JIAO, XiaoYang ;LIU, GuoJun ;LIU, JianFang ;LI, Xinbo ;LIU, XiaoLun ;LU, Song .
Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation.
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 59, n.12, p. 763-771, june 2018.
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/>. Date accessed: 21 jan. 2026.
doi:http://dx.doi.org/10.5545/sv-jme.2013.1093.
Jiao, X., Liu, G., Liu, J., Li, X., Liu, X., & Lu, S.
(2013).
Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation.
Strojniški vestnik - Journal of Mechanical Engineering, 59(12), 763-771.
doi:http://dx.doi.org/10.5545/sv-jme.2013.1093
@article{sv-jmesv-jme.2013.1093,
author = {XiaoYang Jiao and GuoJun Liu and JianFang Liu and Xinbo Li and XiaoLun Liu and Song Lu},
title = {Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation},
journal = {Strojniški vestnik - Journal of Mechanical Engineering},
volume = {59},
number = {12},
year = {2013},
keywords = {standing wave levitation;ANSYS simulation;electromagnetic levitation;non-contact cooling},
abstract = {In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acoustic pressure with different radii of the concave spherical surface on the emitter and the reflector can be obtained, from which the optimal radius was determined. Based on the optimisation, a prototype of a standing wave levitation device was designed and manufactured. Levitation experiments for light and heavy specimens were carried out. It is shown that steel balls can be levitated stably when the distance between the emitter and the reflector is two times that of the wavelength. Next, the standing wave levitator was used in an attempt to levitate a steel ball of 5 mm in diameter after being non-contact heated by electromagnetic levitation. The results show that the method utilising a standing wave levitator to levitate and cool the metal materials after being non-contact heated by the electromagnetic levitation is feasible at this preliminary state.},
issn = {0039-2480}, pages = {763-771}, doi = {10.5545/sv-jme.2013.1093},
url = {https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/}
}
Jiao, X.,Liu, G.,Liu, J.,Li, X.,Liu, X.,Lu, S.
2013 June 59. Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 59:12
%A Jiao, XiaoYang
%A Liu, GuoJun
%A Liu, JianFang
%A Li, Xinbo
%A Liu, XiaoLun
%A Lu, Song
%D 2013
%T Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation
%B 2013
%9 standing wave levitation;ANSYS simulation;electromagnetic levitation;non-contact cooling
%! Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation
%K standing wave levitation;ANSYS simulation;electromagnetic levitation;non-contact cooling
%X In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acoustic pressure with different radii of the concave spherical surface on the emitter and the reflector can be obtained, from which the optimal radius was determined. Based on the optimisation, a prototype of a standing wave levitation device was designed and manufactured. Levitation experiments for light and heavy specimens were carried out. It is shown that steel balls can be levitated stably when the distance between the emitter and the reflector is two times that of the wavelength. Next, the standing wave levitator was used in an attempt to levitate a steel ball of 5 mm in diameter after being non-contact heated by electromagnetic levitation. The results show that the method utilising a standing wave levitator to levitate and cool the metal materials after being non-contact heated by the electromagnetic levitation is feasible at this preliminary state.
%U https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/
%0 Journal Article
%R 10.5545/sv-jme.2013.1093
%& 763
%P 9
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 59
%N 12
%@ 0039-2480
%8 2018-06-28
%7 2018-06-28
Jiao, XiaoYang, GuoJun Liu, JianFang Liu, Xinbo Li, XiaoLun Liu, & Song Lu.
"Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation." Strojniški vestnik - Journal of Mechanical Engineering [Online], 59.12 (2013): 763-771. Web. 21 Jan. 2026
TY - JOUR
AU - Jiao, XiaoYang
AU - Liu, GuoJun
AU - Liu, JianFang
AU - Li, Xinbo
AU - Liu, XiaoLun
AU - Lu, Song
PY - 2013
TI - Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation
JF - Strojniški vestnik - Journal of Mechanical Engineering
DO - 10.5545/sv-jme.2013.1093
KW - standing wave levitation;ANSYS simulation;electromagnetic levitation;non-contact cooling
N2 - In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acoustic pressure with different radii of the concave spherical surface on the emitter and the reflector can be obtained, from which the optimal radius was determined. Based on the optimisation, a prototype of a standing wave levitation device was designed and manufactured. Levitation experiments for light and heavy specimens were carried out. It is shown that steel balls can be levitated stably when the distance between the emitter and the reflector is two times that of the wavelength. Next, the standing wave levitator was used in an attempt to levitate a steel ball of 5 mm in diameter after being non-contact heated by electromagnetic levitation. The results show that the method utilising a standing wave levitator to levitate and cool the metal materials after being non-contact heated by the electromagnetic levitation is feasible at this preliminary state.
UR - https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/
@article{{sv-jme}{sv-jme.2013.1093},
author = {Jiao, X., Liu, G., Liu, J., Li, X., Liu, X., Lu, S.},
title = {Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation},
journal = {Strojniški vestnik - Journal of Mechanical Engineering},
volume = {59},
number = {12},
year = {2013},
doi = {10.5545/sv-jme.2013.1093},
url = {https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/}
}
TY - JOUR
AU - Jiao, XiaoYang
AU - Liu, GuoJun
AU - Liu, JianFang
AU - Li, Xinbo
AU - Liu, XiaoLun
AU - Lu, Song
PY - 2018/06/28
TI - Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation
JF - Strojniški vestnik - Journal of Mechanical Engineering; Vol 59, No 12 (2013): Strojniški vestnik - Journal of Mechanical Engineering
DO - 10.5545/sv-jme.2013.1093
KW - standing wave levitation,ANSYS simulation,electromagnetic levitation,non-contact cooling
N2 - In order to solve the problem caused by metal materials' inability to be cooled without contact with other materials after being heated by electromagnetic levitation, a new method is proposed: using a standing wave levitator to levitate the melted metal. The standing wave levitator adopts a concave spherical surface on the emitter and the reflector. Using ANSYS software, the transducer and the standing wave fields were simulated. Based on the simulation, the distribution and the maximum acoustic pressure with different radii of the concave spherical surface on the emitter and the reflector can be obtained, from which the optimal radius was determined. Based on the optimisation, a prototype of a standing wave levitation device was designed and manufactured. Levitation experiments for light and heavy specimens were carried out. It is shown that steel balls can be levitated stably when the distance between the emitter and the reflector is two times that of the wavelength. Next, the standing wave levitator was used in an attempt to levitate a steel ball of 5 mm in diameter after being non-contact heated by electromagnetic levitation. The results show that the method utilising a standing wave levitator to levitate and cool the metal materials after being non-contact heated by the electromagnetic levitation is feasible at this preliminary state.
UR - https://www.sv-jme.eu/article/research-on-levitation-coupled-with-standing-wave-levitation-and-electromagnetic-levitation/
Jiao, XiaoYang, Liu, GuoJun, Liu, JianFang, Li, Xinbo, Liu, XiaoLun, AND Lu, Song.
"Research on Levitation Coupled with Standing Wave Levitation and Electromagnetic Levitation" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 59 Number 12 (28 June 2018)