Design of an Apple-Picking End Effector

1455 Ogledov
504 Prenosov
Izvoz citacije: ABNT
SHI, Yinggang ;ZHU, Kaijia ;ZHAI, Shenghang ;ZHANG, Dewei ;LIU, Li ;ZHAO, Jizheng ;LONG, Yan ;CUI, Yongjie .
Design of an Apple-Picking End Effector. 
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 64, n.4, p. 216-224, june 2018. 
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/>. Date accessed: 19 jan. 2020. 
doi:http://dx.doi.org/10.5545/sv-jme.2017.5084.
Shi, Y., Zhu, K., Zhai, S., Zhang, D., Liu, L., Zhao, J., Long, Y., & Cui, Y.
(2018).
Design of an Apple-Picking End Effector.
Strojniški vestnik - Journal of Mechanical Engineering, 64(4), 216-224.
doi:http://dx.doi.org/10.5545/sv-jme.2017.5084
@article{sv-jmesv-jme.2017.5084,
	author = {Yinggang  Shi and Kaijia  Zhu and Shenghang  Zhai and Dewei  Zhang and Li  Liu and Jizheng  Zhao and Yan  Long and Yongjie  Cui},
	title = {Design of an Apple-Picking End Effector},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {64},
	number = {4},
	year = {2018},
	keywords = {apple picking; end effector; trajectory planning; remote wireless debugging; STM32F103RC; Tiny6410},
	abstract = {A motor-driven end effector with 9 degrees of freedom has been designed. Information of the joint position is transmitted to the potentiometer through gears to realize the position control for the finger joint. The maximum torque of the finger joint motor is verified by imposing a load on the end effector fingertip under the parabola-straight line angular velocity curve. The single-finger coordinate system and the whole-hand coordinate system are established for the end effector through the Denavit–Hartenberg (D-H) method. The forward kinematics and inverse kinematics analysis of the end effector are carried out. To realize the stationary motion of the end effector, the basic algorithms for the starting, stopping and accelerating of the finger joint is designed, based on the analysis of the grasping space using Monte Carlo method and the analysis of the angular displacement of motor using an isochronic interpolation algorithm. The control system is designed based on STM32F103RC to realize the stationary motion of the end effector. Using Tiny 6410, the remote wireless debugging system of the end effector is designed to realize independent control and remote wireless debugging of each joint motor.},
	issn = {0039-2480},	pages = {216-224},	doi = {10.5545/sv-jme.2017.5084},
	url = {https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/}
}
Shi, Y.,Zhu, K.,Zhai, S.,Zhang, D.,Liu, L.,Zhao, J.,Long, Y.,Cui, Y.
2018 June 64. Design of an Apple-Picking End Effector. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 64:4
%A Shi, Yinggang 
%A Zhu, Kaijia 
%A Zhai, Shenghang 
%A Zhang, Dewei 
%A Liu, Li 
%A Zhao, Jizheng 
%A Long, Yan 
%A Cui, Yongjie 
%D 2018
%T Design of an Apple-Picking End Effector
%B 2018
%9 apple picking; end effector; trajectory planning; remote wireless debugging; STM32F103RC; Tiny6410
%! Design of an Apple-Picking End Effector
%K apple picking; end effector; trajectory planning; remote wireless debugging; STM32F103RC; Tiny6410
%X A motor-driven end effector with 9 degrees of freedom has been designed. Information of the joint position is transmitted to the potentiometer through gears to realize the position control for the finger joint. The maximum torque of the finger joint motor is verified by imposing a load on the end effector fingertip under the parabola-straight line angular velocity curve. The single-finger coordinate system and the whole-hand coordinate system are established for the end effector through the Denavit–Hartenberg (D-H) method. The forward kinematics and inverse kinematics analysis of the end effector are carried out. To realize the stationary motion of the end effector, the basic algorithms for the starting, stopping and accelerating of the finger joint is designed, based on the analysis of the grasping space using Monte Carlo method and the analysis of the angular displacement of motor using an isochronic interpolation algorithm. The control system is designed based on STM32F103RC to realize the stationary motion of the end effector. Using Tiny 6410, the remote wireless debugging system of the end effector is designed to realize independent control and remote wireless debugging of each joint motor.
%U https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/
%0 Journal Article
%R 10.5545/sv-jme.2017.5084
%& 216
%P 9
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 64
%N 4
%@ 0039-2480
%8 2018-06-26
%7 2018-06-26
Shi, Yinggang, Kaijia  Zhu, Shenghang  Zhai, Dewei  Zhang, Li  Liu, Jizheng  Zhao, Yan  Long, & Yongjie  Cui.
"Design of an Apple-Picking End Effector." Strojniški vestnik - Journal of Mechanical Engineering [Online], 64.4 (2018): 216-224. Web.  19 Jan. 2020
TY  - JOUR
AU  - Shi, Yinggang 
AU  - Zhu, Kaijia 
AU  - Zhai, Shenghang 
AU  - Zhang, Dewei 
AU  - Liu, Li 
AU  - Zhao, Jizheng 
AU  - Long, Yan 
AU  - Cui, Yongjie 
PY  - 2018
TI  - Design of an Apple-Picking End Effector
JF  - Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2017.5084
KW  - apple picking; end effector; trajectory planning; remote wireless debugging; STM32F103RC; Tiny6410
N2  - A motor-driven end effector with 9 degrees of freedom has been designed. Information of the joint position is transmitted to the potentiometer through gears to realize the position control for the finger joint. The maximum torque of the finger joint motor is verified by imposing a load on the end effector fingertip under the parabola-straight line angular velocity curve. The single-finger coordinate system and the whole-hand coordinate system are established for the end effector through the Denavit–Hartenberg (D-H) method. The forward kinematics and inverse kinematics analysis of the end effector are carried out. To realize the stationary motion of the end effector, the basic algorithms for the starting, stopping and accelerating of the finger joint is designed, based on the analysis of the grasping space using Monte Carlo method and the analysis of the angular displacement of motor using an isochronic interpolation algorithm. The control system is designed based on STM32F103RC to realize the stationary motion of the end effector. Using Tiny 6410, the remote wireless debugging system of the end effector is designed to realize independent control and remote wireless debugging of each joint motor.
UR  - https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/
@article{{sv-jme}{sv-jme.2017.5084},
	author = {Shi, Y., Zhu, K., Zhai, S., Zhang, D., Liu, L., Zhao, J., Long, Y., Cui, Y.},
	title = {Design of an Apple-Picking End Effector},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {64},
	number = {4},
	year = {2018},
	doi = {10.5545/sv-jme.2017.5084},
	url = {https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/}
}
TY  - JOUR
AU  - Shi, Yinggang 
AU  - Zhu, Kaijia 
AU  - Zhai, Shenghang 
AU  - Zhang, Dewei 
AU  - Liu, Li 
AU  - Zhao, Jizheng 
AU  - Long, Yan 
AU  - Cui, Yongjie 
PY  - 2018/06/26
TI  - Design of an Apple-Picking End Effector
JF  - Strojniški vestnik - Journal of Mechanical Engineering; Vol 64, No 4 (2018): Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2017.5084
KW  - apple picking, end effector, trajectory planning, remote wireless debugging, STM32F103RC, Tiny6410
N2  - A motor-driven end effector with 9 degrees of freedom has been designed. Information of the joint position is transmitted to the potentiometer through gears to realize the position control for the finger joint. The maximum torque of the finger joint motor is verified by imposing a load on the end effector fingertip under the parabola-straight line angular velocity curve. The single-finger coordinate system and the whole-hand coordinate system are established for the end effector through the Denavit–Hartenberg (D-H) method. The forward kinematics and inverse kinematics analysis of the end effector are carried out. To realize the stationary motion of the end effector, the basic algorithms for the starting, stopping and accelerating of the finger joint is designed, based on the analysis of the grasping space using Monte Carlo method and the analysis of the angular displacement of motor using an isochronic interpolation algorithm. The control system is designed based on STM32F103RC to realize the stationary motion of the end effector. Using Tiny 6410, the remote wireless debugging system of the end effector is designed to realize independent control and remote wireless debugging of each joint motor.
UR  - https://www.sv-jme.eu/sl/article/design-of-an-apple-picking-end-effector/
Shi, Yinggang, Zhu, Kaijia, Zhai, Shenghang, Zhang, Dewei, Liu, Li, Zhao, Jizheng, Long, Yan, AND Cui, Yongjie.
"Design of an Apple-Picking End Effector" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 64 Number 4 (26 June 2018)

Avtorji

Inštitucije

  • Northwest A&F University, College of Mechanical and Electronic Engineering, China 1

Informacije o papirju

Strojniški vestnik - Journal of Mechanical Engineering 64(2018)4, 216-224

https://doi.org/10.5545/sv-jme.2017.5084

A motor-driven end effector with 9 degrees of freedom has been designed. Information of the joint position is transmitted to the potentiometer through gears to realize the position control for the finger joint. The maximum torque of the finger joint motor is verified by imposing a load on the end effector fingertip under the parabola-straight line angular velocity curve. The single-finger coordinate system and the whole-hand coordinate system are established for the end effector through the Denavit–Hartenberg (D-H) method. The forward kinematics and inverse kinematics analysis of the end effector are carried out. To realize the stationary motion of the end effector, the basic algorithms for the starting, stopping and accelerating of the finger joint is designed, based on the analysis of the grasping space using Monte Carlo method and the analysis of the angular displacement of motor using an isochronic interpolation algorithm. The control system is designed based on STM32F103RC to realize the stationary motion of the end effector. Using Tiny 6410, the remote wireless debugging system of the end effector is designed to realize independent control and remote wireless debugging of each joint motor.

apple picking; end effector; trajectory planning; remote wireless debugging; STM32F103RC; Tiny6410