 
clear sky 0.7 ≤ S/So < 1.0.

The locations under study show a mixture 
of scattered clouds and clear sky characteristics. 
Seventeen of the stations indicated scattered clouds 
predominance, whilst twelve of the stations indicated 

data is consistent in terms of measurement, hence the 
correction equation obtained from the mini-station 
was used to generate current ground-based values 
from corresponding satellite-based values for the 
other 29 meteorological stations. 

2.2  Characterization of Meteorological Parameters

The averages of global solar radiation, H, extra-
terrestrial solar radiation, Ho, sunshine duration, S, 
maximum sunshine duration, So, the clearness index, 
H/Ho, and fraction of sunshine duration, S/So, for 
selected stations are presented in Table 1. In Table 1, 
it can be seen that the, H, S, H/Ho, and, S/So, differ for 
each station and these variabilities can be attributed to 
the latitude, longitude and altitude of each location-
based station. In Table 1, it can be observed that, H/
Ho and S/So, reduce in magnitude as the longitude 
increase from the east to the west of Zimbabwe. 
According to the Koppen-Geiger classifications 
the western part of the country is semi-arid hence 
experiences much more solar radiation with increased 
sunshine hours and these variables reduce towards the 
eastern part of the country in the eastern highlands 
with subtropical highland climate. This then implies 
that locations based in the western part of Zimbabwe 
receive increased solar radiation than locations close 
or within the eastern highlands due to the atmospheric 
differences between the two regions.

Table 3.  Monthly A-P type regression coefficient, a, for selected locations

a
Station

Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Beitbridge 0.31 0.29 0.27 0.32 0.33 0.42 0.59 0.32 0.38 0.26 0.31 0.33
Grand Reef 0.32 0.26 0.35 0.33 0.38 0.24 0.28 0.40 0.24 0.23 0.49 0.28
Gweru 0.32 0.29 0.24 0.20 0.27 0.25 0.39 0.42 0.29 0.21 0.28 0.29
Kutsaga 0.33 0.33 0.44 0.44 0.28 0.55 0.66 0.48 0.31 0.61 0.62 0.48
Mt Darwin 0.31 0.32 0.32 0.35 0.42 0.37 0.44 0.40 0.33 0.33 0.30 0.32
Nyanga 0.31 0.28 0.30 0.34 0.39 0.37 0.29 0.34 0.25 0.23 0.29 0.29
Victoria Falls 0.29 0.29 0.31 0.10 0.08 0.06 0.16 0.52 0.31 0.30 0.33 0.30

Table 4.  Monthly A-P type regression coefficient, b, for selected locations

b
Station

Month
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Beitbridge 0.45 0.47 0.53 0.47 0.46 0.31 0.10 0.46 0.36 0.53 0.45 0.42
Grand Reef 0.43 0.52 0.40 0.46 0.41 0.57 0.53 0.37 0.54 0.54 0.13 0.50
Gweru 0.43 0.50 0.60 0.66 0.60 0.63 0.45 0.40 0.52 0.61 0.50 0.50
Kutsaga 0.37 0.35 0.22 0.27 0.52 0.20 0.07 0.27 0.43 0.02 0.12 0.04
Mt Darwin 0.47 0.44 0.47 0.45 0.38 0.45 0.34 0.37 0.41 0.39 0.44 0.45
Nyanga 0.44 0.49 0.49 0.47 0.44 0.49 0.58 0.49 0.56 0.56 0.46 0.48
Victoria Falls 0.55 0.56 0.54 0.81 0.83 0.95 0.72 1.45 0.51 0.52 0.49 0.55
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clear sky predominance, which are mainly located 
in the semi-arid regions of the country. The least 
sunshine duration fraction was 0.1588 at Mukandi 
Meteorological Station located in the eastern 
highlands with subtropical highland climate, whilst 
the highest sunshine duration fraction was 0.7494 at 
Victoria Falls Meteorological Station located in the 
north-west part of the country with semi-arid climatic 
conditions. The World Meteorological Organisation 
[90] classifies the monthly clearness index, H/
Ho, into three meteorological classifications as 
follows: very cloudy weather (H/Ho ≤  0.4), partially 
covered weather (0.4 ≤ H/Ho ≤ 0.7) and clear weather  
(H/Ho ≥ 0.7).  The generalised datasets shown in Table 

1 indicated that for all the stations under study the 
predominant meteorological condition is partly cloudy 
with average clearness index between 0.5 and 0.7. 
The lowest clearness index was 0.3352 at Mukandi 
Meteorological Station and the highest was recorded 
at Victoria Falls Meteorological Station as 0.7107.

2.3  Relationships between H/Ho and S/Do

To generate the A-P type regression coefficients, a 
and b, for each station plots between the clearness 
indexes, H/Ho, and the sunshine duration fractions, 
were generated as represented in Fig. 3. In Fig. 3, 
it can be observed that, H, and, H/Ho, increase with 

a)   b) 

c)   d) 
Fig. 3.  Correlation plot between H/Ho and S/So for a) Gweru, b) Grand Reef, c) Buffalo Range and d) Victoria Falls
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increasing, S, and S/So, as expected for each station. 
Solar radiation received increases with increase in 
sunshine duration and the quantities can be attributed 
to the type of Koppen-Geiger climate classification 
of each location station [27]. The highest correlation 
between the clearness index and the sunshine duration 
fraction was 0.9030 as shown in Table 2 with 80 % of 
the stations having R2, greater than 0.6. The lowest, 
R2, is 0.3387 for Buffalo Range station in Chiredzi 
which can be considered a weak correlation, as it is 
evident by dispersed data showing a weak relationship 
between, H/Ho, and S/So, as shown in Fig. 3c.

2.4  A-P Regression Coefficients

In Tables 2, 3 and 4 it can be observed that both, a and 
b, are higher in the winter months of May to August 
and are lower in the summer and wet months of 
October to March. This can be attributed to the clear 
sky conditions during the winter and cloudy skies 
experienced in the summer in Zimbabwe. The plots in 
Fig. 3, as well as Tables 2, 3 and 4 show the annual 
A-P type regression coefficients, a and b, which are 
the gradient and y-intercepts respectively for all the 
stations under study. The correlation coefficient, a, 
ranged from 0.2252 at Gweru Meteorological Station 
to 0.3976 at Chisengu Meteorological Station and 
the correlation coefficient, b, ranged from 0.3218 at 
Banket Meteorological Station to 0.6265 at Gweru 
Meteorological Station. 

Table 5, shows the variations of regression 
coefficients, a and b, with respect to latitude, longitude, 
elevation, S/So and H/Ho. It can be seen that both the 
regression coefficient, a and b, do not possess a salient 
relationship with the variables particularly latitude 
and elevation. The above trends were also observed 
in other similar studies [49], [51], [91] and [92], where 
the outcomes showed that neither a nor b, varied with 
latitude and altitude in any systematic manner. This 
can be attributed to the lack of distribution between 
the stations across the whole Zimbabwe as the bulk 

of the stations are located in the North-Western and 
Western part of the country.

However there is a slight effect on both, a and b, 
with respect to the longitude. The value of, a, tends 
to reduce as the longitude increases, whilst the value 
of, b, increases with increase in longitude as shown in 
Table 5. This implies that the values of, a, are higher 
in the western parts of the country as seen in the 
stations like Victoria Falls (a = 0.2677, b = 0.5912) 
and Binga (a = 0.3222, b = 0.4795) and lower in the 
eastern parts in stations like Nyanga (a = 0.2362, b = 
0.6080) and Mukandi (a = 0.2100, b = 0.5340) and 
vice versa for the values of b. Therefore, it can be 
assumed that the values of a and b at a location are 
dominantly affected by the climatic condition of the 
area. Particularly in Zimbabwe it can be observed that 
areas with semi-arid climates have high values of a, 
than those areas with a subtropical climate and vice 
versa for the values of b. Nwokolo et al. [27] deduced 
similar conclusions from a similar research, whereby 
the stations that are within the hot desert and the 
warm semi-arid climates of Nigeria showed higher 
coefficients of a, between 0.350 and 0.469 compared 
to the station that are within the tropical savannah and 
the tropical rainforest climates with a, values between 
0.212 and 0.268. Nwokolo et al. [27] also obtained 
values of the A-P coefficient b, which increased from 
stations within the hot (arid) desert climate to those in 
the tropical rainforest climate.

The A-P type models for various areas in 
Zimbabwe based on individual station are shown 
in table 6. It can be observed that a few stations 
like Banket (a = 0.3356, b = 0.3218), Chisengu 
(a = 0.3306, b = 0.3333) and Triangle (a = 0.3223, 
b = 0.3287) exhibited values of a and b, that are 
off trend with a very small difference between the 
a and b, values. This can be attributed to the use of 
only satellite-based solar radiation data for these 
stations which had slightly higher values than ground-
measured values used in other stations. The coefficient 
a, from literature indicates the proportion of Ho, 

Table 5.  The variation of the annual A-P coefficients with meteorological and climatic variables

Station Latitude [°] Longitude [°] Elevation [m] S/So H/Ho a b
Beitbridge 22.22 29 .99 457.00 0.7135 0.6380 0.2977 0.4770
Grand Reef 18.98 32.45 1019.00 0.6878 0.6529 0.2763 0.5282
Gweru 19.45 29 .85 1429 .00 0.7001 0.6638 0.2252 0.6265
Kutsaga 17.92 31.13 1480.00 0.6996 0.6152 0.2855 0.4707
Mt Darwin 16.78 31.58 953.00 0.6900 0.6383 0.3066 0.4807
Nyanga 18.22 32.75 1679.00 0.6458 0.6288 0.2362 0.6080
Victoria Falls 17.93 25.85 1062.00 0.7494 0.7107 0.2677 0.5912

Note. H/Ho, is the clearness index, S/So, is the sunshine duration fraction, a and b, are the A-P regression coefficients.
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received on the surface on a very cloudy day when S/
So = 0, whilst a + b, indicate the proportion of Ho, 
on a clear sky day when S/So = 1 [27]. This indicates 
that the higher intensity of H, received the greater the 
value of a, and the less the value of b. The variations 
mentioned above were also obtained by [28] and [87] 
in similar researches where both satellite and ground 
data were used interchangeably and the implication 
of these findings in both cases reduced the predicting 
power of the models slightly. In the case of [28] the 
predicting power of the models based on satellite data 
was reduced by 1.48 %.

The A-P type models obtained in table 5 show 
similarities in the regression coefficients of a and b, 
for stations in close proximity like MSD Belvedere 
with a = 0.2886 and b = 0.4635 and Kutsaga with a 
= 0.2855 and b = 0.4707 all located in Harare. The 
above regression coefficients for the stations based in 
Harare also showed similarities with the coefficients 
obtained by [52] for Harare with a = 0.282 and b = 
0.460. Hove and Göttsche [74] also obtained similar 
coefficients for Gokwe and West Nicholson as (a = 
0.36, b = 0.47) and (a = 0.29 , b = 0.49) respectively 
as shown in Table 5.

2.5  Estimated Solar Radiation Values

The models in Table 6 were used to estimate 
monthly solar radiation values He, for each station and 
the values were compared to the monthly measured 
and extra-terrestrial solar radiation from individual 
stations Hgrn and Ho  respectively. Monthly He and 
Hgrn, were plotted and a selected plot for Nyanga is 
shown in Fig. 4.

Fig. 4.  Comparison between He, Hgrn and Ho for Nyanga Station

The extra-terrestrial solar radiation Ho, maintained 
a similar trend in all the stations as shown in Fig. 
4 with a steep U-shaped plot. Ho ranged between  
23 MJ/m2 and 44 MJ/m2, with the lowest values 
observed in the months of June, July and August 
(winter season), and the highest in the months 
of October, November, December and January 
(summer season). In Fig. 4, it can be seen that both 
the estimated and measured monthly solar radiation 
values follow the same trend as the monthly Extra-
terrestrial solar radiation values but with a gentle 
U-shaped slope which drops from the month of March 
to July and rises from August to October and drops 
slightly from November to December. In Zimbabwe 
the months of June and July are the coldest months, 
with August being windy and while the month of 
October is the hottest. The months of November, 
December and March are the wettest months and all 
these variations related to altitude [62]. He and Hgrn, 
had values ranging between 12 MJ/m2 and 27 MJ/m2, 
with the lowest values observed in the months of June 
and July, and the highest in the month of October.

The slight drop in magnitude of the measured and 
estimated solar radiation values from the months of 
October to December can be attributed to effect of 
rain, with the rain season beginning in late October 
or early November [62]. Observing the values of both 
extra-terrestrial and measured global horizontal solar 
irradiation it can be concluded that just above 50 % 
of the extra-terrestrial solar irradiation from the sun 
is received on the ground and this can be attributed 
mostly to the effect of the atmosphere. The trends 
observed in Fig 4. are similar to the trends observed in 
other studies in countries surrounding Zimbabwe [82] 
and [92] to [94] in Mozambique, South Africa, South 
Africa and Malawi respectively. The estimated values 
He, show very small variations from the measured 
values Hgrn, in most of the stations, except for Buffalo 
Range which exhibit slightly higher variations.

The estimated values He, for the general model 
were compared to ground measured values, Hgrn, 
and extra-terrestrial Ho, solar radiation values from 
individual stations to assess the deviation from the 
measured values. It was noted that the general model 
estimated values, He, maintained the same trend as 
Hgrn, for all the stations. Slight deviations between, He 
and Hgrn, can however be observed in a few stations 
such as Banket, Chisumbanje, Chivhu, Gokwe, Kariba 
and Triangle. These slight deviations are attributed to 
the input solar radiation data used from these stations, 
which was ground corresponding values based on 
satellite measurements only.
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2.6  Statistical Evaluation of the Models

The estimated and measured values of global solar 
radiation He and Hgrn, respectively from each station 
were compared using statistical analysis methods in 
order to evaluate each model’s potential to predict 
solar irradiation. The analytical methods used to 
evaluate the models were the MAPE, RMSE, MAE 
RSE and the results are shown in Table 7.

The MAE values for each model range from 
0.5438 MJ/m2 to 2.2845 MJ/m2. The small values 
of MAE between the measured and estimated solar 
radiation values indicate very good long-term 

Fig.  5.  The MAE and RSME for each station

Table 6.  A-P Type Models for each station

Station Model Station Model
Beitbridge H/Ho = 0.2977 + 0.4770 S/So Nyanga H/Ho = 0.2362 + 0.6080 S/So
Binga H/Ho = 0.3222 + 0.4795 S/So Tsholotsho H/Ho = 0.2389 + 0.5307 S/So
Buffalo Range H/Ho = 0.2763 + 0.5090 S/So Victoria Falls H/Ho = 0.2677 + 0.5912 S/So
Goetz Obs H/Ho = 0.2808 + 0.4670 S/So West Nicholson H/Ho = 0.2931 + 0.5003 S/So
Gweru H/Ho = 0.2252 + 0.6265 S/So Chisengu H/Ho = 0.3306 + 0.3333 S/So
MSD Belvedere H/Ho = 0.2886 + 0.4635 S/So Chipinge H/Ho = 0.3976 + 0.4866 S/So
Kutsaga H/Ho = 0.2855 + 0.4707 S/So Chisumbanje H/Ho = 0.2559 + 0.4206 S/So
Kadoma H/Ho = 0.2785 + 0.5099 S/So Chivhu H/Ho = 0.3479 + 0.5108 S/So
Karoi H/Ho = 0.3041 + 0.0569 S/So Gokwe H/Ho = 0.3634 + 0.4864 S/So
Marondera H/Ho = 0.2658 + 0.5605 S/So Henderson H/Ho = 0.3723 + 0.4923 S/So

Masvingo H/Ho = 0.2743 + 0.5054 S/So Kariba Airport H/Ho = 0.3147 + 0.3244 S/So
Matopos H/Ho = 0.2562 + 0.5298 S/So Mvurwi H/Ho = 0.3871 + 0.4667 S/So
Mt Darwin H/Ho = 0.3066 + 0.4807 S/So Triangle H/Ho = 0.3223 + 0.3287 S/So
 Mukandi H/Ho = 0.3100 + 0.5340 S/So Harare H/Ho = 0.2820 + 0.4600 S/So

Note. The correlation coefficients, a and b, are the gradient and y-intercepts respectively.

prediction capabilities of the models. The MAPE 
indicate a range between 2.5642 % and 10.3343 %. It 
was noted that only Buffalo Range Station out of the 
29 stations had a MAPE greater than 10 % and this can 
be attributed to the low correlation coefficients value 
between the clearness index and the sunshine duration 
fraction expressed by the station. The low correlation 
coefficient was due to inaccurate sunshine duration 
data for the station obtained from MSD, which was 
mainly due to faulty measuring instruments. The rest 
of the stations indicated MAPE between estimated and 
measured solar radiation values to be lower than 10 
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%, hence showing very high predicting abilities as 
observed in other studies [17], [82] and [88].

Table 7.  Results of the Statistical evaluation of the A-P type models

Station
R2 MAE 

[MJ/m2]
MAPE 

[%]
RMSE 
[MJ/m2]

RSE 
[ %] 

Beitbridge 0.9154 0.8792 4.1974 1.1095 0.0528
Grand Reef 0.9329 0.6830 3.1807 0.9280 0.0425
Gweru 0.8793 0.8994 3.9684 1.1446 0.0501
Mt Darwin 0.8707 0.9106 4.229 0 1.1787 0.0549
Nyanga 0.8782 0.9789 4.6161 1.2444 0.0582
Victoria Falls 0.7612 1.1629 4.8627 1.4034 0.0583

The RSE for the models was found to be between 
0.0346 % and 0.1537% showing very low values of the 
standard error relative to the estimated values, hence 
indicating high degrees of accuracy of estimation 
correlations in the models similar to values of RSE 
found in other studies by [26] and [84]. The RMSE 
for the models ranged from 0.7360 MJ/m2 to 2.9454 
MJ/m2 and these values are within the recommended 
range for excellent solar predicting models from other 
similar studies [51] and [89], hence indicating good 
short-term predicting capabilities for all the models. 
As shown in Fig. 5., Masvingo Station exhibited very 
low values of MAE, MPE, RSE and RMSE which can 
be attributed to the high correlation coefficient of r 

= 0.9531 between the estimated and measured solar 
radiation values. Triangle station in Chiredzi exhibited 
the highest values of MAE, MPE, RSE, RMSE and a 
low coefficient of determination R2 = 0.6062 between 
the estimated and measured values of solar radiation.

The results of the statistical analysis for the 
general model which were compared to the results 
for the individual station-based models show very 
slight changes for MAE, MAPE, RMSE and RSE in 
most of the stations. This confirms the high predicting 
capabilities of the general model. Significant changes 
can be observed under MAPE statistical analysis 
particularly for the stations with satellite-based solar 
radiation data, but however the changes still remained 
within the required limit of 0 % < MAPE < 10 %.

3  CONCLUSION

The main aim of this study was to develop a general 
A-P type model for predicting solar irradiation 
in Zimbabwe. In the process of predicting solar 
irradiation using empirical coefficients, sunshine 
duration was deemed to have the greatest impact on 
the amount of solar radiation received on a horizontal 
surface. 

The following notable results were reported.

• The highest correlation between the clearness 
index and the sunshine duration fraction 
was 0.9030 with 80 % of the coefficients of 
determination above 0.6.

• The results of the study showed no systematic 
trend between the regression coefficients with 
both latitude and elevation, however the value of, 
a, decreased as the longitude increases, whilst the 
value of, b, increased with increase in longitude, 
hence the values of, a, were higher in the western 
parts of the country and lower in the eastern parts 
and vice versa for the values of, b, and these 
results agreed with other results from similar 
researches. 

• The MAE values for the models ranged from 
0.5438 MJ/m2 to 2.2845 MJ/m2. The MAPE 
indicated a range between 2.5642 % and 10.334 
% with only Buffalo Range Station having a 
MAPE greater than 10 % which was caused by a 
faulty sunshine recorder. The rest of the stations 
indicated MAPE values lower than 10 %, hence 
showing very high predicting abilities.

• The values of the regression coefficients, a and 
b, at a location are dominantly affected by the 
climatic condition of the area and that the more 
specific the coefficients are to a location the more 
accurate they become. 

• Also, the general model developed in this study is 
considered to have good solar prediction abilities 
as proven by statistical results that are within the 
recommended range.

• The developed models can provide estimated 
solar irradiation data that is currently not available 
in the meteorological stations in Zimbabwe, 
hence filling the gap in terms of solar radiation 
data availability. 
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