Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile

1178 Views
1609 Downloads
Export citation: ABNT
MILINOVIC, Momcilo Pane;JERKOVIĆ, Damir Drago;JEREMIĆ, Olivera M;KOVAČ, Mitar .
Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile. 
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 58, n.6, p. 394-402, june 2018. 
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/>. Date accessed: 16 apr. 2021. 
doi:http://dx.doi.org/10.5545/sv-jme.2011.277.
Milinovic, M., Jerković, D., Jeremić, O., & Kovač, M.
(2012).
Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile.
Strojniški vestnik - Journal of Mechanical Engineering, 58(6), 394-402.
doi:http://dx.doi.org/10.5545/sv-jme.2011.277
@article{sv-jmesv-jme.2011.277,
	author = {Momcilo Pane Milinovic and Damir Drago Jerković and Olivera M Jeremić and Mitar  Kovač},
	title = {Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {58},
	number = {6},
	year = {2012},
	keywords = {aerodynamic coefficients spin stabilized small caliber cannon projectile; gyroscopic stability factor; dynamic stability factor; damping stability coefficients},
	abstract = {The basic aim of this paper is to consider correlations of stability flight criteria, derived as the relations of aerodynamic coefficients and derivatives, on the model of small caliber cannon spin stabilized projectile. Model of stability criteria calculations are performed by experimentally testing of aerodynamic data in the wind tunnel, and composed with the semi-empirical data, both applied on the flight trajectory stability simulation test. Authors’ wind tunnel tests and calculated values of aerodynamic coefficients, as function of Mach numbers of projectile model are presented in the simulation flight trajectories stability criteria. The comparative analysis of experimental and calculated aerodynamic coefficients of projectile model is done, refers to the stability flight criteria. Calculation of projectile aerodynamic Magnus moment derivatives, with other aerodynamic representatives, is used as the critical stability factors testing data vs. flight Mach numbers. Influences of this derivative absence and presence on the model sequence of the flight trajectory are presented for the estimation of angles of attack damping and stability factors. Simulation tests are presented for the supersonic and subsonic integral flight velocities and spin damping data. Research is realized due to the considerations of further projectiles correction possibilities on trajectory, and other new applications, vs. existing of unreliable lateral moments.},
	issn = {0039-2480},	pages = {394-402},	doi = {10.5545/sv-jme.2011.277},
	url = {https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/}
}
Milinovic, M.,Jerković, D.,Jeremić, O.,Kovač, M.
2012 June 58. Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 58:6
%A Milinovic, Momcilo Pane
%A Jerković, Damir Drago
%A Jeremić, Olivera M
%A Kovač, Mitar 
%D 2012
%T Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile
%B 2012
%9 aerodynamic coefficients spin stabilized small caliber cannon projectile; gyroscopic stability factor; dynamic stability factor; damping stability coefficients
%! Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile
%K aerodynamic coefficients spin stabilized small caliber cannon projectile; gyroscopic stability factor; dynamic stability factor; damping stability coefficients
%X The basic aim of this paper is to consider correlations of stability flight criteria, derived as the relations of aerodynamic coefficients and derivatives, on the model of small caliber cannon spin stabilized projectile. Model of stability criteria calculations are performed by experimentally testing of aerodynamic data in the wind tunnel, and composed with the semi-empirical data, both applied on the flight trajectory stability simulation test. Authors’ wind tunnel tests and calculated values of aerodynamic coefficients, as function of Mach numbers of projectile model are presented in the simulation flight trajectories stability criteria. The comparative analysis of experimental and calculated aerodynamic coefficients of projectile model is done, refers to the stability flight criteria. Calculation of projectile aerodynamic Magnus moment derivatives, with other aerodynamic representatives, is used as the critical stability factors testing data vs. flight Mach numbers. Influences of this derivative absence and presence on the model sequence of the flight trajectory are presented for the estimation of angles of attack damping and stability factors. Simulation tests are presented for the supersonic and subsonic integral flight velocities and spin damping data. Research is realized due to the considerations of further projectiles correction possibilities on trajectory, and other new applications, vs. existing of unreliable lateral moments.
%U https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/
%0 Journal Article
%R 10.5545/sv-jme.2011.277
%& 394
%P 9
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 58
%N 6
%@ 0039-2480
%8 2018-06-28
%7 2018-06-28
Milinovic, Momcilo, Damir Drago Jerković, Olivera M Jeremić, & Mitar  Kovač.
"Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile." Strojniški vestnik - Journal of Mechanical Engineering [Online], 58.6 (2012): 394-402. Web.  16 Apr. 2021
TY  - JOUR
AU  - Milinovic, Momcilo Pane
AU  - Jerković, Damir Drago
AU  - Jeremić, Olivera M
AU  - Kovač, Mitar 
PY  - 2012
TI  - Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile
JF  - Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2011.277
KW  - aerodynamic coefficients spin stabilized small caliber cannon projectile; gyroscopic stability factor; dynamic stability factor; damping stability coefficients
N2  - The basic aim of this paper is to consider correlations of stability flight criteria, derived as the relations of aerodynamic coefficients and derivatives, on the model of small caliber cannon spin stabilized projectile. Model of stability criteria calculations are performed by experimentally testing of aerodynamic data in the wind tunnel, and composed with the semi-empirical data, both applied on the flight trajectory stability simulation test. Authors’ wind tunnel tests and calculated values of aerodynamic coefficients, as function of Mach numbers of projectile model are presented in the simulation flight trajectories stability criteria. The comparative analysis of experimental and calculated aerodynamic coefficients of projectile model is done, refers to the stability flight criteria. Calculation of projectile aerodynamic Magnus moment derivatives, with other aerodynamic representatives, is used as the critical stability factors testing data vs. flight Mach numbers. Influences of this derivative absence and presence on the model sequence of the flight trajectory are presented for the estimation of angles of attack damping and stability factors. Simulation tests are presented for the supersonic and subsonic integral flight velocities and spin damping data. Research is realized due to the considerations of further projectiles correction possibilities on trajectory, and other new applications, vs. existing of unreliable lateral moments.
UR  - https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/
@article{{sv-jme}{sv-jme.2011.277},
	author = {Milinovic, M., Jerković, D., Jeremić, O., Kovač, M.},
	title = {Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {58},
	number = {6},
	year = {2012},
	doi = {10.5545/sv-jme.2011.277},
	url = {https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/}
}
TY  - JOUR
AU  - Milinovic, Momcilo Pane
AU  - Jerković, Damir Drago
AU  - Jeremić, Olivera M
AU  - Kovač, Mitar 
PY  - 2018/06/28
TI  - Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile
JF  - Strojniški vestnik - Journal of Mechanical Engineering; Vol 58, No 6 (2012): Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2011.277
KW  - aerodynamic coefficients spin stabilized small caliber cannon projectile, gyroscopic stability factor, dynamic stability factor, damping stability coefficients
N2  - The basic aim of this paper is to consider correlations of stability flight criteria, derived as the relations of aerodynamic coefficients and derivatives, on the model of small caliber cannon spin stabilized projectile. Model of stability criteria calculations are performed by experimentally testing of aerodynamic data in the wind tunnel, and composed with the semi-empirical data, both applied on the flight trajectory stability simulation test. Authors’ wind tunnel tests and calculated values of aerodynamic coefficients, as function of Mach numbers of projectile model are presented in the simulation flight trajectories stability criteria. The comparative analysis of experimental and calculated aerodynamic coefficients of projectile model is done, refers to the stability flight criteria. Calculation of projectile aerodynamic Magnus moment derivatives, with other aerodynamic representatives, is used as the critical stability factors testing data vs. flight Mach numbers. Influences of this derivative absence and presence on the model sequence of the flight trajectory are presented for the estimation of angles of attack damping and stability factors. Simulation tests are presented for the supersonic and subsonic integral flight velocities and spin damping data. Research is realized due to the considerations of further projectiles correction possibilities on trajectory, and other new applications, vs. existing of unreliable lateral moments.
UR  - https://www.sv-jme.eu/article/experimental-and-simulation-testing-of-flight-spin-stability-for-small-caliber-cannon-projectile/
Milinovic, Momcilo, Jerković, Damir, Jeremić, Olivera, AND Kovač, Mitar.
"Experimental and Simulation Testing of Flight Spin Stability for Small Caliber Cannon Projectile" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 58 Number 6 (28 June 2018)

Authors

Affiliations

  • Faculty of Mechanical Engineering, University of Belgrade, Serbia 1
  • University of Defense, Military academy, Belgrade, Serbia 2

Paper's information

Strojniški vestnik - Journal of Mechanical Engineering 58(2012)6, 394-402

https://doi.org/10.5545/sv-jme.2011.277

The basic aim of this paper is to consider correlations of stability flight criteria, derived as the relations of aerodynamic coefficients and derivatives, on the model of small caliber cannon spin stabilized projectile. Model of stability criteria calculations are performed by experimentally testing of aerodynamic data in the wind tunnel, and composed with the semi-empirical data, both applied on the flight trajectory stability simulation test. Authors’ wind tunnel tests and calculated values of aerodynamic coefficients, as function of Mach numbers of projectile model are presented in the simulation flight trajectories stability criteria. The comparative analysis of experimental and calculated aerodynamic coefficients of projectile model is done, refers to the stability flight criteria. Calculation of projectile aerodynamic Magnus moment derivatives, with other aerodynamic representatives, is used as the critical stability factors testing data vs. flight Mach numbers. Influences of this derivative absence and presence on the model sequence of the flight trajectory are presented for the estimation of angles of attack damping and stability factors. Simulation tests are presented for the supersonic and subsonic integral flight velocities and spin damping data. Research is realized due to the considerations of further projectiles correction possibilities on trajectory, and other new applications, vs. existing of unreliable lateral moments.

aerodynamic coefficients spin stabilized small caliber cannon projectile; gyroscopic stability factor; dynamic stability factor; damping stability coefficients