Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology

401 Views
260 Downloads
Export citation: ABNT
WANG, Yong ;WANG, Xiaolin ;ZHANG, Zilong ;LI, Yu ;LIU, Houlin ;ZHANG, Xiang ;HOČEVAR, Marko .
Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology. 
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 67, n.3, p. 75-87, april 2021. 
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/>. Date accessed: 21 sep. 2021. 
doi:http://dx.doi.org/10.5545/sv-jme.2020.6995.
Wang, Y., Wang, X., Zhang, Z., Li, Y., Liu, H., Zhang, X., & Hočevar, M.
(2021).
Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology.
Strojniški vestnik - Journal of Mechanical Engineering, 67(3), 75-87.
doi:http://dx.doi.org/10.5545/sv-jme.2020.6995
@article{sv-jmesv-jme.2020.6995,
	author = {Yong  Wang and Xiaolin  Wang and Zilong  Zhang and Yu  Li and Houlin  Liu and Xiang  Zhang and Marko  Hočevar},
	title = {Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {67},
	number = {3},
	year = {2021},
	keywords = {multiphase flow, impact force, cleaning performance, optimization, pulsed jet},
	abstract = {A self-excited pulsed air-water jet (SEPAWJ) offers many advantages over other jets and has a large number of practical and industrial applications. In order to take better advantage of the SEPAWJ, response surface methodology (RSM) models were established with the experimental impact force characteristics as the dependent variable and three key nozzle parameters as the independent variable. Single and coupling factor effects of these three parameters (oscillation chamber length, oscillation chamber height, and diameter of the downstream nozzle) on performance of nozzle are analysed, and the structural parameters of optimum performance are calculated using RSM models. The external flow field, impact force and cleaning performance of SEPAWJ before and after optimization are analysed and compared experimentally. It is found that the significance levels of established average impact force and impact force amplitude RSM models are lower than 0.05, and their error ratios between calculation and experiment under the optimum construction are both less than 5 %, which confirms their considerable reliability. Meanwhile, the final large water mass of optimized SEPAWJ is formed much earlier, and is more intensive and more concentrated. Compared with the original SEPAWJ nozzle, the impact force and impact force amplitude of optimized SEPAWJ nozzle are increased by 52.00 % and 38.26 %, respectively. In addition, the cleaned area ratio of nozzle before and after optimization is 76 % and 100 % at 50 seconds, respectively, with an increase of 22.4 %.},
	issn = {0039-2480},	pages = {75-87},	doi = {10.5545/sv-jme.2020.6995},
	url = {https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/}
}
Wang, Y.,Wang, X.,Zhang, Z.,Li, Y.,Liu, H.,Zhang, X.,Hočevar, M.
2021 April 67. Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 67:3
%A Wang, Yong 
%A Wang, Xiaolin 
%A Zhang, Zilong 
%A Li, Yu 
%A Liu, Houlin 
%A Zhang, Xiang 
%A Hočevar, Marko 
%D 2021
%T Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology
%B 2021
%9 multiphase flow, impact force, cleaning performance, optimization, pulsed jet
%! Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology
%K multiphase flow, impact force, cleaning performance, optimization, pulsed jet
%X A self-excited pulsed air-water jet (SEPAWJ) offers many advantages over other jets and has a large number of practical and industrial applications. In order to take better advantage of the SEPAWJ, response surface methodology (RSM) models were established with the experimental impact force characteristics as the dependent variable and three key nozzle parameters as the independent variable. Single and coupling factor effects of these three parameters (oscillation chamber length, oscillation chamber height, and diameter of the downstream nozzle) on performance of nozzle are analysed, and the structural parameters of optimum performance are calculated using RSM models. The external flow field, impact force and cleaning performance of SEPAWJ before and after optimization are analysed and compared experimentally. It is found that the significance levels of established average impact force and impact force amplitude RSM models are lower than 0.05, and their error ratios between calculation and experiment under the optimum construction are both less than 5 %, which confirms their considerable reliability. Meanwhile, the final large water mass of optimized SEPAWJ is formed much earlier, and is more intensive and more concentrated. Compared with the original SEPAWJ nozzle, the impact force and impact force amplitude of optimized SEPAWJ nozzle are increased by 52.00 % and 38.26 %, respectively. In addition, the cleaned area ratio of nozzle before and after optimization is 76 % and 100 % at 50 seconds, respectively, with an increase of 22.4 %.
%U https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/
%0 Journal Article
%R 10.5545/sv-jme.2020.6995
%& 75
%P 13
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 67
%N 3
%@ 0039-2480
%8 2021-04-14
%7 2021-04-14
Wang, Yong, Xiaolin  Wang, Zilong  Zhang, Yu  Li, Houlin  Liu, Xiang  Zhang, & Marko  Hočevar.
"Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology." Strojniški vestnik - Journal of Mechanical Engineering [Online], 67.3 (2021): 75-87. Web.  21 Sep. 2021
TY  - JOUR
AU  - Wang, Yong 
AU  - Wang, Xiaolin 
AU  - Zhang, Zilong 
AU  - Li, Yu 
AU  - Liu, Houlin 
AU  - Zhang, Xiang 
AU  - Hočevar, Marko 
PY  - 2021
TI  - Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology
JF  - Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2020.6995
KW  - multiphase flow, impact force, cleaning performance, optimization, pulsed jet
N2  - A self-excited pulsed air-water jet (SEPAWJ) offers many advantages over other jets and has a large number of practical and industrial applications. In order to take better advantage of the SEPAWJ, response surface methodology (RSM) models were established with the experimental impact force characteristics as the dependent variable and three key nozzle parameters as the independent variable. Single and coupling factor effects of these three parameters (oscillation chamber length, oscillation chamber height, and diameter of the downstream nozzle) on performance of nozzle are analysed, and the structural parameters of optimum performance are calculated using RSM models. The external flow field, impact force and cleaning performance of SEPAWJ before and after optimization are analysed and compared experimentally. It is found that the significance levels of established average impact force and impact force amplitude RSM models are lower than 0.05, and their error ratios between calculation and experiment under the optimum construction are both less than 5 %, which confirms their considerable reliability. Meanwhile, the final large water mass of optimized SEPAWJ is formed much earlier, and is more intensive and more concentrated. Compared with the original SEPAWJ nozzle, the impact force and impact force amplitude of optimized SEPAWJ nozzle are increased by 52.00 % and 38.26 %, respectively. In addition, the cleaned area ratio of nozzle before and after optimization is 76 % and 100 % at 50 seconds, respectively, with an increase of 22.4 %.
UR  - https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/
@article{{sv-jme}{sv-jme.2020.6995},
	author = {Wang, Y., Wang, X., Zhang, Z., Li, Y., Liu, H., Zhang, X., Hočevar, M.},
	title = {Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {67},
	number = {3},
	year = {2021},
	doi = {10.5545/sv-jme.2020.6995},
	url = {https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/}
}
TY  - JOUR
AU  - Wang, Yong 
AU  - Wang, Xiaolin 
AU  - Zhang, Zilong 
AU  - Li, Yu 
AU  - Liu, Houlin 
AU  - Zhang, Xiang 
AU  - Hočevar, Marko 
PY  - 2021/04/14
TI  - Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology
JF  - Strojniški vestnik - Journal of Mechanical Engineering; Vol 67, No 3 (2021): Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2020.6995
KW  - multiphase flow, impact force, cleaning performance, optimization, pulsed jet
N2  - A self-excited pulsed air-water jet (SEPAWJ) offers many advantages over other jets and has a large number of practical and industrial applications. In order to take better advantage of the SEPAWJ, response surface methodology (RSM) models were established with the experimental impact force characteristics as the dependent variable and three key nozzle parameters as the independent variable. Single and coupling factor effects of these three parameters (oscillation chamber length, oscillation chamber height, and diameter of the downstream nozzle) on performance of nozzle are analysed, and the structural parameters of optimum performance are calculated using RSM models. The external flow field, impact force and cleaning performance of SEPAWJ before and after optimization are analysed and compared experimentally. It is found that the significance levels of established average impact force and impact force amplitude RSM models are lower than 0.05, and their error ratios between calculation and experiment under the optimum construction are both less than 5 %, which confirms their considerable reliability. Meanwhile, the final large water mass of optimized SEPAWJ is formed much earlier, and is more intensive and more concentrated. Compared with the original SEPAWJ nozzle, the impact force and impact force amplitude of optimized SEPAWJ nozzle are increased by 52.00 % and 38.26 %, respectively. In addition, the cleaned area ratio of nozzle before and after optimization is 76 % and 100 % at 50 seconds, respectively, with an increase of 22.4 %.
UR  - https://www.sv-jme.eu/article/experimental-study-on-self-excited-pulsed-air-water-jet/
Wang, Yong, Wang, Xiaolin, Zhang, Zilong, Li, Yu, Liu, Houlin, Zhang, Xiang, AND Hočevar, Marko.
"Optimization of a Self-Excited Pulsed Air-Water Jet Nozzle Based on the Response Surface Methodology" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 67 Number 3 (14 April 2021)

Authors

Affiliations

  • Jiangsu University, Research Center of Fluid Machinery Engineering and Technology, China 1
  • Xihua University, Key Laboratory of Fluid and Power Machinery, China 2
  • University of Ljubljana, Faculty of Mechanical Engineering, Slovenia 3

Paper's information

Strojniški vestnik - Journal of Mechanical Engineering 67(2021)3, 75-87

https://doi.org/10.5545/sv-jme.2020.6995

A self-excited pulsed air-water jet (SEPAWJ) offers many advantages over other jets and has a large number of practical and industrial applications. In order to take better advantage of the SEPAWJ, response surface methodology (RSM) models were established with the experimental impact force characteristics as the dependent variable and three key nozzle parameters as the independent variable. Single and coupling factor effects of these three parameters (oscillation chamber length, oscillation chamber height, and diameter of the downstream nozzle) on performance of nozzle are analysed, and the structural parameters of optimum performance are calculated using RSM models. The external flow field, impact force and cleaning performance of SEPAWJ before and after optimization are analysed and compared experimentally. It is found that the significance levels of established average impact force and impact force amplitude RSM models are lower than 0.05, and their error ratios between calculation and experiment under the optimum construction are both less than 5 %, which confirms their considerable reliability. Meanwhile, the final large water mass of optimized SEPAWJ is formed much earlier, and is more intensive and more concentrated. Compared with the original SEPAWJ nozzle, the impact force and impact force amplitude of optimized SEPAWJ nozzle are increased by 52.00 % and 38.26 %, respectively. In addition, the cleaned area ratio of nozzle before and after optimization is 76 % and 100 % at 50 seconds, respectively, with an increase of 22.4 %.

multiphase flow, impact force, cleaning performance, optimization, pulsed jet