MANKOVITS, Tamás ;SZABÓ, Tamás ;KOCSIS, Imre ;PÁCZELT, István .
Optimization of the Shape of Axi-Symmetric Rubber Bumpers.
Strojniški vestnik - Journal of Mechanical Engineering, [S.l.], v. 60, n.1, p. 61-71, june 2018.
ISSN 0039-2480.
Available at: <https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/>. Date accessed: 05 feb. 2026.
doi:http://dx.doi.org/10.5545/sv-jme.2013.1315.
Mankovits, T., Szabó, T., Kocsis, I., & Páczelt, I.
(2014).
Optimization of the Shape of Axi-Symmetric Rubber Bumpers.
Strojniški vestnik - Journal of Mechanical Engineering, 60(1), 61-71.
doi:http://dx.doi.org/10.5545/sv-jme.2013.1315
@article{sv-jmesv-jme.2013.1315,
author = {Tamás Mankovits and Tamás Szabó and Imre Kocsis and István Páczelt},
title = {Optimization of the Shape of Axi-Symmetric Rubber Bumpers},
journal = {Strojniški vestnik - Journal of Mechanical Engineering},
volume = {60},
number = {1},
year = {2014},
keywords = {shape optimization; rubber bumper; support vector regression; finite element method},
abstract = {The rubber bumpers built into the air-spring structures of buses perform a number of critical tasks. Consequently, designing their shape requires considerable effort. This paper presents a novel solution for determining the required characteristics of axi-symmetric rubber parts, which can efficiently be used in practice. The procedure is based on the finite element method (FEM) and the support vector regression (SVR) model. A finite element code developed by the authors and based on a three-field functional is used for the rapid and appropriately accurate calculation of the characteristics of rubber bumpers. A rubber shape is evaluated via the work difference and the area between the desired and the actual load-displacement curves. The objective of shape optimization is to find the geometry where the work difference is under a specified limit. The tool of optimization is the SVR method, which provides the regression function for the work difference. The minimization process of the work-difference function leads to the optimum design parameters. The efficiency of the method is verified by numerical examples.},
issn = {0039-2480}, pages = {61-71}, doi = {10.5545/sv-jme.2013.1315},
url = {https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/}
}
Mankovits, T.,Szabó, T.,Kocsis, I.,Páczelt, I.
2014 June 60. Optimization of the Shape of Axi-Symmetric Rubber Bumpers. Strojniški vestnik - Journal of Mechanical Engineering. [Online] 60:1
%A Mankovits, Tamás
%A Szabó, Tamás
%A Kocsis, Imre
%A Páczelt, István
%D 2014
%T Optimization of the Shape of Axi-Symmetric Rubber Bumpers
%B 2014
%9 shape optimization; rubber bumper; support vector regression; finite element method
%! Optimization of the Shape of Axi-Symmetric Rubber Bumpers
%K shape optimization; rubber bumper; support vector regression; finite element method
%X The rubber bumpers built into the air-spring structures of buses perform a number of critical tasks. Consequently, designing their shape requires considerable effort. This paper presents a novel solution for determining the required characteristics of axi-symmetric rubber parts, which can efficiently be used in practice. The procedure is based on the finite element method (FEM) and the support vector regression (SVR) model. A finite element code developed by the authors and based on a three-field functional is used for the rapid and appropriately accurate calculation of the characteristics of rubber bumpers. A rubber shape is evaluated via the work difference and the area between the desired and the actual load-displacement curves. The objective of shape optimization is to find the geometry where the work difference is under a specified limit. The tool of optimization is the SVR method, which provides the regression function for the work difference. The minimization process of the work-difference function leads to the optimum design parameters. The efficiency of the method is verified by numerical examples.
%U https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/
%0 Journal Article
%R 10.5545/sv-jme.2013.1315
%& 61
%P 11
%J Strojniški vestnik - Journal of Mechanical Engineering
%V 60
%N 1
%@ 0039-2480
%8 2018-06-28
%7 2018-06-28
Mankovits, Tamás, Tamás Szabó, Imre Kocsis, & István Páczelt.
"Optimization of the Shape of Axi-Symmetric Rubber Bumpers." Strojniški vestnik - Journal of Mechanical Engineering [Online], 60.1 (2014): 61-71. Web. 05 Feb. 2026
TY - JOUR
AU - Mankovits, Tamás
AU - Szabó, Tamás
AU - Kocsis, Imre
AU - Páczelt, István
PY - 2014
TI - Optimization of the Shape of Axi-Symmetric Rubber Bumpers
JF - Strojniški vestnik - Journal of Mechanical Engineering
DO - 10.5545/sv-jme.2013.1315
KW - shape optimization; rubber bumper; support vector regression; finite element method
N2 - The rubber bumpers built into the air-spring structures of buses perform a number of critical tasks. Consequently, designing their shape requires considerable effort. This paper presents a novel solution for determining the required characteristics of axi-symmetric rubber parts, which can efficiently be used in practice. The procedure is based on the finite element method (FEM) and the support vector regression (SVR) model. A finite element code developed by the authors and based on a three-field functional is used for the rapid and appropriately accurate calculation of the characteristics of rubber bumpers. A rubber shape is evaluated via the work difference and the area between the desired and the actual load-displacement curves. The objective of shape optimization is to find the geometry where the work difference is under a specified limit. The tool of optimization is the SVR method, which provides the regression function for the work difference. The minimization process of the work-difference function leads to the optimum design parameters. The efficiency of the method is verified by numerical examples.
UR - https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/
@article{{sv-jme}{sv-jme.2013.1315},
author = {Mankovits, T., Szabó, T., Kocsis, I., Páczelt, I.},
title = {Optimization of the Shape of Axi-Symmetric Rubber Bumpers},
journal = {Strojniški vestnik - Journal of Mechanical Engineering},
volume = {60},
number = {1},
year = {2014},
doi = {10.5545/sv-jme.2013.1315},
url = {https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/}
}
TY - JOUR
AU - Mankovits, Tamás
AU - Szabó, Tamás
AU - Kocsis, Imre
AU - Páczelt, István
PY - 2018/06/28
TI - Optimization of the Shape of Axi-Symmetric Rubber Bumpers
JF - Strojniški vestnik - Journal of Mechanical Engineering; Vol 60, No 1 (2014): Strojniški vestnik - Journal of Mechanical Engineering
DO - 10.5545/sv-jme.2013.1315
KW - shape optimization, rubber bumper, support vector regression, finite element method
N2 - The rubber bumpers built into the air-spring structures of buses perform a number of critical tasks. Consequently, designing their shape requires considerable effort. This paper presents a novel solution for determining the required characteristics of axi-symmetric rubber parts, which can efficiently be used in practice. The procedure is based on the finite element method (FEM) and the support vector regression (SVR) model. A finite element code developed by the authors and based on a three-field functional is used for the rapid and appropriately accurate calculation of the characteristics of rubber bumpers. A rubber shape is evaluated via the work difference and the area between the desired and the actual load-displacement curves. The objective of shape optimization is to find the geometry where the work difference is under a specified limit. The tool of optimization is the SVR method, which provides the regression function for the work difference. The minimization process of the work-difference function leads to the optimum design parameters. The efficiency of the method is verified by numerical examples.
UR - https://www.sv-jme.eu/article/optimization-of-the-shape-of-axi-symmetric-rubber-bumpers/
Mankovits, Tamás, Szabó, Tamás, Kocsis, Imre, AND Páczelt, István.
"Optimization of the Shape of Axi-Symmetric Rubber Bumpers" Strojniški vestnik - Journal of Mechanical Engineering [Online], Volume 60 Number 1 (28 June 2018)