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Nonlinear Free Vibration Analysis of Functionally Graded Porous 
Conical Shells Reinforced with Graphene Nanoplatelets
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The nonlinear vibration analysis of functionally graded reinforced with graphene platelet (FG-GRC) porous truncated conical shells surrounded 
by the Winkler-Pasternak elastic foundation is presented in this paper. An improved model for evaluating the material properties of porous 
composites is proposed. Three types of porous distribution and three patterns of graphene nanoplatelets (GPLs) dispersion are estimated. 
Coupled with the effect of the Winkler-Pasternak elastic foundation, the nonlinear governing equations are developed by using the Hamilton 
principle. The Galerkin integrated technique is employed to obtain the linear and nonlinear frequencies of the shells. After the present method 
is validated, the effects of the pores, GPLs, the Winkler-Pasternak foundation, and the semi-vertex are investigated in detail. The results show 
that the linear frequency can be raised by increasing the values of the mass volume of the GPL and foundation parameters. In contrast, the 
ratio of nonlinear to linear frequency declines as the mass volume of the GPLs and foundation parameters rises. Furthermore, it is found 
that the minimum ratio of nonlinear to linear frequency can be obtained as the semi-vertex angle is about 55º, and the effect of porosity 
distribution on the linear and linear frequencies might be neglected.
Keywords: nonlinear vibration, truncated conical shell, graphene nanoplatelet, porous materials, elastic foundation

Highlights
•	 A new model for estimating the material properties of FG-GRCs is presented.
•	 The nonlinear vibrational equations for FG-GRCs conical shells are built.
•	 The formulations for the linear and nonlinear frequency of FG-GRCs conical shells are presented.

0  INTRODUCTION

Because the nonlinear dynamic behaviour of 
structures inevitably appears in engineering 
applications, the nonlinear characteristics of the 
structures have attracted the attention of many 
researchers. For example, Lu et al. [1] and [2] and 
Hao et al. [3] developed a novel model to analyse 
the nonlinear vibration of isolation systems with a 
high-static-low-dynamic stiffness. They validated the 
analytical results by using direct time integration and 
experiments. The inherent vulnerability of nonlinear 
vehicle platoons was studied by Wang et al. [4]. They 
proposed a vibration-theoretic approach to compute 
the platoon’s resonance frequency. Zhou et al. [5] 
presented a high-order nonlinear friction model to 
investigate the nonlinear hysteresis characteristics of 
metal rubbers. They found that the nonlinear friction 
hysteresis dynamic model has a high prediction 
accuracy and signal-to-noise ratio. Yang and Kai [6] 
built the nonlinear coupled Schrodinger equation 
in fibre gratings, and the periodic solution was 
presented. For porous composite plates reinforced 
with graphene platelets, Huang et al. [7] presented 
a two-step perturbation technique to analyse the 
nonlinear vibration of the plates. In their studies, the 
effects of the pores, graphene platelets, and elastic 

foundations on the nonlinear to linear frequency ratio 
were discussed in detail.

Due to the advantages of withstanding severe 
high temperatures while maintaining structural 
integrity, functionally graded materials (FGMs) are 
widely used in engineering fields such as aerospace, 
nuclear, mechanical, and civil engineering. The 
nonlinear static and dynamic characteristics of FGM 
shell structures have gained much attention. Chan 
et al. [8] to [10] studied the nonlinear buckling and 
vibration of FGM truncated conical shells, and Duc et 
al. [11] and Vuong et al. [12] investigated the nonlinear 
stability of FGM toroidal shells. 

Applying the concept of FGMs, a new type of 
functionally graded nanocomposites, in which the 
carbonaceous nanofilters such as graphene platelets 
(GPLs) and carbon nanotubes (CNTs), are gradually 
distributed in the thickness direction of the polymeric 
matrix, has been developed. Because nanocomposites 
are one of the most promising materials in composite 
structures, research work has been devoted to 
examining the linear vibration of functionally graded 
truncated conical shells reinforced by GPLs and 
CNTs. Wang et al. [13] studied the free vibration of 
the composite conical shells reinforced with GPLs. 
They found that the fundamental frequency is greatly 
affected by the distribution patterns of GPLs. Afshari 
[14] and [15] examined the vibration characteristics 
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of truncated conical shells reinforced with graphene 
nanoplatelets and discussed the influences of the 
boundary conditions and constant angular velocity 
on the natural frequencies. For the joined conical-
conical shells made of epoxy-enriched with graphene 
nanoplatelets, Damercheloo et al. [16] studied free 
vibration and examined the influences of the boundary 
conditions, the length-to-small radius ratio, and 
semi-vertex angle in two shell segments. Using the 
finite element method in conjunction with a higher-
order shear deformation theory, Singha et al. [17] 
investigated the free vibration behaviour of rotating 
pre-twisted sandwich conical shell panels with 
functionally graded graphene-reinforced composite 
face sheets and homogenous cores in a uniform 
thermal environment. In their studies, the influence 
of graphene distribution patterns on the fundamental 
frequencies is discussed with an emphasis on 
triggering parameters like pre-twist angle, cone length‐
to‐thickness ratio, core-to-face sheets thickness ratio, 
and dimensionless rotational speed. Adab et al. [18] 
and [19] presented a vibrational analysis on truncated 
conical sandwich microshells. For the vibration 
behaviour of the composite conical shell reinforced 
with CNTs, Yousef et al. [20] and [21] investigated 
the effect of CNTs agglomeration on the vibration 
characteristics of three-phase CNT/polymer/fibre 
laminated truncated conical shells. The results show 
that the subjoining of CNTs leads to a remarkable rise 
in the natural frequency. Employing the first-order 
shear deformation theory and the Eshelby-Mori-
Tanaka scheme along with the rule of mixture, Afshari 
and Amirabadi [22] conducted the free vibration 
analysis of rotating truncated conical shells reinforced 
with CNTs and the effects of different parameters on 
the forward and backward frequencies of the shells 
are investigated. Moreover, the aeroelastic stability 
of polymeric truncated conical shells reinforced with 
CNTs and under supersonic fluid flow was studied by 
Afshari et al. [23]. However, the published literature 
on the nonlinear vibrations of functionally graded 
graphene-reinforced composite (FG-GRC) plates and 
conical shells is limited. Using the 2-D differential 
quadrature method, arc-length continuation technique, 
and harmonic balance technique, Jamalabadi et al. 
[24] studied the nonlinear vibration of FG-GRC 
truncated conical shells and investigated the effects 
of the mass volume and distribution of the GPLs, 
semi-vertex, and foundation parameters on the ratio 
of linear to nonlinear frequency. They found that 
the rising valve of the GPL mass volume can raise 
the linear frequency. In contrast, the ratio of the 
nonlinear to linear frequency declines. Using the 

variational differential quadrature and finite element 
method, Ansari et al. [25] investigated the nonlinear 
vibration characteristics of FG-GRC conical panels 
with arbitrary-shaped cutouts. The results show that 
the natural frequency rises as the weight fraction of 
the GPLs increases. Yang et al. [26] employed the 
Galerkin and harmonic balance methods to obtain 
the nonlinear frequencies of FG-GRC conical shells 
and studied the periodic and chaotic motions. To 
investigate the nonlinear dynamic characteristics of 
FG-GRC conical shells, Wang et al. [27] employed 
the Galerkin method and fourth-order Runge-Kutta 
technique to obtain the frequency response. They 
found that both the mass volume and distribution of 
GPLs significantly affect the resonance response of 
the shells. Ding and She [28] obtained the nonlinear 
dynamic response of FG-GRC truncated conical 
shells and discussed the effects of the mass fraction 
of the GPLs, geometrical parameters, and the position 
of the external load on the response. Additionally, 
Bidgoli and Arefi [29] presented the nonlinear 
vibration analysis of sandwich plates with graphene 
nanoplatelet-reinforced face sheets. They found that 
the nonlinear to linear frequency ratio can be affected 
by the weight fraction and geometric parameters of 
graphene nanoplatelets.

In the literature above, the conical shells were 
regarded as the perfect structures without pores. 
However, internal pores may appear inside composite 
materials [30]. Thus, it is necessary to investigate the 
effect of internal pores on the dynamic behaviour 
of porous structures. Some researchers studied the 
vibration characteristics of porous isotropic [31] and 
[32], sandwich [33] and [34]. For the functionally 
graded porous (FGP) truncated conical panels with 
piezoelectric actuators in thermal environments, 
Chan et al. [35] investigated the nonlinear dynamic 
response and free vibration. In their studies, the effect 
of the porosity distribution on the natural frequency 
and the deflection amplitudes were discussed. 
Considering the two types of porosity distribution, 
the buckling and vibration of sigmoid functionally 
graded material shells were studied by Huang et 
al. [36]. The results show both the porosity volume 
fraction and distribution have significant effects 
on the buckling pressures and lowest frequency. 
Nevertheless, little work has been done for the porous 
truncated conical shells reinforced by nano filters [37]. 
Bahhadini et al. [38] and Yan et al. [39] studied the 
linear vibration of porous FG-GRC nanocomposite 
sandwich conical shells and found that the natural 
frequencies were increased with the rising material 
length-scale parameter and porosity coefficient. The 
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vibration behaviour of porous sandwich truncated 
conical shells with FG face sheets and a saturated 
FGP core was studied by Rahmani et al. [40] and 
Esfahani et al. [41]. The effect of internal pores on 
the natural frequency was also discussed in detail. 
Applying the isogeometric analysis, Le et al. [42] 
obtained the three-dimensional solution of the free 
vibration and buckling for functionally graded porous-
cellular conical shells. Sobhani et al. [43] studied 
the vibrational behaviour of porous nanocomposite 
joined hemispherical-cylindrical-conical shells and 
examined the effects of the porosity distributions 
and geometric properties. The results revealed that 
the natural frequency inclines with the increase of 
the porosity factor. Additionally, the free vibration of 
FG-joined conical-cylindrical shells reinforced with 
graphene nanoplatelets was investigated by Kiarasi 
et al. [44]. It was found that the volume fraction and 
distributions of the internal pores have an insignificant 
impact on the natural frequencies of FG-GRC porous 
conical shells.

Unlike the Winkler elastic foundation model, 
the Winkler-Pasternak model incorporates the shear 
interaction between structures and foundations and has 
been widely used to examine the dynamic behaviour 
of FGM-truncated conical shells [45] to [47]. However, 
the model was used less to investigate the vibration of 
FG-GRC conical shells. Safarpour et al. [48] studied 
the free vibration of perfect and imperfect FG-GRC 
conical shells resting on Pasternak foundations. Their 
results show that the effect of the elastic foundation 
becomes more dominant as the foundation parameters 
increase. Eyvazian et al. [49] computed the natural 
frequencies and the corresponding mode shapes of 
FG-GRC conical panels and discussed the influences 
of boundary conditions, GPLs volume fraction, and 
foundation parameters. Furthermore, the frequency 
responses of rotating two-directional FG-GPLs 
conical shells on elastic foundations were presented by 
Amirabadi et al. [50]. They found that the increasing 
value of the GPL mass fraction can raise the natural 
frequency. The pattern of GPLs scattering near the 
inner surface has a higher effect on the frequency. 

As reviewed above, the published literature on the 
free vibration of FG-GRC porous truncated conical 
shells remains limited. Most of the open literature 
focused on the case of the linear problem. The model 
used for evaluating the material properties of porous 
nanocomposites was based on the three assumptions 
about Young’s elastic modulus, shear modulus, and 
mass density, which is too complicated. Hence, the 
present work attempts to solve these problems, that 
is, to propose an improved model for estimating the 

material properties and present the analytical solution 
for the nonlinear free vibration of FG-GRC porous 
truncated shells. Also, the effects of the internal 
pores, GPL, and elastic foundation on the linear and 
nonlinear frequencies are investigated.

1  A POROUS FG-GPLS TRUNCATED CONICAL SHELL

As shown in Fig. 1, a porous FG-GPLs truncated 
conical shell surrounded by Winkler-Pasternak elastic 
medium is considered. The curvilinear coordinate 
system (x, θ, z) is located on the middle surface of the 
shell. s1 and s2 are the distances from the vertex to the 
small and large ends, respectively. L, h and α denote 
the length, thickness, and semi-vertex of the shell.

Fig. 1.  A FG-GPLs truncated conical shell surrounded by a Winkler-
Pasternak elastic foundation

Three types of porous distribution in the thickness 
direction, denoted by P-1, P-2, and P-3, are taken into 
account, as depicted in Fig. 2. 

It is assumed all the internal pores are tiny and 
the total volume fraction of the pores is small. Unlike 
other models for evaluating the material properties 
[30] and [39], in which Young’s modulus, shear 
modulus, and mass density need to be assumed, the 
present model is based on the following assumption 
about the volume fraction VP(z) of the internal pores:

 

V z e z
h

V z e z
h

V

P

P

P

� � � �
�
�

�
�
� �

� � � ��
�
�

�
�
� �

0

0

1

2 4
2

cos , ( )

cos , ( )

�

� �

P

P

zz e� � � �0 3, ( )P  (1)



Strojniški vestnik - Journal of Mechanical Engineering 70(2024)3-4, 181-193

184 Huang, X. – Wei, N. – Wang, C. – Zhang, X.

here, e0 denotes the porosity coefficient. Young’s 
elastic modulus E(z) and mass density ρ(z) for various 
porosity distributions can be expressed as [39].
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where E1 and ρ1 denote the maximum values of 
Young’s modulus and mass density, and em is the mass 
coefficients. Furthermore, the coefficients e0, em and 
the Poisson ratio μ(z) are calculated as follows [39]:
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in which μ1 is the Poisson ratio of the composite 
without pores, and p is the coefficient of the Poisson 
ratio.

a) 

b) 

c) 
Fig. 2.  Three types of porosity distribution:  

a) symmetric distribution (P-1), b) asymmetric distribution (P-2), 
and c) even distribution (P-3)

a)                        b)                           c)
Fig. 3.  Three patterns of GPLs dispersion:  

a) symmetric distribution (G-1), b) asymmetric distribution (G-2), 
and c) even distribution (G-3)

It is noted that the present model in Eqs. (1) to (3) 
can be used not only for FG-GRCs but also for other 
composites in which the foam metal is the matrix. 

In the present study, three patterns of GPL 
dispersion, denoted by G-1, G-2, and G-3, are 
considered, as shown in Fig. 3. The volume fractions 
VGPL(z) for the three patterns are expressed as follows 
[43]:

 

V z f z
h

V z f z
h

i

i

GPL

GPL

G� � � � �
�
�

�
�
�

�

�
�

�

�
� �

� � � � �

1

2

1 1

1
2

cos , ( )

cos

�

� ÀÀ
G

GGPL

4
2

33

�
�
�

�
�
�

�

�
�

�

�
� �

� � � �

, ( )

, ( )V z fi  (4)

where fi1, fi2 and fi3 are the maximum values of various 
GPL distributions, calculated by [39]:
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In Eqs. (2) and (3), E1, ρ1, and μ1 can be 
determined by using the Halpin-Tsai micromechanics 
model and the rule of the mixture as follows [39]:
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in which the geometric parameters of GPL ξa , ξb, ηa 
and ηb can be stated as
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here, EGPL, ρGPL and μGPL denote the Young’s 
modulus, mass density and Poisson ratio of GPL, and 
Em, ρm and μm are the corresponding values of the 
matrix. aGPL, bGPL and hGPL are the length, width, and 
thickness of the GPL.

2  FORMULATIONS

2.1  Governing Equations

It is assumed that the shell is thin and has a large 
deformation. According to the classic shell theory 
with the geometrical nonlinearity, the normal strains 
(ε1, ε2) and shear strain γ12 can be expressed as [51]
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where u, v and w are the displacements along the 
directions of x, θ and z axes, respectively.

According to Hooke’s law, the normal stresses σ1  
and σ2, and the shear stress σ12 can be stated as [51]
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Here, Qij (i, j = 1, 2, 6) are the reduced stiffness 
coefficients, defined by [51]
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The membrane forces (N1, N2, N12) and moments 
(M1, M2, M12)  are expressed as [55]
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Substituting Eq. (12) into (14), the following 
equations can be obtained [51]:
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The stiffness constants Aij, Bij, and Dij, can be 
calculated by [51]
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The interaction force between the Winkler-
Pasternak medium and shell is assumed to be 
F k w k w� � �w p

2 , in which kw and kp are the 
parameters of Winkler and Pasternak foundation, 
and ∇2  is the Laplace operator. Using the Hamilton 
principle, the nonlinear dynamic Equilibrium 
equations of the conical shell surrounded by the 
Winkler-Pasternak medium can be derived as [51]:
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Substituting Eqs. (11) and (15) into (17), the 
nonlinear vibrational equations of the shell can be 
derived as follows [51]:
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where the linear operators Lij (i, j = 1, 2, 3) have been 
given by Duc et al. [51]. The nonlinear operators Li4 
(i, j = 1, 2, 3) are listed in Appendix. According to 
Volmir’s assumption [26], the inertia forces  
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2.2  The Solution of the Governing Equations

In this study, simply supported boundaries are 
considered. The boundary conditions are written as

  v w N M M x s s= = = = = =0 0 01 1 12 1 2, , , , .at  (21)

In the present case, the asymmetric solution 
is taken into account. The solution satisfying the 
boundary conditions is assumed to be [51]

 

u u t m x s
L

n

v v t m x s
L

n

mn

mn

�
� �

�
�

�
�
�

�
�

( ) cos
( )

sin ,

( )sin
( )

cos

� �

� �

1

1

2

22

2

1

�
�
�

�
�
�

�
� �

�
�

�
�
�

,

( )sin
( )

sin ,w w t m x s
L

n
mn

� �
 (22)

where m and n are the numbers of half-waves along 
the generator and parallel circle, respectively. 

In Eq. (22), if the terms of sin(nθ/2) and cos(nθ/2) 
are eliminated, the asymmetric solution is transformed 
into the corresponding symmetric solution. 

For the sake of convenience in integration, 
multiplying Eqs. (18) and (19) by x and Eq. (20) by 
x2, then applying the Galerkin method for the resulting 
equations, Eq. (18) to (20) can be developed as 
follows [51]:
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in which
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Substituting Eqs. (22) and (24) into Eq. (23), 
the following ordinary differential equations can be 
derived:

 a
d w
dt

a w a w a wmn
mn mn mn1

2

2 2 3

2

4

3 0� � � � ,  (25)

where ai (i, j = 1, 2, 3, 4) are integral coefficients.
According to Eq. (25), the linear frequency 

is obtained as �L a a� 2 1/ , and the nonlinear 
frequency can be derived as [52]: 

 � �NL L
a a a

a
A� �

�
1
9 10

12

4 2 3

2

2

2

2 .  (26)

Here, the dimensionless vibrational amplitude A 
is wmax / h, in which wmax is the maximum dynamic 
deflection.

3  RESULTS AND DISCUSSION

3.1  Comparison Studies

In this subsection, two examples are given to validate 
the accuracy of the present method.

Example 1. In Fig. 4, the curves of the 
dimensionless linear frequency λ versus the porosity 
coefficient e0 for a porous FG-GRC truncated 
conical shell are depicted. The material properties 
of the matrix are Em = 130 GPa, ρm = 8960 kg/m³ and  
μm = 0.34. The pattern of GPL dispersion is G – 1. The 
material and geometrical parameters are EGPL = 1.01 
TPa, ρGPL = 1062.5 kg/m³, μGPL = 0.86, aGPL =  2.5 µm, 
bGPL = 1.5 µm, and hGPL = 1.5 nm. The geometrical 
parameters of the shell are R2 / h = 200 cos α, L = s1 
and α = 10°. The dimensionless linear frequency is 
λ = ω[ρth2L2 / D1]0.5. The figure reveals that the present 
results are in good agreement with those given by 
Bahaadini et al. [38]. It is noted the natural frequency 
decreases with the rising porous coefficient e0. 
Although both the stiffness and mass density decline 
with the increase of the coefficient, the decreasing 
speeds are different. As the decreasing speed of 
the mass density is higher than that of stiffness, the 
natural frequency reduces. In the opposite case, the 
natural frequency increases.

Example 2. The fundamental linear and nonlinear 
frequencies for an isotropic truncated conical shell 
surrounded by a Winkler-Pasternak foundation are 
calculated and listed in Table 1. The geometrical 
parameters of the shell are R1 / h = 300, L = 2R1, γ = 30°. 
The vibrational amplitude is A = 3. The dimensionless 
frequencies are
�L L� �� � �R E2

21( ) / , �NL NL� �� � �R E2

21( ) / . 
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It is seen that the present results agree well with those 
given by Najafov and Sofiyev [36].

0.00 0.08 0.16 0.24 0.32 0.40 0.480.690

0.695

0.700

0.705

0.710

0.715

0.720
  Bahaadini et al.
  Present

 

 λ

e0

Fig. 4.  Comparison of the fundamental frequency for a porous FG 
truncated conical shell

3.2  Parametric Studies

After the present method is validated, the effects of 
GPL, pore, and semi-vertex angle on the dimensionless 
linear and nonlinear frequencies for porous FG-GRC 
truncated conical shells surrounded by Winkler-
Pasternak elastic foundations are investigated in this 
subsection. The material parameters of the GPL are 
the same as those given in Example 1. The material 
properties of the matrix are Em = 3.0 GPa, ρm = 1200 
kg/m³ and νm = 0.34 and the geometrical parameters of 
the shell are R1 / h = 100, L = R1 and α = 30°. The 
dimensionless linear frequency � � �L L m m� R E2 / . 
Unless specially stated, the type of the porosity 
distribution is P–1, and the pattern of GPL dispersion 
is G–1.

Table 1. Dimensionless linear and nonlinear fundamental 
frequencies for an isotropic truncated conical shell rested on an 
elastic foundation

kw [N/m³] kp [N/m]
ΩL ΩNL

Ref. [29] Present Ref. [29] Present

105

0 0.101 0.102 0.119 0.120
2.5×104 0.106 0.106 0.123 0.125
5.0×104 0.110 0.111 0.126 0.128
7.5×104 0.115 0.113 0.129 0.130

5.0×104

0 0.119 0.117 0.132 0.134
2.5×104 0.123 0.123 0.138 0.140
5.0×104 0.131 0.129 0.140 0.141
7.5×104 0.134 0.131 0.143 0.145

The variation of the linear frequency ϖ L  
with the generatrix half-wave number m and 
circumferential half-wave number n is shown in Fig. 
5. As demonstrated by other literature [37] to [39], the 
number m has a different impact on the frequency with 

that of the genetrix number n. The frequency is raised 
with the rising value of m. If n < 13, the frequency 
is monotonously decreased. However, if n > 13, the 
frequency is increased. This is because the mass 
density declines more significantly than the stiffness 
when n < 13. In contrast, the mass density declines 
more slowly than the stiffness when n > 13. Hence, the 
fundamental frequency can be obtained when m ≈ 1, 
n ≈ 13. The following linear and nonlinear frequencies 
are calculated at the vibration mode (1,13).

a) 
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m

b) 
6 12 18 24

0.2

0.4

0.6
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1.0
m = 1
e0 = 0, WGPL = 0 %
kw = 0, kp = 0

 

 

n

ϖ L

Fig. 5.  Variation of the linear frequency with a) the generatrix half-
wave number m and b) the circumferential half-wave number n

Tables 2 to 4 list the dimensionless linear 
frequencies ϖ L  of the shell with the different 
parameters of pores, GPL, and elastic foundations. 
Because the Winkler-Pasternak foundation can 
raise the effective stiffness of the conical shell, the 
frequency inclines with the increases of foundation 
parameters kw and kp. Furthermore, the effect of this is 
more significant than that of the parameter because it 
can enhance the effective stiffness more significantly 
kw. The three tables show that the frequency increases 
with the increasing mass fraction of the GPLs, which 
is due to the fact that the elastic modulus of the GPL is 
higher than that of the matrix. Also, the tables reveal 
that the effect of the porosity coefficient e0 is related 
to the parameters of the elastic foundation. If the 
values of kw and kp are not zero, the frequency reduces 
with the increasing value of the porosity coefficient e0. In contrast, if the values of kw and kp are zero 
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Table 2. Dimensionless linear frequencies ϖ L  for a porous FG-GRC conical shell distributed with G-1 GPLs and rested on an elastic foundation

kw   
106 [N/m³]

kp  
104 [N/m] e0 = 0.0

P-1 P-2 P-3

e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4

WGPL = 0.0 %

0
0 0.192 0.188 0.184 0.185 0.178 0.196 0.192

2.5 0.337 0.342 0.350 0.341 0.347 0.337 0.338
5.0 0.436 0.446 0.460 0.445 0.457 0.436 0.437

1.0
0 0.413 0.421 0.434 0.421 0.431 0.413 0.414

2.5 0.497 0.510 0.526 0.509 0.524 0.497 0.499
5.0 0.568 0.584 0.605 0.584 0.604 0.568 0.569

WGPL = 0.1 %

0
0 0.231 0.226 0.221 0.223 0.213 0.231 0.230

2.5 0.360 0.365 0.372 0.363 0.366 0.360 0.361
5.0 0.454 0.463 0.476 0.462 0.472 0.454 0.455

1.0
0 0.432 0.440 0.452 0.439 0.474 0.432 0.434

2.5 0.513 0.525 0.541 0.524 0.537 0.513 0.515
5.0 0.583 0.598 0.617 0.597 0.614 0.583 0.586

WGPL = 0.3 %

0
0 0.294 0.289 0.283 0.284 0.271 0.294 0.293

2.5 0.403 0.406 0.411 0.403 0.403 0.403 0.404
5.0 0.489 0.497 0.508 0.494 0.501 0.489 0.490

1.0
0 0.469 0.475 0.485 0.472 0.477 0.469 0.471

2.5 0.544 0.555 0.569 0.552 0.563 0.544 0.546
5.0 0.610 0.627 0.642 0.622 0.637 0.610 0.613

Table 3.  Dimensionless linear frequencies ϖ L  of a porous FG-GRC conical shell distributed with G-2 GPLs and rested on an elastic foundation

kw   
106 [N/m³]

kp  
104 [N/m] e0 = 0.0

P-1 P-2 P-3

e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4

WGPL = 0.1 %

0
0 0.220 0.215 0.210 0.212 0.202 0.220 0.219

2.5 0.353 0.358 0.364 0.356 0.360 0.353 0.354
5.0 0.484 0.458 0.471 0.456 0.467 0.448 0.449

1.0
0 0.426 0.434 0.446 0.433 0.442 0.426 0.426

2.5 0.508 0.520 0.536 0.519 0.533 0.508 0.510
5.0 0.578 0.594 0.613 0.592 0.611 0.578 0.579

WGPL = 0.3 %

0
0 0.259 0.253 0.247 0.250 0.238 0.259 0.258

2.5 0.379 0.382 0.387 0.380 0.382 0.379 0.380
5.0 0.469 0.477 0.488 0.475 0.484 0.469 0.471

1.0
0 0.480 0.455 0.465 0.453 0.460 0.448 0.449

2.5 0.526 0.537 0.552 0.536 0.548 0.526 0.528
5.0 0.595 0.609 0.627 0.607 0.624 0.595 0.597

Table 4. Dimensionless linear frequencies ϖ L  of a porous FG-GPLs conical shell distributed with G-3 GPLs and rested on an elastic foundation

kw   
106 [N/m³]

kp  
104 [N/m] e0 = 0.0

P-1 P-2 P-3

e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4 e0 = 0.2 e0 = 0.4

WGPL = 0.1 %

0
0 0.222 0.218 0.214 0.214 0.205 0.224 0.220

2.5 0.369 0.374 0.382 0.372 0.377 0.368 0.370
5.0 0.471 0.482 0.496 0.481 0.403 0.470 0.473

1.0
0 0.427 0.436 0.448 0.434 0.444 0.426 0.429

2.5 0.519 0.532 0.548 0.530 0.545 0.518 0.521
5.0 0.569 0.612 0.633 0.611 0.630 0.595 0.599

WGPL = 0.3 %

0
0 0.268 0.263 0.258 0.259 0.247 0.269 0.267

2.5 0.398 0.402 0.409 0.399 0.402 0.397 0.399
5.0 0.495 0.504 0.517 0.502 0.512 0.494 0.496

1.0
0 0.453 0.460 0.471 0.458 0.465 0.452 0.454

2.5 0.540 0.551 0.567 0.550 0.562 0.538 0.540
5.0 0.615 0.630 0.650 0.628 0.645 0.613 0.616
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(kw = 0, kp = 0), the frequency rises. Additionally, it 
can be observed that the effects of the pattern of GPL 
dispersion and the type of porosity distribution on the 
linear frequency can be neglected.

The influences of the type of GPL dispersion and 
mass fraction of the GPL on the ratio of nonlinear to 
linear frequency ϖ ϖNL L/  are shown in Fig. 6. Among 
the three patterns of GPL dispersion, the ratio for G–2 
is slightly larger than those for G–3 and G–1. That is 
because the nonlinear frequency for G–2 increases 
faster than that for G–3 and G–1. Moreover, the mass 
fraction of the GPLs WGPL rises with the increase of 
the ratio. For instance, when WGPL changes from 0 % 
to 0.5 %, the ratio increases by about 9 % at A = 5.
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Fig. 6.  Influence of the GPLs on the frequency ratio; a) the pattern 
of GPL dispersion, and b) the mass fraction of the GPLs

The influences of the porosity distribution and 
porosity coefficient on the frequency ratio ϖ ϖNL L/  
are shown in Fig. 7. It is found that the porosity 
distribution has an insignificant effect on the ratio. 
When A = 5, the ratio for P–1 is only higher by 1.5 % 
than that for P–3. Also, it is found that the ratio can be 
raised by increasing the porosity coefficient. 

Fig. 8 shows the effects of parameters kw and kp 
on the frequency ratio ϖ ϖNL L/ . It is seen that the 
effects are very significant. For example, when the 
parameter kp changes from 0 kN/m to 75 kN/m, the 
ratio declines by 98.9 %.
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Fig. 7.  Influence of pores on the frequency ratio; a) porosity 

distribution, and b) porosity coefficient
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Fig. 8.  Influence of foundation parameters on the frequency ratio; 

a) Winkler parameter, and b) Pasternak parameter

Finally, the effects of the semi-vertex angle α 
on the linear frequency ϖ L  and the ratio of linear to 
nonlinear frequency ϖ ϖNL L/  are shown in Fig. 9. It 
is shown that the linear frequency declines when the 
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semi-vertex angle increases. This is because the 
effective stiffness is raised with the increase of the 
semi-vertex angle. The figure also shows that the ratio 
reduces as the angle increases from 15º to 55º. In 
contrast, it is increased as the angle changes from 55º 
to 75º. Thus, the minimum value of frequency ratios 
can be obtained at α ≈ 55º.

a) 
15 30 45 60 750.0

0.2

0.4

0.6
 

 

e0 = 0.2, WGPL = 0.1 %
kw = 0, kp = 0

  P-1, G-1
  P-2, G-2
  P-3, G-3  

 

ϖ 
L

α [°]

b) 
15 30 45 60 752.0

2.5

3.0

3.5

4.0

4.5

e0 = 0.2, WGPL = 0.1 %
kw = 0, kp = 0

 

 

ϖ 
NL

 / 
ϖ 

L

α [°]
Fig. 9.  Influence of the semi-vertex angle on  

a) the linear frequency and b) the frequency ratio

4  CONCLUSIONS 

In this study, an improved method for evaluating the 
material properties of porous FG-GRCs was proposed. 
An analytical method to investigate the nonlinear 
vibration of composite such as FGM, FG-GRC, and 
FG-CNT porous truncated conical shells was 
presented. The effects of the pore, GPL, elastic 
foundation, and semi-vertex angle on the linear 
frequency and the ratio of nonlinear to linear 
frequency were discussed. Compared with other 
methods for investigating the nonlinear vibration 
behaviour of FG-GRC porous conical shells, the 
present method is simpler and briefer. However, it is 

not more accurate because the inertia forces �t
u
t
�
�

2

2  

and �t
v
t
�
�

2

2  are neglected. Moreover, some interesting 

conclusions can be drawn from the parametric studies 
as follows:
1. As the values of the mass fraction of the GPLs 

is raised. In contrast, the frequency ratio reduces. 

Among the three patterns of GPLs dispersion, the 
frequency ratio for G-1 is the lowest, and that for 
G-2 is the highest.

2. The natural frequency is not monotonously varied 
with the rise of the porous coefficient 0e . If the 
mass density decreases faster than the stiffness, 
the natural frequency increases. In contrast, the 
natural frequency declines.

3. The frequency ratio can be decreased by 
increasing the porosity coefficient. However, the 
effect of porosity distribution on the frequency 
ratio might be negligible.

4. The linear frequency reduces if the semi-vertex 
angle increases. The minimum value of the 
frequency ratio can be obtained as the semi-
vertex angle is approximately 55º.

5. Both the Winkler and Pasternak foundation 
parameters can significantly raise the natural 
frequency. However, they lower the ratio of 
nonlinear to linear frequency.
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