The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing

2277 Views
1581 Downloads
Export citation: ABNT
HOMAR, David ;PUŠAVEC, Franci .
The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing. 
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 63, n.3, p. 151-160, june 2018. 
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/>. Date accessed: 12 sep. 2024. 
doi:http://dx.doi.org/10.5545/sv-jme.2016.3924.
Homar, D., & Pušavec, F.
(2017).
The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing.
Strojniški vestnik - Journal of Mechanical Engineering, 63(3), 151-160.
doi:http://dx.doi.org/10.5545/sv-jme.2016.3924
@article{sv-jmesv-jme.2016.3924,
	author = {David  Homar and Franci  Pušavec},
	title = {The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {63},
	number = {3},
	year = {2017},
	keywords = {hybrid manufacturing; additive manufacturing; subtractive manufacturing; machining; conformal cooling channels},
	abstract = {In the last decade additive manufacturing of metal components has experienced enormous development. One of the most important achievements in this sector is the fact that nowadays it is possible to produce fully dense metal parts. Generally, additive manufacturing technologies are able to produce very complex geometries but are time and cost consuming for manufacturing of massive components. Machining technology, on the other hand, has the opposite characteristics. Both technologies, additive and subtractive, have advantages and disadvantages depending on the amount of material that need to be added or subtracted. The combination of these two technologies (i.e. hybrid manufacturing) results in a process where advantages of both technologies can be expected (cost, material consumption, etc.). Thusa novelty, the paper presents a development and analysis of software that analyzes the CAD model with geometry of the model and declares which part of model will be manufactured with machining and which will be produced by additive manufacturing. The software is evaluated on an industrial case from the field of injection mould inserts. Results show that such an automated algorithm decreases cost, better efficiency and nevertheless offer possibility to implement technology in industrial environment to improve manufacturing processes, i.e. in current case injection moulding process/technology.},
	issn = {0039-2480},	pages = {151-160},	doi = {10.5545/sv-jme.2016.3924},
	url = {https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/}
}
Homar, D.,Pušavec, F.
2017 June 63. The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 63:3
%A Homar, David 
%A Pušavec, Franci 
%D 2017
%T The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing
%B 2017
%9 hybrid manufacturing; additive manufacturing; subtractive manufacturing; machining; conformal cooling channels
%! The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing
%K hybrid manufacturing; additive manufacturing; subtractive manufacturing; machining; conformal cooling channels
%X In the last decade additive manufacturing of metal components has experienced enormous development. One of the most important achievements in this sector is the fact that nowadays it is possible to produce fully dense metal parts. Generally, additive manufacturing technologies are able to produce very complex geometries but are time and cost consuming for manufacturing of massive components. Machining technology, on the other hand, has the opposite characteristics. Both technologies, additive and subtractive, have advantages and disadvantages depending on the amount of material that need to be added or subtracted. The combination of these two technologies (i.e. hybrid manufacturing) results in a process where advantages of both technologies can be expected (cost, material consumption, etc.). Thusa novelty, the paper presents a development and analysis of software that analyzes the CAD model with geometry of the model and declares which part of model will be manufactured with machining and which will be produced by additive manufacturing. The software is evaluated on an industrial case from the field of injection mould inserts. Results show that such an automated algorithm decreases cost, better efficiency and nevertheless offer possibility to implement technology in industrial environment to improve manufacturing processes, i.e. in current case injection moulding process/technology.
%U https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/
%0 Journal Article
%R 10.5545/sv-jme.2016.3924
%& 151
%P 10
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 63
%N 3
%@ 0039-2480
%8 2018-06-27
%7 2018-06-27
Homar, David, & Franci  Pušavec.
"The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing." Strojniški vestnik - Journal of Mechanical Engineering [Online], 63.3 (2017): 151-160. Web.  12 Sep. 2024
TY  - JOUR
AU  - Homar, David 
AU  - Pušavec, Franci 
PY  - 2017
TI  - The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing
JF  - Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2016.3924
KW  - hybrid manufacturing; additive manufacturing; subtractive manufacturing; machining; conformal cooling channels
N2  - In the last decade additive manufacturing of metal components has experienced enormous development. One of the most important achievements in this sector is the fact that nowadays it is possible to produce fully dense metal parts. Generally, additive manufacturing technologies are able to produce very complex geometries but are time and cost consuming for manufacturing of massive components. Machining technology, on the other hand, has the opposite characteristics. Both technologies, additive and subtractive, have advantages and disadvantages depending on the amount of material that need to be added or subtracted. The combination of these two technologies (i.e. hybrid manufacturing) results in a process where advantages of both technologies can be expected (cost, material consumption, etc.). Thusa novelty, the paper presents a development and analysis of software that analyzes the CAD model with geometry of the model and declares which part of model will be manufactured with machining and which will be produced by additive manufacturing. The software is evaluated on an industrial case from the field of injection mould inserts. Results show that such an automated algorithm decreases cost, better efficiency and nevertheless offer possibility to implement technology in industrial environment to improve manufacturing processes, i.e. in current case injection moulding process/technology.
UR  - https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/
@article{{sv-jme}{sv-jme.2016.3924},
	author = {Homar, D., Pušavec, F.},
	title = {The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing},
	journal = {Strojniški vestnik - Journal of Mechanical Engineering},
	volume = {63},
	number = {3},
	year = {2017},
	doi = {10.5545/sv-jme.2016.3924},
	url = {https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/}
}
TY  - JOUR
AU  - Homar, David 
AU  - Pušavec, Franci 
PY  - 2018/06/27
TI  - The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing
JF  - Strojniški vestnik - Journal of Mechanical Engineering; Vol 63, No 3 (2017): Strojniški vestnik - Journal of Mechanical Engineering
DO  - 10.5545/sv-jme.2016.3924
KW  - hybrid manufacturing, additive manufacturing, subtractive manufacturing, machining, conformal cooling channels
N2  - In the last decade additive manufacturing of metal components has experienced enormous development. One of the most important achievements in this sector is the fact that nowadays it is possible to produce fully dense metal parts. Generally, additive manufacturing technologies are able to produce very complex geometries but are time and cost consuming for manufacturing of massive components. Machining technology, on the other hand, has the opposite characteristics. Both technologies, additive and subtractive, have advantages and disadvantages depending on the amount of material that need to be added or subtracted. The combination of these two technologies (i.e. hybrid manufacturing) results in a process where advantages of both technologies can be expected (cost, material consumption, etc.). Thusa novelty, the paper presents a development and analysis of software that analyzes the CAD model with geometry of the model and declares which part of model will be manufactured with machining and which will be produced by additive manufacturing. The software is evaluated on an industrial case from the field of injection mould inserts. Results show that such an automated algorithm decreases cost, better efficiency and nevertheless offer possibility to implement technology in industrial environment to improve manufacturing processes, i.e. in current case injection moulding process/technology.
UR  - https://www.sv-jme.eu/article/the-development-of-a-recognition-geometry-algorithm-for-hybrid-subtractive-and-additive-manufacturing/
Homar, David, AND Pušavec, Franci.
"The Development of a Recognition Geometry Algorithm for Hybrid – Subtractive and Additive Manufacturing" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 63 Number 3 (27 June 2018)

Authors

Affiliations

  • University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia 1

Paper's information

Strojniški vestnik - Journal of Mechanical Engineering 63(2017)3, 151-160
© The Authors, CC-BY 4.0 Int. Change in copyright policy from 2022, Jan 1st.

https://doi.org/10.5545/sv-jme.2016.3924

In the last decade additive manufacturing of metal components has experienced enormous development. One of the most important achievements in this sector is the fact that nowadays it is possible to produce fully dense metal parts. Generally, additive manufacturing technologies are able to produce very complex geometries but are time and cost consuming for manufacturing of massive components. Machining technology, on the other hand, has the opposite characteristics. Both technologies, additive and subtractive, have advantages and disadvantages depending on the amount of material that need to be added or subtracted. The combination of these two technologies (i.e. hybrid manufacturing) results in a process where advantages of both technologies can be expected (cost, material consumption, etc.). Thusa novelty, the paper presents a development and analysis of software that analyzes the CAD model with geometry of the model and declares which part of model will be manufactured with machining and which will be produced by additive manufacturing. The software is evaluated on an industrial case from the field of injection mould inserts. Results show that such an automated algorithm decreases cost, better efficiency and nevertheless offer possibility to implement technology in industrial environment to improve manufacturing processes, i.e. in current case injection moulding process/technology.

hybrid manufacturing; additive manufacturing; subtractive manufacturing; machining; conformal cooling channels